next up previous contents
Next: wnde Up: Function Reference Previous: pead, peadr   Contents

wne, wner

 


  
Purpose 		 
Compute the right-hand side of the Wei-Norman formula: $\sum_{k=1}^{r}X_k u_k = \dot{S}(t)S^{-1}(t)$, where $S(t) = \prod_{k=1}^{r} e^{g_k(t)X_k}$ and $\dot{S}(t)=\frac{dS(t)}{dt}$.


Syntax e:=wne(r,max_bracket_order,X);
e:=wner(r,max_bracket_order,X,B,lbt);

Description
Computes the right-hand side of the Wei-Norman formula:
\begin{displaymath}
\sum_{k=1}^{r}X_k u_k = \dot{S}(t)S^{-1}(t)~
\end{displaymath} (40)

where $u_k$ are scalar time-dependent functions, i.e. $u_k:t\rightarrow \mathbb{R}$, $X_k$ are indeterminate elements independent of time that define a basis for an arbitrary Lie algebra, and with
\begin{displaymath}
S(t) = \prod_{k=1}^{r} e^{g_k(t)X_k}
\end{displaymath} (41)

and
\begin{displaymath}
\dot{S}(t)=\frac{dS(t)}{dt}=\sum_{i=1}^r
\dot{g}_i(t)\prod_{j=1}^{i-1}e^{g_j X_j}X_i\prod_{j=i}^r e^{g_j X_j}
\end{displaymath} (42)

The Lie algebra generated by the $X_k$ is required to be finite dimensional.
The above expressions for $S(t)$ and $\dot{S}(t)$, together with the exponential formula given in equation (9) allow to express the right-hand side of the Wei-Norman equation as:
\begin{displaymath}
\dot{S}(t)S^{-1}(t)=
\sum_{i=1}^{r}\dot{g}_i(t)
\prod_{j=1}^{i-1}e^{g_j ad_{X_j}}X_i~
\end{displaymath} (43)

Hence, this procedure can be implemented in a simple way in terms of the functions ead, eadr and pead, peadr.
wner, reduces the Lie brackets in the expression to elements in the PHB, and further simplifies the expression according to the supplied Lie bracket table. If the Lie bracket table is an empty list or set, no additional simplifications are carried out.


Arguments $r$ $\textstyle \parbox{0.64\textwidth}{Dimension of the Lie
 algebra basis. In part...
...\ corresponds to the number of Lie brackets in the PHB
 which are independent.}$
max_bracket_order
$\textstyle \parbox{0.64\textwidth}{The
 maximum bracket order in the exponentia...
...ion of
 $e^{ad_x}$; see \texttt{ead}, \texttt{eadr} on
 page~\pageref{ss:ead}.}$
$X$ $\textstyle \parbox{0.64\textwidth}{Label or name for the
 (indeterminate) eleme...
...xttt{wner(r,max\_bracket\_order,B,B,lbt)}, where \texttt{B}
 contains the PHB.}$

wner additionally requires:
$B$ $\textstyle \parbox{0.64\textwidth}{A Philip Hall basis.}$
$lbt$ % latex2html id marker 10364
$\textstyle \parbox{0.64\textwidth}{A Lie bracket t...
...n empty list or set if no
 dependencies between the brackets in the PHB exist.}$

Examples
The examples below consider the P. Hall basis B for a nilpotent Lie algebra of degree four generated by three indeterminates f0, f1 and f2, obtained in the example for the function phb on page [*]. The maximum bracket order in the series expansion of the exponential that will be considered in the next examples is equal to three (i.e. the degree of nilpotency minus one, so that the resulting brackets are always contained in the PHB). In the following two examples assume that the actual basis for the Lie algebra is of dimension 4. Notice that in the first example has an empty Lie bracket table, i.e. all the elements in B are independent.
> w2r:=wner(r,max_bracket_order,B,B,{});

  w2r := dg1~ f0~ + dg2~ f1~ + (dg2~ g1~ + dg4~) (f0~ &* f1~)

                        2
         + (1/2 dg2~ g1~  + dg4~ g1~) (f0~ &* (f0~ &* f1~)) +

                     3               2
        (1/6 dg2~ g1~  + 1/2 dg4~ g1~ )

        (f0~ &* (f0~ &* (f0~ &* f1~))) + dg3~ f2~

         + dg3~ g2~ (f1~ &* f2~)

                       2
         + 1/2 dg3~ g2~  (f1~ &* (f1~ &* f2~))

                       3
         + 1/6 dg3~ g2~  (f1~ &* (f1~ &* (f1~ &* f2~)))

         + dg3~ g1~ (f0~ &* f2~)

                       2
         + 1/2 dg3~ g1~  (f0~ &* (f0~ &* f2~))

                       3
         + 1/6 dg3~ g1~  (f0~ &* (f0~ &* (f0~ &* f2~)))

         + dg4~ g3~ (f2~ &* (f0~ &* f1~))

                       2
         + 1/2 dg4~ g3~  (f2~ &* (f2~ &* (f0~ &* f1~)))

         + dg4~ g2~ (f1~ &* (f0~ &* f1~))

                       2
         + 1/2 dg4~ g2~  (f1~ &* (f1~ &* (f0~ &* f1~)))

         + dg4~ g1~ g2~ (f1~ &* (f0~ &* (f0~ &* f1~)))

A similar calculation to the previous one, but with the assumption that the bracket $B_6=[f_1,f_2]$ is zero, yields:
> w5r:=wner(r,max_bracket_order,B,B,{B[6]=0});

  w5r := dg1~ f0~ + dg2~ f1~ + (dg2~ g1~ + dg4~) (f0~ &* f1~)

                        2
         + (1/2 dg2~ g1~  + dg4~ g1~) (f0~ &* (f0~ &* f1~)) +

                     3               2
        (1/6 dg2~ g1~  + 1/2 dg4~ g1~ )

        (f0~ &* (f0~ &* (f0~ &* f1~))) + dg3~ f2~

         + dg3~ g1~ (f0~ &* f2~)

                       2
         + 1/2 dg3~ g1~  (f0~ &* (f0~ &* f2~))

                       3
         + 1/6 dg3~ g1~  (f0~ &* (f0~ &* (f0~ &* f2~)))

         + dg4~ g3~ (f2~ &* (f0~ &* f1~))

                       2
         + 1/2 dg4~ g3~  (f2~ &* (f2~ &* (f0~ &* f1~)))

         + dg4~ g2~ (f1~ &* (f0~ &* f1~))

                       2
         + 1/2 dg4~ g2~  (f1~ &* (f1~ &* (f0~ &* f1~)))

         + dg4~ g1~ g2~ (f1~ &* (f0~ &* (f0~ &* f1~)))
As expected, the difference w2r-w5r shown below contains only terms of the bracket $B_6=[f_1,f_2]$ which was assumed to be zero in the simplification of w5r.
                       3
         + 1/6 dg3~ g2~  (f1~ &* (f1~ &* (f1~ &* f2~)))

                       2
         + 1/2 dg3~ g2~  (f1~ &* (f1~ &* f2~))

         + dg3~ g2~ (f1~ &* f2~)

Note that an actual computation in Maple of 'w2r-w5r;' returns an expression that contains terms, such as:
 (-dg1~ + dg1~) f0 +
 + (-dg2~ g1~ - dg4~ + dg2~ g1~ + dg4~) (f0~ &* f1~) + ...
that are not simplified to zero because each time wner is invoked, different variables dg1, dg2, etc., are created at each time (i.e. the variables have the same name, but they do not correspond to the same instance of a unique variable in the Maple space, in fact they are instances of different variables). Although this does not seem so far to cause significant problems, its is worth to mention that if one wishes to make comparisons between expressions it would probably be convenient to modify the routines wne and wner so that they declare variables g and dg in the global space as unique instances.


See Also
ead, eadr, pead, peadr.


References
See [32] and references therein for an explanation on the derivation of the Wei-Norman equations.

next up previous contents
Next: wnde Up: Function Reference Previous: pead, peadr   Contents
Miguel Attilio Torres-Torriti 2004-05-31