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VISION, EARLY

The study of biological perception has had an enormous influ-
ence on the development of computational vision. Unfortu-
nately, the most common observation about biological—in
particular, human—vision is its immediacy: simply open your
eyes and a percept of the world appears. This apparently ef-
fortless speed implies to many that vision is relatively simple
and that general-purpose vision systems should not be too diffi-
cult to construct. However, this effortless speed results not
from the simplicity of vision but rather from the immense
amount of specialized wetware, the biological equivalent of
hardware, dedicated to it. In humans the visual system occu-
pies a major portion of the cortex. Vision is, in fact, immensely
complex, and it has turned out to be immensely difficult to
construct successful vision systems. Endless applications in
areas as diverse as robotics (qv), biomedicine, and remote sens-
ing all support this conclusion.

Two basic problems confront the designers of complex early
vision systems: What are the fundamental pieces, or the indi-
vidual tasks comprising vision, and how should they be solved.
The problems are clearly related; either the designer has a
problem for which he can foresee a solution or he has a solu-
tion “in search of a problem.” Although much of the insight
into how to decompose vision has come from mathematics,
physics, and computer science/engineering, perhaps the most
powerful influence to date has been from the study of biologi-
cal vision systems. This entry is a historical survey of the
modern development of early computational vision. The goal is
to illustrate how diverse the influences on computational vi-
sion have been and to argue that such diversity is necessary.

The entry proceeds as follows. It begins about 100 years ago
with the two great vision scientists von Helmholtz (1821-
1894) and Mach (1838-1916), see General References. Two
themes emerge from their different views of vision. In
Helmholtz a clear separation can be seen between low-level
and high-level processing, or what is now sometimes called
early and later processing; and in Mach there is a separation
between the analysis of a task and the mechanism proposed to
accomplish it. (Early processing does not imply a temporal
dimension; rather, the term “early” denotes processing from
the retina back into the cortex, and “later” denotes the latter
stages of cortical processing). These two themes were present
in the first attempt at a complete computer vision system—the
one by L. Roberts—and they persist to the present. In Rob-
erts’s system there was a clear separation between low-level
processing, or the extraction of a cartoonlike line drawing out
of an image, and high-level processing, or the recognition of
objects. And the mechanisms applied at these levels depended
on the tasks; the low-level mechanism being one of so-called
edge detection (qv) and the higher level one of object matching
into a database. Modern computational theories, such as the
one proposed by Marr (1), postulate more elaborate interfaces:
“primal sketches.” Although this thread is common, the main

evolution of computational vision has been an appreciation of
the immense complexity involved in both of these stages, with
one paradigm after another attempting to grapple with it. Dif-
ferent paradigms have arisen for low- and high-level process-
ing, and some have even emerged for intermediate stages.
Strong forms of so-called inverse optics, pieced together with
little or no interaction, have now given way to an increased
appreciation of abstract structure. That is, it has now become
clear that it is essentially impossible to exactly invert the
scene projection process; rather, the search is on for discover-
ing which aspects of the structure of the world can—and
should—be recovered.

The detailed evolution of the field can be thought of in
terms of two pendula, one representing the tension between
low-level and high-level vision, and the other between the
formulation of the task and the techniques chosen to solve it.
This is very much a personal view, as are the examples that I
have chosen to illustrate how these pendula swing back and
forth in time. Interestingly, early on in the development of the
field they were assumed to be rather separate from one an-
other, but as the field began to mature, their interrelation-
ships became more clear as well. The tension between low and
high level vision developed into a concern for the type of
knowledge to be applied, the specifics of which are clearly
related to both task formulation and technique employed.

The vision problem can be summarized as follows. Three- |
dimensional physical structure in the scene projects into two-
dimensional structure in the image. This process must be in-
verted; i.e., somehow, physical structures must be inferred
from image structures. For each class of related physical and
image structures a microinverse problem can be formulated,
and many such problems exist, as we shall describe. Early (low
level) vision consists of those problems for which the solution
is driven by general-purpose assumptions and special-purpose
hardware, whereas later (high level) vision consists of those
problems for which the solution is driven by special-purpose
assumptions and general-purpose hardware. Or stated differ-
ently, in early vision, if something is understood about struc-
ture (of the world), something can be inferred about function
in the visual system; whereas in later vision it appears that
function must be understood before structure.

The focus of this entry is on the evolution of ideas rather
than on algorithms. There is more concentration on the classi-
cal foundations of the field than on current approaches. Sev-
eral other articles in this Encyclopedia address these different
aspects of vision in detail, and cross-references to them are
indicated whenever possible. Furthermore, given space limita-
tions the entry needs to be somewhat selective about material.
Many book length treatments of computational vision (2-8),
image processing (9,10), and visual perception (11-16) are
available and should be consulted along with this entry. It is
also worthwhile to consult the annual list of publications in
computer vision and image processing compiled every year
and published by Rosenfeld in the journal Computer Vision,
Graphics, and Image Processing. Also. several recent collec-
tions have emphasized the relationships between biological
and computational vision (17,18).
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First Paradigm: Segmentation in Low Level and
High Level Vision

The study of vision begins with the grand decomposition sug-
gested by Hermann von Helmholtz (19).

Helmholtz: Physiological Optics and Unconscious Inference.
In his treatise on physiological optics (19) Helmholtz sketched
a theory of vision in which the eye acted as a transducer of
light into the nervous system, which then performed “uncon-
scious inferences” in order to compose internal versions of per-
cepts. That is, he asserted that there was a low-level compo-
nent to vision, dominated by physics and physical models, and
a high level component in which the inferences (qv) took place.
Unfortunately, the only language that he had for talking
about inferences was the rather loose one of what he took to be
“conscious inferences,” or the logic of premises and conclu-
sions. High level vision is, he therefore asserted, the same sort
of activity as is normally involved in cognition and thinking,
although one is unaware of it.

Although Helmholtz was (unfortunately) rather vague
about unconscious inferences, his studies of early vision are
still remarkably fresh and insightful. To illustrate, consider
his study of the transduction properties of the eye. Perhaps
inspired by his work in physics, he countered a rather wide-
spread belief that the eye was a “perfect” optical instrument
by actually measuring its optical properties. He observed, as is
commonly known today, that the eye is far from perfect (20). It
exhibits the many different forms of aberration and distortion
to which all physically realized systems are susceptible.

The result of such optical imperfections in the eye is that
images do not fall on the retina in perfect focus but are blurred
regardless of how well the lens is functioning. Helmholtz
looked for perceptual consequences of such blurring and found
many, one of which he believed to be the Mueller—Lyer illu-
sion (see Fig. 1). His reasoning was as follows. On a figure such
as the Mueller—Lyer, the areas between the lines forming the
acute angles will be blurred more than the areas within the
obtuse ones, thereby stretching the lines into the acute angles
more than the obtuse ones. Such a distortion is precisely in the
direction of the illusion and was, for Helmholtz, its causal
explanation.

Such is visual theorizing of the best sort. A task is posed
(what are the optical properties of the eye?) and solved in a
theoretical fashion that is consistent with empirical data (the
spherical abberation was actually measured). Finally, the the-
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Figure 1. Mueller—Lyer illusion. Although the arrowheads delimit
two line segments of equal length, the one enclosed in the convex
region appears shorter than the one in the concave region. Helmholtz
believed that this is because people’s visual systems somehow fill in”
the convex portion more than the concave portion, thereby effecting
the length judgments. Gregory (12), on the other hand, believed that
interpretations of these line segments as projections of 3-D structures
lies at the foundation of the illusion. Whatever the mechanism respon-
sible, however, such illusions indicate that everyone’s perception of
structure in the world is not veridical but rather depends on contex-
tual influences from many possible sources.

ory was applied to explain observed phenomena (such as the
Mueller—Lyer illusion).

Helmholtz was correct in observing that the eye is an im-
perfect optical instrument. But he was mostly wrong in that
his explanation of the Mueller-Lyer illusion cannot account
for the entire effect. This has been determined only recently
using an elaborate optical technique to project a highly fo-
cused image onto the retina (21). Such techniques indicate
that optical blurring can account for at most 15% of the illu-
sory effect. Nevertheless, considerations of the physics inher-
ent in the imaging process will emerge in different ways as a
major theme in computational vision.

Roberts’s System: Segmentation and Matching. Inherent in
Helmholtz’s theory is a distinction between the types of pro-
cessing that take place early on and then later in the visual
process. Such a distinction lies at the basis of modern computa-
tional theories as well, beginning with the first real attempt to
design a full system. In a seminal thesis Roberts (22) described
what is probably the first computer-vision system. Although it
is not clear that he was directly influenced by Helmholtz, he,
too, decomposed processing into a low level stage, in which a
line drawing was abstracted out of an image, and a high level
stage, in which the line drawing was matched against a uni-
verse of prototypes. Thus the physically motivated processing
was concentrated on the extraction of the line drawing, and
“unconscious inferences” were used to match it into a database
of objects.

In order to effect this matching, it was necessary for Ro-
berts to restrict the possible universe of objects that his system
could encounter. He worked in a miniworld of polyhedral ob-
jects composed entirely of blocks—the so-called blocks world—
a class of assumptions that influenced computational vision for
more than a decade. Even though the universe of objects was
simple, however, it did not follow that the matching would be
trivial; in the process various transformation parameters such
as complex object decomposition, depth, and rotation had to be
computed.

The early portion of Roberts’s system was concerned with
the problem of edge detection (qv), or the identification of
those positions in images that indicate interesting physical
events. The locus of these positions then comprised a line
drawing. The motivation behind “line drawings” can be seen
intuitively in cartoons, or drawings which are, in some sense,
equivalent to full images. That is, both convey sufficient infor-
mation to satisfy one’s high-level, inferential processes. More
specifically, the line drawing was taken to represent a segmen-
tation of the image into meaningful pieces, each of which was
taken to be the projection of a meaningful portion of a physical
object. The outlines of these pieces then comprised the line
drawing.

Roberts’s approach to edge detection was based on the ob-
servation that distinct physical events (say, the sides of a cube)
give rise to distinct image events (intensities). And the image
locations at which these events meet have special significance:
they are the edges of the cube. Thus, if the points of intensity
change could be located and joined, the result would be a per-
fect line drawing of a projected cube.

To locate the edges of the cube, observe further that inten-
sity changes rapidly there. Calculus tells one that, for smooth
functions, rapid changes in the value of the function at a point
are accompanied by large values in the derivative of the func-
tion at that point. Hence Roberts derived a discrete approxi-



mation to a gradient operator elegantly simple in computa-
tional form. His plan was to convolve this operator against the
image, and then to select the strongest of these convolution
values by thresholding. Finally, a linking process would select
high gradient “edge” points to be fit by straight lines. Note
how a distinct higher level constraint enters Roberts’s formu-
lation at this point: the straight sides of his scene polyhedra
project into straight “edges” in the image. Helmholtz made
similar observations about straight and converging lines.
There is further discussion about the influence of such “high-
level” or domain-specific knowledge (qv) on early processing
later in the entry.

However, as described below, there is a lot more to low-
level, early processing than was thought at this time. Roberts
was never actually able to get a perfect line drawing from this
early processor, and there is a basic sense in which the perfect
line drawing is still elusive. But this is a fascinating story in
itself since what began as the pursuit of the perfect line draw-
ing has evolved into the full study of early vision. Again the
entry starts historically, this time with Helmholtz’s contempo-
rary E. Mach.

Similarities versus Differences. Before beginning the discus-
sion of edge detection, however, consider a tangential point.
Segmentation (qv) can be approached in two different ways:
either by searching for differences, or points along segmenta-
tion boundaries or by searching for similarities, or points,
within segmentation regions. Edge detection is the approach
for determining which points are different, and it is the ap-
proach adopted by Roberts. Region growing (see Region-based
segmentation) is another approach to segmentation designed
for determining which points are the same (8). The rationale
for region growing was that, since differentiation emphasizes
noise, segmentations might be found more reliably by smooth-
ing “within” regions rather than differentiating between
them.

However, it should be stressed that the duality of edge de-
tection and region growing does not imply that one or the
other is unnecessary. Rather, they are complementary and
almost always work together. Consider Roberts's system
again; note that after edge detection (differentiation), similar
points (i.e., the locations at which the differential convolution
survived thresholding) are linked into lines; this linking pro-
cess is a kind of one-dimensional region-growing process. That
is, points are defined to be similar if they are associated with a
common straight-line segment in the least-mean-square
sense. Thus, following linking, it is as if all of the boundary
points had been “smoothed” into a bounding contour since
their (prethresholding) individual differences are now gone.
The key information provided by the discontinuity measure-
ment—the edge operator—has now been summarized into a
more global, abstract form. This complementarity emerges
again and again throughout the evolution of early vision;
eventually it emerges as grouping. Consider now the edge-
detection route, however, since this was by far the most promi-
nent of the two.

Laplacians, Mach, and Edges. The modern study of edges has
its roots in the studies of E. Mach. To contrast him with his
contemporary Helmholtz, Mach was interested in image
sharpening rather than blurring, and in explanations couched
in terms of neural networks rather than in physiological op-
tics. The phenomenon of sharpening is known as Mach bands,
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or the addition of subjective bright and dark lines (bands) on
either side of an intensity change (see Fig. 2). Such bands
indicate that the “eye” (i.e. the visual system) is sensitive not
only to image intensities but also to their (first and second)
derivatives.

Mach bands give a clear indication that the subjective im-
pression of brightness and of contrast is highly dependent on
spatial context. That is, one’s impressions of brightness and of
contrast are not isomorphic with the intensity of light imping-
ing on the retinas but rather are derived—or computed—from
it.

How can these computations be understood? Mach believed
that psychophysical laws, such as the ones underlying bright-
ness and contrast phenomena, had their proper explanation in
terms of properties of neural networks, not in terms of pure
physics or purely “physical events.” The particulars of Mach’s
explanation were posed mathematically in terms of “a recipro-
cal interaction of neighboring areas of the retina” (23). He
formulated mathematical relationships involving the Laplac-
ian operator, a symmetric second differential of the image in-
tensities (see below). He cited (then) current neuroanatomical
data by Ritter (23) that postulated a regular arrangement of
cells on the retina and characterized the function of these cells
mathematically. And he postulated that the result of the neu-
ral interactions between these cells was a “sensation surface”
on which the brightness effects were present. Thus, Mach, in
discussing such surfaces, was talking directly about represen-
tations (read: re-presentations); he was concerned with possi-
ble constraints from the “wetware.”

Lateral Inhibition: From Operators to Cooperative Computa-
tion. Although Mach was able to infer the nature of processing
taking place immediately after the retina, it was not until a
revolutionary innovation in neurophysiology—the develop-
ment of microelectrodes for single-cell recording—that his in-
ferences could be verified experimentally. This was first done
in the eye of the horseshoe crab limulus and has led to much
more accurate mathematical models. Such models are said to
exhibit lateral inhibition, or a regular structure in which the
response at a particular retinal point is derived from excit-

Figure 2. Illustration of Mach bands (11). The image consists of a
sequence of rectangular regions of constant intensity, the “edges” be-
tween regions are therefore perfect “step edges.” However, the inten-
sity does not appear constant to a viewer. On either side of each edge
are two Mach bands, a darker one (on the dark side of the edge) and a
lighter one on the other side. Again, these bands indicate that what
one sees is not “what’s out there” but rather is a context-dependent
computation driven by it together with additional constraints.
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atory contributions at that point together with inhibitory in-
teractions from neighboring points (11,24) (see Fig. 3). Notice,
in particular, the regular neural architecture for implement-
ing lateral inhibition, in which the same local structure is
repeated across the spatial array. Viewed spatially, the lateral
inhibitory structure looks circularly symmetric, with an excit-
atory central area enclosed within a negative, or inhibitory,
surround. Or, in other words, the response at a retinal point is
a function of the context around that point.

An essential aspect of this context is the presence of inten-
sity changes in the visual array. As said in the discussion of
Roberts’s system, such changes are important because they
often indicate the presence of physical object contours. In fact,
the functional significance of Mach bands has often been at-
tributed to their edge-enhancement effect: if one is to navigate
through the physical world on the basis of sensory informa-
tion, one certainly needs to locate object contours.

Lateral excitatory and inhibitory networks are without
doubt one of the most ubiquitous mechanisms in biological
vision systems. Lateral inhibitory networks play a clear role
in regulating the dynamic range of the eye (25) and otherwise
performing a sort of local sharpening, or maxima selection, at
the neural level (11). But more generally they have led to a
general view of the kind of computational architecture that
should be employed in early vision, an architecture of regu-
larly interconnected networks of rather simple processors. But
before these networks are developed, consider the local view of
lateral-inhibitory-based edge operators.

Discontinuity and Edge Detection. The classical approach to
edge detection is differentiation. This is typically accom-
plished in two stages: the convolution of an operator against
the image and some process for interpretation of the operator’s
responses. Or stated in more general terms, the stages consist
of a measurement process followed by a detection process. It is
noted above that there is a basic sense in which the two are
complementary: if edge detection is a differential process, in-
terpretation must be an integrative one (recall Region grow-
ing). Note that there are two convergent approaches to the
design of measurement operators, either as numerical approx-
imations to derivatives of different order or as inferences
about how primates might do it.

\

Figure 3. Example of the computational structure of lateral inhibi-
tion. In this diagram the cones represent light receptors, and the large
circles represent “summation” devices. Note how the level of activity
in each receptor contributes positively to the result (excites the sum-
mation device), whereas the level of activity in neighboring receptors
inhibits it (filled circles). In general, the architecture is one of arrays of
units with near-neighbor interactions, both excitatory and inhibitory,
with the local computation a simple one.

Edge detection as Differentiation. If the surfaces of physical
objects project different image intensities, it would seem that
the locations of the physical object “edges” could be inferred
from the places where intensity changes rapidly. These rapid
intensity changes can be detected, under the assumption that
the world projects smooth image-intensity functions to which
differential calculus applies, by locating those positions at
which the first derivative (spatial gradient) is high; or where
the second derivative crosses zero (this assumption, and the
approach that it implies, is questioned below). However, there
are important numerical issues to be confronted as well, so
that the estimates of the derivatives are as accurate as they
can be. Trade-offs between these two issues—differentiation
and numerical stability—are classical. They led to better ap-
proximations to the gradient than the Roberts operator [see
the Sobel operator in Duda and Hart (3), as well as Kirsch (26);
the numerical issues are discussed in Hildebrandt (27) and
implications for edge detection are in many textbooks (2,4,8).
Before proceeding, it should be noted that in spite of the pre-
dominant identification of edge detection with differentiation,
other approaches emerged. Chief among these were a formula-
tion of edge detection as hypothesis testing, so that both the
differences in edge profiles and their inherent noisy variation
could be taken into account (5,28,29), and an observation that
fitting “surfaces” to intensity distributions was a more numer-
ically stable way of finding step discontinuities (30-32). But
they still did not work sufficiently well (see Fig. 4).

Shown below is the evidence for the second major influence:
early primate vision.

Shape of Visual Receptive Fields. A virtual revolution in the
understanding of early visual physiology took place from sin-
gle-cell recordings in cat and monkey visual systems. The re-
ceptive field of a cell indicates how arrangements of light stim-
uli will effect its activity; in effect, the receptive field
characterizes aspects of what the neuron is doing. Hubel and
Wiesel (33) discovered a striking arrangement in receptive
field structure. Their discovery can be appreciated as follows.
Suppose an electrode is indicating the level of activity (firing
rate) of a neuron in the visual system. If a spot of light is shone
somewhere on the retina, processing may percolate back to
influence the firing of that cell. This will be true for some
locations in the retinal array, and it may be either excit-
atory—leading to an increase in the firing rate—or inhibitory,
leading to a decrease (below some “resting” or spontaneous
level). The shapes of these receptive fields in retinal ganglion
cells resemble a circular-surround organization that has been
modeled as a difference of two Gaussians (34,35) (see Fig. 5).
And they come in two flavors: excitatory center with inhibi-
tory surround, and inhibitory center with excitatory surround.

In the cortex, however, the structure of receptive fields
changes dramatically. Here they exhibit the additional prop-
erty of being orientation selective. That is, individual cells
response better to lines and intensity edges than to isolated
points. And their response varies as a function of the orienta-
tion of the lines and points. The receptive fields are elongated
(see Fig. 6). The temptation to identify them with operators for
edge and line detection is overwhelming, and this is normally
done. However, at this time identification was almost purely
local, with little consideration of the network interaction nec-
essarily taking place between these local pieces. The only in-
teractions considered were those required for constructing hi-
erarchies of cells as building blocks to more complex
functionality.
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Figure 4. Illustration of the Sobel edge detector. (a) Original image of automotive parts (256 x
256) pixel resolution. For display this image has been quantized to six gray levels. (5) Binary
image indicating the positions at which the maximal Sobel responses were located. Thresholds
were specified by a locally adaptive algorithm. Note that although some of the prominent edges
have been found, it is certainly not the case that all have been found. Problems clearly arise in
image areas that do not contain steplike edge changes.

Edge Detection and Scale. Visual receptive fields span a
range of sizes, a point that is loosely consistent with quite a bit
of psychophysics regarding threshold perception. Consider,
e.g., a display consisting of a sinusoidal grating. The minimal
contrast necessary to see the grating is a function of its spatial
frequency (11). Wilson and Bergen (36) have empirically de-
termined that these psychophysical data are consistent with
four separate channels of processing. Although these channels
have not yet been related quantitatively back to the physiol-
ogy, they seem to indicate (at least abstractly) a number of
parallel functional streams. But this point has always been
puzzling to computational modelers. If the receptive fields of
these cells participate in edge detection, why the variability in
scale? What role does scale play in edge detection? Several
suggestions have emerged. First, given the noise problems in-
herent in early vision, from quantization, occlusion, and recep-
tor processes, some sort of averaging would seem necessary to
reduce it. For example, if one wished to measure a local fea-
ture reliably, say an edge configuration, increasing the size of
the operators could lead to increased performance (equivalent
detectability with decreasing signal-to-noise ratio) (37). How-
ever, there must be more to it than this because larger opera-
tors will cover more of the image; hence they may cover more
structure than, say, one edge.

In addition to numerical issues, observe that structure in
the world arises at different scales as well. Observe, in particu-
lar, that certain physical events are highly localized in space
(say, the locus of points along which the faces of a cube meet),
whereas others are much less localized; they span more space
(say, the locus of points defining an animal’s limb). These ob-
servations indicate the scale at which different physical events

are taking place. Land (38) observed, e.g., that changes in
physical objects are usually highly localized (say, at the oc-
cluding edge between them), whereas changes in lighting are
typically much more diffuse. The scale of intensity events thus
purportedly “decomposes” lighting from reflectance. Witkin
(39) has suggested a scale space (gv) for studying events at
these different scales (see also General-Purpose Models Revis-
ited). Could it be that the variation in receptive field size is
tuned to events of different “scales” in the world?

The Elusive Edge Operator. Marr and Hildreth (40) tried to
link the above notion of scale with specific ideas for edge detec-
tion. Selecting from the above facts, they observed that the
circular surround operators could be approximated mathemat-

Figure 5. Illustration of Laplacian of a Gaussian edge operator. The
illustration also approximates the difference-of-Gaussian receptive
fields typical of those found in primate retina
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Figure 6. Type of simple cell receptive field of the sort that could be
found in early primate visual cortex. Note that it resembles the circu-
lar-surround retinal receptive field in Figure 5, although now it is
elongated. Such elongation illustrates an orientation preference. In
computer vision such operators are known as “line detectors.”

ically as V°G, the Laplacian of a Gaussian; that since the La-
placian is a second-derivative operator (recall Mach (23)), step
changes in intensity can be localized by its zero crossings; and
that the different sizes of operators would be sensitive to
events (i.e., “edges”) at different spatial scales (see Edge detec-
tion).

Such is a wonderful confluence of events. The problem of
edge detection, with which researchers in computational vi-
sion have been preoccupied for two decades, could now be
solved in a way that is consistent with psychophysical and
neurophysiological data and, moreover, provides a functional
explanation for it. Unfortunately, however, the scheme cannot
work in general for two reasons. First, implicit in it (and in the
design of most other edge operators) is an assumption that the
intensity structure is a step function across the edge and that

the curvature of the edge is zero; i.e., that the edge is straight.
It can be shown that these are precisely the conditions under
which this operator works successfully but that few edges in
natural scenes are of this form (see Fig. 7). Rather, there isa
plethora of different physical configurations that can give rise
to edges, and these must be taken into account (41) (see also
From Structure into Function, below). Moreover, consequent
psychophysical predictions from the Marr-Hildreth operator
have not been supported (42). The perfect edge operator re-
mains elusive.

Image Representation and Communication. If the circular-
surround receptive fields—especially those in the retina and
the lateral geniculate nucleus (LGN)—are not involved in
edge detection, what other function might they be accomplish-
ing? Since the retina is “an outgrowth of the brain,” the prob-
lem of communicating image information from the retina to
the cortex stably and reliably arises. Laughlin et al. (37) have
shown that linear predictive coding theory leads to a model
that fits these receptive fields strikingly well (at least for cer-
tain animals), and considerations of numerical stability lead
to the separation of opposite contrast data (43). It thus would
seem that edge detection is likely to begin in the cortex, which
opens up the door for much more complex processing. The
classical idea of a single edge-detection operator seems un-
likely; it remains necessary to discover the mappings between
physical scene structure and images and between image struc-
ture and visual function.

Naive Physiology: Hierarchies of Feature Detectors. Al-
though lurking in the background, the influence of (then) cur-
rent notions in physiology on computer vision has always been
quite strong. The basic model was feature detection (see Fea-

Figure 7. Edge locations (zero crossings) obtained with the operator in Figure 5. () Compare with
Figure 4b. Note that the zero crossings form closed contours, although these sometimes have little
connection with the physical objects comprising the scene. Two size operators are shown [a small
one in (a) and a large one in (5)] in order to illustrate that the problem is not simply one of “scale.”
Neither one is completely satisfactory for locating edges.



ture extraction), a two-stage procedure in which operators
were first convolved against the image, and then the best
match (i.e., the strongest convolution) was selected by a pro-
cess of thresholding. The operators were somehow matched to
the image projections of certain stimuli in the world, following
the ideas presented in the classic paper by Lettvin, Maturana,
McCullough, and Pitts (44) in which circular-surround recep-
tive fields most sensitive to movement of spots of a particular
size and velocity were interpreted as bug detectors. In addition
to this general perspective, the model of physiology that was
most strongly influencing researchers in computer vision was
the hierarchical one put forth by Hubel and Wiesel beginning
in 1962 [see the review in the paper by Hubel and Wiesel (33)]
in which visual neurons exhibited three types of receptive field
structures: simple, complex, and hypercomplex. Simple cells
were defined as those in which the subdomains were linear
and separable (hence, simple to characterize); complex cells as
those in which the subdomains were nonlinear and overlap-
ping (and hence complex to characterize); and hypercomplex
cells, which were the most difficult of all to capture. Hubel and
Wiesel further hypothesized a hierarchical relationship be-
tween cells: retinal ganglion cells fed into the LGN, maintain-
ing the circular-surround receptive fields discussed above.
These LGN cells are then combined into elongated simple
cells, which are then combined successively into complex and
hypercomplex cells. It was loosely asserted that simple cells
are involved in edge and curve detection and hypercomplex
cells in detection of “higher order” properties such as “corners”
or “end points,” although even at this time problems were
surfacing. How, e.g., could such cells detect dashed curves in
noise (45)? More precisely, the receptive fields were modeled as
operators, and the question became: how could operator convo-
lutions followed by thresholding detect dashed curvesin noise?
No clear function was proposed for complex cells, and (as
shown below, the wonderful simplicity of hierarchical ar-
rangements of feature detectors gives way to more realistic
computations. There is more to “bug” detection in the frog
than circular-surround receptive fields, and there is more to
“edge” detection in humans than individual simple cells.

Knowledge in the Edge-Detection Process. As the measure-
ments of image intensity changes evolved (recall the “edge-
detection” operators), so have the processes for interpreting, or
selecting, a “truest” one from among them. Such selection is
necessary because the value of the convolution is nonzero al-
most everywhere due to microstructure and noise. Somehow
the significant responses must be separated from the insignifi-
cant ones.

Thresholding, Local Maxima Selection, and Hough Trans-
forms. In the simplest case normal thresholding suffices: Sim-
ply select the strongest (highest value) convolutions; all others
are discounted. The idea behind thresholding is that true
edges will project to real intensity differences and hence will
lead to high convolution values. This holds for nonoriented
edge operators when the decision is, essentially, whether a
particular image location is part of an edge. The case of ori-
ented operators is just slightly more complicated since not only
the presence of edges must be separated from their absence
(the noise responses must be eliminated) but the correct orien-
tation of the edge must be chosen as well. Postulating the
orientation at a point to be the same as the orientation of the
operator mask with the highest convolution value is, in a
sense, the best match, and thresholding is one way to select it.
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Thresholding can therefore be interpreted as a selection
based on maxima in some first-order statistic, and the idea has
evolved to include statistics of more general or less local fea-
tures. Perhaps the first example in computer vision is the
Hough transform (qv) (3), in which long straight lines are
found by histogramming local estimates of their orientation
and intercept. The Hough transform has been generalized and
applied by Ballard (46), Davis (47), and others.

Thresholding can also be viewed as a mapping that takes
an image (in which entries are the value of a particular convo-
lution at a point) into another, binary image (in which the
locations with values that survived thresholding have value 1
and all others have value 0). The recovery of more global struc-
tures thus requires further processing, say tracking along the
1s to find lines and contours.

Vision as Controlled Hallucination. Although the above ar-
guments may seem persuasive at first, unfortunately
thresholding’s only virtue is its simplicity; it rarely works in
practice. How can threshold values be selected? More than two
decades of research have shown that, for any but the simplest
of images and tasks, the knowledge required cannot be repre-
sented as threshold values (8). More sophisticated processing
techniques must be employed, and a basic question arises re-
garding how to structure them. Two schools of thought have
been prominent. Originally, it was believed that edge descrip-
tions could somehow be extracted directly out of arbitrary im-
ages. This led to elaborate thresholding algorithms, thinning
algorithms, etc. (3,8). But it is not at all clear that these mech-
anisms are sufficiently powerful to utilize the knowledge re-
quired for edge detection. It is very difficult to evaluate the
results of individual algorithms out of any system’s context,
and early limitations in these algorithms, or apparent failures
in larger contexts, led to the consideration of drastically differ-
ent techniques. The suggestion that vision is, to a real extent,
a process of “controlled hallucination” (48) emerged, the thrust
of which implied that hypotheses about (or knowledge of) the
object being imaged should directly influence the edge-extrac-
tion process. That is, knowledge from the highest, most ab-
stract levels should influence the earliest, most primitive ones
(e.g., Ref. 49). Key to this change in view is the observation
that not only are intensity edges difficult to locate but many of
the edges that define objects also have no image-intensity
counterparts. It is possible to see edges where there is no
change in intensity (50) (see Fig. 8).

Top-Down versus Bottom-Up. The question of which knowl-
edge should be applied in the edge-detection process is a spe-
cial case of a more general one: should image analysis be top-
down or should it be bottom-up (see Processing, bottom-up and
top-down)? Should it be data-driven or hypothesis-driven? Dif-
ferent schools emerged, with Rosenfeld and the image-process-
ing community being associated with the bottom-up idea and
much of the more traditional AI community associated with
top-down approach. Perhaps the most prominent attempt at
top-down edge detection was that of Shirai (51), in which a
knowledge-based edge detector was designed to work only for
images of cubes.

Flow of Control in Knowledge-Based Edge Finding. Shirai’s
system worked as follows. Standard image-differential tech-
niques were used to locate a prominent intensity change. Be-
cause the universe of possible objects was limited, as in Ro-
berts’s case, to the blocks world, it could then be assumed that
such a prominent edge point would be part of the bounding
contour around the cube. After finding the orientation and



1138 VISION, EARLY

N/
¢ 9

Figure 8. Kanisza subjective edge. Note how the apparent (bright)
triangle is indicated by the missing corners in the dark circles and by
the line terminations. Edges seem to be present even with no intensity

changes.

length of this edge, it was then possible to hypothesize a puta-
tive cube model with certain size, etc., parameters instan-
tiated to particular values. This model could then be used to
predict the location of other putative edges, which could then
be verified by looking at the image intensities in detail.

Complexity of Edge Detection. The use of knowledge all the
way down to the lowest levels of the edge-finding process thus
becomes quite complex, necessitating elaborate mechanisms
for its control. Although this can lead to very high perfor-
mance levels in restricted universes (such as the blocks micro-
world), it also leads to brittle, highly specialized systems with
little generality. Extending them to ever-so-slightly larger do-
mains became arbitrarily difficult. In terms of object models,
there is a formidable gap between the blocks world and the
real world. This forced another look at complexity trade-offs
and the flow of processing in vision systems. In retrospect it
seems that too much was hoped for, with regard to the perfor-
mance of local edge operators, a lesson that has still not clearly
penetrated computational vision.

Introduction of Surface Constraints. Intermediate between
knowledge about the exact object and about its edges is knowl-
edge about how they fit together. In the blocks world, knowl-
edge about edges is intimately linked to knowledge about
surfaces, and other researchers began to introduce
surface-intersection constraints directly into their programs
as well. Mackworth (52), e.g., used the idea of gradient space
(53-55)., a representation of object-surface-normal properties
(not image-intensity gradients) to determine which edge seg-
ments could physically belong together for polyhedral objects,
i.e., gradient space makes explicit relations between the coor-
dinates of polyhedral surface gradients and lines in an ortho-
graphically projected image (see also Refs. 56 and 57). Another
intermediate step involved shape estimation, see Refs. 58
and 59.

Rigidity of Early Systems. The problem with these early sys-
tems was rigidity; The knowledge on which they were based—
e.g., the Shirai constraints or the gradient-space constraints—
were “hardwired” into the programs. They could work only for
the idealized-object classes within which the constraints held.

Generalization was difficult, if not impossible. Historically it
was time to back off from the detailed problems and to have a
broader look, which is exactly what happened. As shown be-
low, the network parallelism that was so obvious in early vi-
sual physiology now begins to play a much more prominent
role. It suggests in particular a framework, a point of view
toward vision, of how to derive and use general-purpose con-
straints from abstract assumptions about images and the
world, assumptions that are far more realistic than those
within the blocks world. The importance of intermediate levels
of knowledge, such as that first suggested by gradient space,
increases greatly, but its form is drastically different so that
its use can become much more fluid and adaptable. For a fur-
ther, in-depth discussion of the use of high-level knowledge in
vision systems, see Tsotsos (60).

Constraints and Assumptions. There is often a minor point of
confusion in the study of vision between the terms constraint
and assumption. Assumptions about the universe, e.g., that it
consists of flat surfaces, allow the derivation of constraints in
algorithms, e.g., the equations for fitting planes rather than
for fitting fifth-order polynomials. Clearly, the assumption of
the blocks world leads to many such constraints, some of which
have been described.

Organization and Complexity

Two observations speak against the top-down, rigid analysis of
images, and they are both related to complexity in a particular
way (61). First, if one sees only what one expects to see, how
can the visual system be responsive to unexpected events in
the world? In the limit one would not even need to open his/
her eyes! Second, on the basis of what trigger features—or
database keys—are models selected? Somehow they must be
derived from the image, and if the keys are just intensities,
there is an immense complexity barrier to be overcome: there
are an infinite number of different scenes that could project
into any particular image. How can the correct one be selected
in a reasonable amount of time?

The antidote to complexity is organization, and the answer
to the complexity dilemma is classical. To illustrate, consider
the Dewey Decimal Classification (Melvil Dewey, Lake Placid
Education Foundation, 1922). If the books in a library were
organized randomly, and there were n of them, it would take
on average n/2 examinations to find any particular one. But if
the books were organized, say according to hierarchical cate-
gories as in the Dewey decimal system, the savings in search
time could be enormous (under certain schemes search time
can be shown to grow with logfn) which, for large n is much
slower than n/2). Analogously, one needs to organize the
knowledge in vision systems. The issue is not whether knowl-
edge should be used, but how, what kind, and when it should
be used. Intermediate, abstract (with respect to the models)
knowledge must somehow be incorporated that captures the
regularities of objects in the world. Of course, the earlier ob-
servation that physical edges project into image-intensity
changes is one kind of knowledge, but this must be further
generalized.

Abstraction and General-Purpose Models. Another demon-
stration can be invoked in support of intermediate levels of
organization. Suppose you were looking at a totally unfamiliar
scene, e.g., one from a scanning electron microscope or from an
ultrasound scanner. Although it is unlikely that one would be



able to recognize the object—the scene can even be chosen so
that it does not contain any real objects—one will still be able
to describe what he/he sees. The description will be in general
terms, perhaps involving geometric forms, apparent contours
or corners, and will be of the sort that can be derived from any
image. Such intermediate descriptions, and the knowledge in-
corporated into making (and interpreting) them, are what
should be sought. What is needed are not assumptions about
the entire universe of objects; as in the blocks world, by the
time these assumptions give rise to useful constraints, they
are too constraining. Rather, more abstract assumptions are
needed about the intermediate kinds of structure that can
arise in a wide class of natural scenes. These assumptions and
the constraints they give rise to will provide the backbone for
early processing.

Ubiquity of Uncertainty. Although the metaphor of libraries
is instructive regarding the role of organization, it is mislead-
ing in its directness. A better example would be a library in
which the titles of some of the books were partly obscured. The
reason for this was illustrated by the elusive edge operator.
The term “operator” as it is usually used in computational
vision denotes, in mathematical terms, a linear operator with
local spatial support. Although the design of nonlinear opera-
tors was also attempted (62), their success was little better. In
general, it is impossible to design an operator that responds iff
a particular feature is present. Rather, they respond partly to
whether a feature is present (the mathematical problem here
is related to noninvertibility of operators and L, matching
theory). Somehow these responses must be interpreted, and it
is in these interpretation processes that the general-purpose
constraints are embodied. It has been discovered that much of
this interpretation can be carried out in mechanisms suitable
for parallel implementation, thereby dealing with spatial com-
plexity in a distributed fashion. Before doing so, however, it is
essential to stress the change in viewpoint from segmentation
to description.

From Segmentation to Description. The corners and occlud-
ing boundaries that arise in the blocks world are only a small
subset of the diversity of physical events of interest in the
natural world. Some of these are primitive events, like the
change in orientation at the corner of a cube, and others are
compound, like the texture of a forest. Thus, it becomes essen-
tial to bring out the many levels of structure if there is to be
any hope of eventually agglomerating them. The more explicit
they are, the easier (ina computational sense) they will be to
use. Borrowing insights from another area that was attempt-
ing to grapple with complexity—structured programming—
Marr (63) proposed three principles to underlie the develop-
ment of vision systems. The first of these was a principle of
least committment, or the postponing of limiting decisions as
long as possible. This is another way to pose the blocks-world
criticism. The second principle was one of explicit naming, in
which the distinct entities of importance to vision are named
so that their description is easily referenced. It, too, deals with
complexity. Finally, there is the principle of modularity, the
reasons for which were discussed above in the context of orga-
nization. In early vision modularity is realized most often by
decomposing operations in space as well as into levels.

Rise of Parallelism. In the discussion of lateral inhibition it
was pointed out that there were two ways to proceed. The first
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was toward local (differential or edge) operators, the chosen
one. The second direction, or the observation that much of the
wetware in early vision appears parallel in structure, is now
explored. To understand the advantages of parallel computa-
tional machinery, it is helpful to compare it with sequential
machinery.

Suppose one wanted to perform a convolution of a particu-
lar operator—say, an edge-detection operator—against an im-
age. To obtain numbers, suppose further that it takes n opera-
tions to evaluate the convolution at each location. Specifically,
suppose the operator consists of a mask whose spatial support
is n X n), or n2, locations. Then, by the convolution formula,
there are n = n? (multiplications at each point) + n? (addi-
tions) to add them up. Then, for a 100 x 100 image it would
take 10*n operations to perform the entire convolution of the
operator against the image. For biological “machinery” this is
quite a long time. But rather than spend this amount of time
performing all of the individual convolutions one after an-
other, biology seems to have evolved a faster solution: Perform
all of them in parallel. This trades the cost in time for one in
space (special-purpose hardware) but provides the answer in
the time required for only n operations. In almost all situa-
tions this is very fast indeed.

Researchers in computational vision were anxious to un-
derstand and, if possible, to capitalize on the parallelism con-
straint. There were two problems to face: first, what classes of
algorithms could be decomposed into parallel ones and, second,
how could knowledge be imbedded (represented) within them?
It is rather straightforward to show that parallel convolution
machines can be built: Take a large number of processors, or
“units,” and arrange them so that the units are connected to
their neighbors. Then weight the interaction connections with
the coefficients that define the convolution operator and sim-
ply have the units perform the required multiplications and
additions. Hierarchies or layered collections of such units
could then be conceived, with interconnections between units
established both across and between layers. This is the stan-
dard view of parallelism, and commercial hardware to accom-
plish such convolutions is now widely available (64).

Neural Modeling. But the promise of parallel networks is
much more than just measurements and convolutions. An ab-
stract characterization of neurons into binary {0, 1} units led
Pitts and McCullough (65) to discover relationships between
neural networks and a particular logical calculus. Other early
researchers attempted to introduce some of the uncertainty
apparent in neurons (66) and to deal with fault tolerance
(67,68). Perceptrons (qv), or linear-threshold devices were in-
troduced in the 1950s as devices actually capable of substan-
tial pattern recognition, and Hebb (69) suggested, in an excit-
ing book, how neural assemblies could underlie much of
behavior and learning. But, unfortunately, most of these ear-
lier claims about perceptrons were based on technical notions
that have turned out to be inadequate (49), and although
much of the earlier enthusiasm remains, new conceptual ap-
proaches became mandatory.

Cooperative Processes and Energy Minimization. Another
conceptual approach to parallel processing emerged from two
sources, one in psychology and the other in Al The psychologi-
cal contribution is considered first.

Stereopsis (see Stereo vision) is the process by which infor-
mation about the depth of objects in the 3-D scene is extracted
from relationships between the two retinal images. By trigo-
nometry, a point in depth will project to different positions on
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each retina, and this difference in retinal disparity is propor-
tional to depth. Thus, depth information could be inferred if
retinal disparities could be computed, but this requires the
establishment of correspondence relations between structures
in one image and those in the other that derive from the same
physical event.

Two insights into what parallel processing could do were
provided by two (seemingly) different approaches to the stereo-
correspondence problem. The first of these was obtained by
Julesz (70), who envisioned the entities in each eye as different
kinds of abstract “magnetic dipoles.” This then implied that
the dipoles could cooperate with one another as they relaxed
into an equilibrium configuration. This is, of course, analogous
to the Ising model of ferromagnetism (71) in which the local-
interaction terms are given by the equations of magnetism
restricted to nearest neighbors. Such magnetic-interaction
terms model an abstract “affinity” or “compatibility” between
local pieces of the retinal image.

The second approach is based on another metaphor from
physics. Consider a mountain of sand and a billiard ball, and
think of the mountain as representing an “energy landscape.”
If the ball were rolled down the mountain, intuitively it would
seek a minimal-energy position (72). The Gestalt psychologists
observed early on that such notions could be applied to model
vision. Consider the way that Sperling (73) first applied mini-
mization to the stereo problem. He derived his “energy
landscape” from considerations about similarity between
retinal images. Correspondence can then be viewed as a
process of finding the disparity matches (or correspondences)
between images that maximizes a measure of their total simi-
larity.

Since stereo correspondence can be formulated in both
ways, it is reasonable to conclude that they are two ways of
expressing the same thing. Although it may not be clear what
the exact relationship between Julesz's and Sperling’s ap-
proaches is without writing the equations in full, one can see
that Julesz's approach concentrated on local interactions
whereas Sperling’s approach concentrated on their global
“sum.” (Some literary freedom is taken here, since Sperling
also reduces his model to an interactive network. This paper is
especially interesting to read for the early view of connection-
ism that it proposes.) But an essential ingredient was still
missing: How could optimization problems of the sort in which
Sperling was interested be solved by the kind of local interac-
tions in which Julesz was interested? The search for the an-
swer goes back to the emergence of parallelism within com-
puter vision. Fischler and Elschlager (74) indicated that the
direction should be toward abstract structural matching.

Constraint Satisfaction and Discrete Relaxation Labeling. To
return to computational vision, allow the pendulum to swing
from technique back to task. Building on the work of Guzman
(75), Clowes (48), and Huffman (76), consider an observation
made by Waltz (77) about using knowledge in vision systems.
Waltz and the others above were interested in the high-level
side of a vision system designed to function in the blocks world
or in aspects of what might be thought of loosely as the high-
level side of Roberts'’s system. They were concerned, in partic-
ular, with what is called line labeling, or assigning semanti-
cally meaningful labels to the lines in a line drawing.
Consider, for a moment, how such lines could arise physically.
The outside edge of a cube occludes the background, and the
edges between visible faces represent surface orientation
changes. It would seem, then, that at least in the blocks world,

it is possible to enumerate all of the ways in which physical
edges (or their line representations) could arise. Waltz's task
was to assign such representations to the lines in a line draw-
ing so that these could then be synthesized into objects and
their interrelationships. The synthesis was to be accomplished
by search (qv): try all combinations, say in a depth-first (see
Search, depth, first) manner, until a match is found. Unfortu-
nately, the simplicity of the search is overwhelmed by the
combinatorics.

Necessity therefore motivated Waltz to shift his attention
from the global task (which was now precisely formulated) to
its local constituents. Waltz observed in particular that much
of the search was unnecessary; it went into examining combi-
nations that were in principle impossible. In fact, many of
these impossible combinations could be detected locally, and
then pruned, before the full graph was searched. All that was
needed were rules, say, about how lines could combine at junc-
tions, to detect many physically impossible situations. Thus,
in order to complete his search, Waltz implemented a sequen-
tial process that wandered around the graph of combinatorial
possibilities, deleting impossible ones. The efficiency was
thereby improved to the point that the global searches could be
completed after all locally impossible combinations were re-
moved.

The next step was to show that the sequential elimination
of labels could be done in parallel (78). This step involved a
shift in concentration from the task—Ilabeling line drawings—
to the technique. It yielded an algorithm in which, intuitively
speaking, each label looked around at all of its neighbors and
determined whether it was compatible with each of them; i.e.,
whether there was (at least) one interpretation (of the possibly
many) that could be associated with each line meeting at a
Jjunction such that the pair formed a local combination that
was realizable in a physical object. If not, the (inconsistent)
label as discarded. Of course, this inconsistent label may have
been the only one supporting another label on one of its neigh-
boring lines, so that the check for local consistency had to be
iterated. In this way information about inconsistencies propa-
gates throughout the entire graph. Such a process was first
known as discrete relaxation and has now developed into the
study of constraint satisfaction (qv) (see also Waltz filtering).

Continuous Relaxation Labeling. The above algorithms are
symbolic in the sense that they deal with explicit symbols (say,
occluding edge) associated with explicit image structures (say,
a line). The image structures are easily abstracted to a graph,
and the problem then becomes one of labeling a graph; or,
more precisely, selection from among a set of labels (symbols)
associated with nodes in the graph of a particular subset of
labels that is consistent according to relations defined over
pairs (or triples, etc.) of labels associated with neighboring
nodes. The selection need not be done solely on the basis of
discrete relations, however; and the labels need not simply be
an unordered set. Rather, continuous measures can be distrib-
uted over the label sets at each node, and the label-to-label
relationships can be continuous rather than all-or-none func-
tions. This essentially establishes a connection back to the
subsection above on optimization and replaces the idea of dis-
crete updating with a continuous, analog-type process. That is,
the selection can now be done by maximizing a global criterion
function of appropriate form or by solving a variational prob-
lem with a particular structure (79). Such processes have been
called relaxation-labeling processes, in analogy with relaxa-
tion techniques for solving systems of differential equations,



and their analysis and application in early vision has been
widespread (80,81).

Tasks, Tools, and Techniques. At this point in the discussion
it is worthwhile to clarify a distinction that is often confused in
computational vision: that between tasks—e.g. determining
what is an edge—and techniques—how can edges be detected.
Marr (1) put it slightly differently: He claimed that one needed
to make a distinction between the problem and the algorithm
for solving the problem. He further distinguished between the
algorithm and the implementation of the algorithm. The dis-
cussion in the preceding subsections evolved into one of tools
and techniques and can be summarized by general queries of
the form: What class of computations can be implemented on
parallel, distributed hardware? Such investigations should
lead to algorithms and their analysis. Two distinct kinds of
analysis are, in fact, necessary. The first kind relates classes of
algorithms to abstract characterizations of techniques; for ex-
ample, there are many algorithms for solving linear-program-
ming problems or for solving optimization problems. The sec-
ond kind of analysis relates to properties of a particular
algorithm (or class of algorithms): will they converge; are they
sequential or parallel; are they numerically stable, etc.

Although there is more on Gestalt psychologists later in
this entry, it is worth noting at this point that it can be devas-
tating to jump to particular conclusions regarding how algo-
rithms can be implemented. The Gestalt psychologists took
the electromagnetic metaphor quite literally, and when elec-
trical potentials were discovered in the brain, they assumed
that their minimization metaphor had been substantiated bio-
logically. They thus took it quite literally for many aspects of
brain and behavioral function, and the movement suffered
substantially as a result (82).

Although Marr advocated treating problem, algorithm, and
implementation separately, there are clearly important rela-
tionships between them. The study of tasks interfaces with the
study of algorithms through the abstract characterization of
what they can do. For example, if edge detection could be
formulated cleanly as an optimization problem, appropriate
optimization algorithms could be chosen. However, if it is not
formulated cleanly and does not work, it is impossible to
uniquely ascribe blame to either the task specification or to
the technique proposed to solve it. Often both are at fault.

In general, it has been the case that there is a sort of pendu-
lum of activity swinging between a concentration on tasks and
on tools and techniques. Of course, to actually accomplish any-
thing, one must pay attention to both issues: what is the task
and what techniques can be applied to solve it. It is just this
duality that keeps the pendulum swinging. Whenever a par-
ticular approach fails, either the formulation or the fabrica-
tion (the task or the technique) must be blamed, so the re-
searcher then swings over to the other side. Of course, leaving
out highly engineered situations, it is almost always the case
that both the task and the technique have been inadequately
formulated, which is why the pendulum keeps swinging!
Therefore, to proceed, allow the pendulum to swing back to the
task side.

Vision as “Inverse Optics.” Perhaps because they were
physicists, both Mach and Helmholtz considered how images
were formed, fields known today as photometry, optics, and
physiological optics. This perspective has had an immense in-
fluence on shaping the second major paradigm for computa-
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tional vision, or what might be viewed as second-generation—
or second-paradigm—rvision systems. [The first generation, of
course, is typified by the Roberts system (22).] The particu-
lar—backward, or inverse—way in which photometry entered
is illustrated first; then the second paradigm is developed. For
consideration of other optical phenomena in computer vision,
see Ref. 54.

Shading from Shape (and Light Source). Light is emitted from
a source, reflects off the surfaces of objects, and, if it is not
obscured or absorbed by some intermediate object, is captured
by the photoreceptors in our eyes. The standard formulation
for matte reflection without highlights is well known to physi-
cists, and Mach used it in his research in the latter part of the
nineteenth century. The image intensity / (at each image
point) is given by

I =p(N-L)

where N is the normal vector to the surface at the point, L is
the light-source vector, and p is a scalar coefficient of surface
reflectance. / is a function of two variables (say, x and y retino-
topic or image coordinates), whereas N and L are vectors in 3-
D space. Clearly, if one knows the scene (or, more particularly
for this special case, N, L, and p), one can calculate the image.
In words, the shading in the image of an object will vary in an
appropriate way with the object, the viewing conditions, and
the lighting conditions. But vision is concerned with running
the above calculations backward.

Shape from Shading. The inversion of the image-formation
process is underdetermined. There are always essentially an
infinite number of scenes that could have given rise to a partic-
ular image. Somehow 3-D variables must be inferred from 2-D
ones. Many different sources of constraint are possible, but
those that lead to an estimate of where the light source is
(with respect to the surface, say), where the surface is and how
it is oriented (with respect to the viewer, say), and what the
surface’s reflectance properties are would seem to be among
the most useful. Recently Horn (83), Woodham (55), Pentland
(84,84a), and others have tried to recover information about
surface shape from changes in illumination (or shading), de-
veloping an activity initiated by Mach. Recently, in fact, an
entire industry of approaches known as “shape-from-X,”
where X can be texture, contour, or motion (85,86), has
emerged (see Shape analysis).

Beck (87), among others, has studied such phenomena psy-
chophysically. But since image formation is a complex of pro-
cesses, it follows that segmentation is not just a matter of
image differences but can also be a matter of inferred physical
object differences (segmentation is the decomposition of the
image into pieces that arise as the projection of distinct physi-
cal events whose recovery would enable or support object infer-
ences). Waltz's research was an important case in point; see
also Mackworth (52). The next decade (1975-1985) of compu-
tational vision research was, to a large extent, an attempt to
verify this observation; to calculate and to make explicit these
intermediate inferences from images back into the scene
domain.

Second Paradigm: From Segmentation to Surfaces

Image differences can arise from differences in lighting (say,
cast shadows), in surface orientation (as at the corner of a
cube), in surface composition (as when one object obscures an-
other), etc. The next major focus of computational vision re-
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search was exploring these differences both individually and
together. Although edge detection seems impossible solely on
the basis of image intensities, each of the above individual
properties, if it could be computed, could then be differenti-
ated. The result would be a description not only of where in-
tensities changed but also of which (estimated) scene proper-
ties were changing as well.

The key difference between this second paradigm and the
first one is how the line is drawn between low- and high-level
vision. In the first paradigm the goal of low-level processing
was a segmentation, or the recovery of a line drawing of (in-
tensity) outlines. Somehow these outlines are to be matched
against a database of prototypical object outlines. Such match-
ing is impossible for natural objects, however, since intensity
discontinuities do not always correspond with object structure.
For example, intraobject texture differences may obscure in-
terobject edge differences. In the second paradigm the attempt
is to recover a richer, more abstract intermediate description,
namely, surfaces. The difference between the paradigms is
that now, in the second paradigm, segmentation is to be car-
ried out with respect to abstract, inferred properties, not only
with respect to image-intensity properties. Then the matching
can be guided by (abstract) object as well as a priori properties.
And this general-purpose, intermediate level of description
will incorporate information from many different sources, in-
cluding stereo, motion, shape from shading, as well as many
different kinds of constraints (such as object smoothness).

The influence from psychology is again clear here. Gibson
(88), who, like Helmholtz, had very limited ideas about the
need for computation early on in the visual process, neverthe-
less had a clear idea of the importance of inferring abstract
“surface” properties from images. To this end he and his stu-
dents studied motion, texture, stereopsis, and shading or many
of the modes through which information about surfaces could
be obtained (to be more precise, the statement here is not that
earlier researchers, including Helmholtz, e.g., were unaware
of these sources of information but rather that Gibson illus-
trates the enthusiastic revival of interest in them). Each of
these appeared to be such a rich source of information to him
that one could almost understand why he thought the visual
system could resonate to them. It is striking, in fact, to com-
pare illustrations from his highly influential 1950 book and
Marr’s (1) much more recent attempt to lay out a computa-
tional viewpoint. They are remarkably similar! Curiously, the
enthusiasm surrounding Gibsonian “resonances” continues to
the present; see the commentaries of Ullman (89).

How, then, is it possible to structure the surface-finding
processes, i.e., those processes that actually perform the infer-
ence of surfaces? The influence from physiology is again
strong, as are inputs from mathematics and computation.

Interacting Modules for Surface Interpolation. Two ap-
proaches emerged within this second paradigm almost simul-
taneously, one based on a working assumption of indepen-
dence and the other on one of dependence.

Primal Sketches. The first of the frameworks around which
second-paradigm computational vision developed was the pri-
mal sketch idea of Marr (63). The primal sketch is an explicit
representation of the “important information about the two-
dimensional image, primarily the intensity changes there and
their geometrical organization” (90). The primal sketch is
therefore a data structure, and with development it actually

evolved into several data structures: the raw primal sketch,
which held the results of “edge detection” (qv); the full primal
sketch, in which geometric relationships were first made ex-
plicit; and the 2i-D sketch, in which certain depth properties
were first computed. Model descriptions were then inferred
from these data.

Marr took the principle of modularity very seriously and
proposed a research program in which each of these different
stages, or the processing that actually comprised them, could
be studied independently. Separate projects in stereo, motion,
and edge detection were therefore begun. Although modular-
ity or independence is arguably just a first approximation, the
competing framework stressed interrelationships.

It is interesting to examine the progress from Roberts’s line
drawings to Marr’s primal sketch. Primal sketches are simply
an elaboration of the data structure interfaces common to all
computer-vision systems. The question was—and is—pre-
cisely where they should be placed within the system.

Intrinsic Images. The other dominant framework for second-
paradigm vision was founded on the idea that since the sur-
face-light source—viewer arrangements were all intrinsically
coded within images, the role of early vision was to explicate
them. Hence Barrow and Tenenbaum (91) proposed the idea of
intrinsic images, or a collection of arrays aligned in retinotopic
(image) coordinates. Each array made one of the local intrinsic
properties explicit, including image intensity, surface normal,
distance (or disparity), and lighting. Since none of these in-
trinsic images could be computed by itself, functions were fur-
ther defined between them which embodied, say, the photo-
metric relationships that must hold between them. Each
image further made discontinuities explicit, so that this infor-
mation could be propagated between images as well (see
Fig. 9).

Slicing Up The World For Constraints. The approaches to vi-
sion so far have indicated several different ways in which as-
sumptions about the world can be obtained. First, it is possible
to have a complete but artificial world. This is the case for the
blocks world, from which we can conclude that although some
quantitative analyses thereby become possible (say, Horn's
image-intensity calculations), the results do not extend to
more general universes. A second way to slice up the world is
by introducing intermediate constraints that hold for some
aspects of the general world. Examples of this are smoothness
of surfaces (92,93), the continuity of edges (94,95) and the
rigidity of objects (96-98). But beware, when selecting as-
sumptions, that they do not conflict with the quantitative re-
quirement above: There is almost a sensitivity principle oper-
ating here in which the consequences of violating an
assumption should vary in proportion to the universe over
which it holds.

Symbolic Side of Early Vision. In addition to making intrin-
sic properties explicit, the above framework began to confront
the symbolic content of early vision as well. Implicit in the
previous generation was an assumption that each stage was
interpreted—in the logical sense of the term—by a subse-
quent one. Now researchers began to worry about the seman-
tics of these symbols; i.e., about what they meant (99,100).
Early vision was shown to involve inferences about “what’s
out there.” Such concerns developed from the concern in high-
level vision with symbols and appeared explicitly in mecha-
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Figure 9. Typical second-paradigm computational model, in this case
Barrow and Tenenbaum’s (91) intrinsic images. The planes are in-
tended to represent various intrinsic features, such as surface reflec-
tance, arranged retinotopically, and the arrows indicate quantitative
constraints between them (equations connecting them). But such
purely quantitative, global models now appear to suffer from intracta-
ble stability and conditioning problems.

nisms such as relaxation labeling. There is an essential differ-
ence between relaxation labeling as it emerged in the middle
1970s and neural modeling, which is much older: in relaxation
labeling the labels are symbols. The importance of meaningful
symbols, and the inferential processes that manipulated them,
increased from this time on in all of vision.

Realization of Second Paradigm. The realization of the sec-
ond paradigm has been attempted for the past decade, and
hence much of the research is covered in detail in more special-
ized chapters in this Encyclopedia; see, in particular, Color
vision; Dot-pattern analysis; Motion analysis; Scale-space
methods; Template matching; Edge detection; Generalized cyl-
inder representation; Image analysis; Optical flow; Scene
analysis; Shape analysis; Stereo vision: Texture analysis; Vi-
sual depth map.

Organization of Primate Visual Systems. Decomposition of
function arose in physiology as well as in computer vision. One
certainly has the feeling that such anatomically apparent mo-
dularity lies behind the strong form of modularity advocated
by Marr (1). Consider the macroscopic organization of the pri-
mate visual system. The first level of organization is rather
coarse and can be characterized in terms of anatomically dis-
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tinct areas to which the visual input is mapped. Recognizing
that perhaps a few new visual areas will still be discovered,
there are something in the range of 15-20 that have been at
least partly characterized (101). It is tempting to relate a vi-
sual function to each of these areas, say, with one solving
stereo, another solving edge detection, etc. It is also the case
that different neural layers within each of these (anatomical)
areas may be involved in different functions, which adds up to
another factor of 3 or 4. However, this relating is dangerous
since each visual area may well be involved in more than one
function; recall, e.g., that simple cells are both orientation-
and velocity-tuned. An even more telling example has been
found by Regan and Cynader (102) in cells whose receptive
fields are both motion- and disparity-sensitive. That is, recep-
tive fields exist whose stimulus dependencies involve both ve-
locity and disparity simultaneously; they cannot be decom-
posed. Even keeping such compositions in mind, however, a
first-order estimate of functional complexity is possible. The
number of distinct visual areas is significantly larger than 2
(for separating low- and high-level vision) and less than, say,
100, even taking the different layers into account.

The detailed organization of each of these visual areas ex-
hibits structure of its own. The simple, complex, and hypercom-
plex cells of Hubel and Wiesel (33) are found in the first few
cortical visual areas. Fascinatingly, at least in the first of
these visual areas (V1 in primates, area 17 in cats) these cells
are not arranged randomly but rather form striking columnar
patterns according to a number of criteria. First, there are
ocular-dominance columns in which cells take their dominant
input from the left or the right visual field. Then there are
orientation columns in which cells have a preferred orienta-
tion that changes sequentially along tangential (electrode)
penetration. Finally, the receptive fields vary in size over sev-
eral orders of magnitude, with some less than 10’ (minutes of
visual angle) and others more than 10°. In general, complex
cells have larger receptive fields than simple cells. It would
definitely seem that this organization provides strong support
for parallel processing across spatial (and other) dimensions,
although the mapping from anatomical area to visual function
is still very obscure.

Parallel functional streams. Although only a few of the prop-
erties of cortical receptive fields have been considered, the
story is undoubtedly more complex than this. Returning to the
retina, the original view that ganglion cells only exhibit spa-
tial circular-surround receptive fields has been replaced with a
more modern one in which their temporal characteristics mat-
ter as well. Even in the classical view there is evidence of two
parallel-processing streams with respect to contrast: one
which is ON center/OFF surround, and the other which is OFF
center/ON surround. It is now widely believed that there are
many different classes of retinal ganglion cells, X and Y being
among the most prominent. X cells are roughly linear in their
response and have relatively slow connections back to cortex.
Y cells, on the other hand, are nonlinear in their response,
have fast connections, and have receptive fields roughly twice
the size of X cells. Both scale in size with retinal eccentricity.
Also, there is a third class of so-called W cells that is beyond
the scope of this entry.

Although functional ideas regarding the X and Y systems
are still hypothetical, it is held that the X system appears to be
more concerned with spatial vision, whereas the Y system may
be involved in motion (103). However, the significant point is
that the X and Y pathways proceed in separate, parallel chan-
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nels from the retina through the LGN to the cortex. There is
even evidence that they give rise to separate populations of
simple and complex cells as well. Thus, in addition to the
hierarchical, layered organization (see Naive Physiology
(above)), visual processing would appear to be accomplishing
several functions in parallel as well. Furthermore, physiologi-
cal evidence points to separate enervation to (at least some)
simple and complex cells, which brings the strict hierarchy
into question. And more recently the processing of color has
been relegated to a (partially) separate system (104). The feed-
ing forward and the feeding back of visual information does
not follow the simple branches of a tree but rather flows
around a graph. Complexity rises again.

What kinds of functions could the neurons along all of these
parallel, layered pathways be computing? Although the sepa-
ration of color and luminance information makes evolutionary
sense, and the separation of contrast makes mathematical
sense, how can other visual functions be decomposed into par-
allel streams? It is fascinating that this is precisely the ques-
tion that began to dominate researchers in computational vi-
sion, for different reasons, during this second paradigm.
Decomposition and organization are the only ways to deal with
complexity.

Summary of the Second Paradigm. In summary of this sec-
tion, the second major paradigm in computational vision, it is
interesting to stress that the partition of early and later pro-
cessing, which began with Helmholtz (19) and Roberts (22),
has continued. The primal sketch and intrinsic images are far
more complex interfaces than Roberts’s line drawing but nev-
ertheless serve the same putative function. They certainly
contain much more information, which underlines the com-
plexity of early vision, a point that has emerged many times.
But the metaphor of photometry on which this style of analysis
is based has become questionable. Just how far quantitative
methods can be pushed remains an open question. The missing
ingredient is qualitative structure.

General-Purpose Models Revisited

Although the modular view has many attractions (recall the
argument above regarding the Dewey decimal classification),
the formulation it assumed within the second paradigm has
serious problems. A decade of concentrated effort has not led to
generally functional systems; rather, there have been only
“local” successes, or successes only under many explicit and
highly restrictive assumptions. The situation is reminiscent of
the blocks-world experience, in which knowledge of (or as-
sumptions about) the physical situation were so restrictive as
to be suffocating.

The problem with second-paradigm vision systems can be
seen from the discussion of “inverse optics”; for the program to
succeed, all of the details of surface normals, surface-reflec-
tance functions, spatial arrangements, etc., need to be recov-
ered exactly. There is no place for approximation, noise, or
uncertainty. But approximation, noise, and uncertainty are
present in any real physical vision system. The strong form of
the second paradigm cannot succeed.

The examples from perception presented above also argue
strongly against the second paradigm. The Mueller-Lyer illu-
sion (Fig. 1) and Mach bands (Fig. 2) indicated that what is
seen is not exactly what is there; rather, it is the result of a

context-dependent computation. And the subjective Kanizsa
edge (50) (Fig. 7) suggests that the computation involves a
form of inference.

If the exact structure of the scene cannot be recovered eve-
rywhere, which parts can be? Which aspects of structure are
necessary (sufficient?) for visual inferences? Thus, the ques-
tion of what kinds of knowledge are employed, and to what
ends, rises again. There are two major issues in particular:
whether the knowledge is truly quantitative and how to slice
up the world so that appropriate general assumptions can be
made.

Qualitative versus Quantitative Knowledge. The fact that im-
age-intensity formation is a complex process led to an early
observation that intensity profiles are not always shaped like
a step function but also arise as roofs or slopes (28). The struc-
ture of these intensity functions carries important information
about the physical scene that gave rise to it (53), an observa-
tion that was instrumental, in large part, for the concentrated
effort on “inverse optics.” But much of this research was quan-
titative in motivation (if not in fact), with the goal of precisely
formulating the systems of differential equations and solving
them exactly. Unfortunately, as Mach indicated, this is impos-
sible in general, and those restrictive situations in which it is
may not be all that relevant to the solution of the general
vision problem. Although photometers must be quantitative in
their interpretation of, say, shading profiles on the moon as
seen through telescopes, they are functioning as physicists and
their goal is to recover the surface topography of the moon as
accurately as possible from that source of information. It
would appear that vision systems cannot accomplish this in
general for all scenes.

Qualitative Shape from Shading. Because of its central posi-
tion, the methodological presupposition within the second par-
adigm that one’s visual system functions as an inverse pho-
tometer must be questioned. The evidence, in fact, is against it
from a biological perspective. For example, if computer-graph-
ics techniques were used to render images of cylinders with
different cross-sectional profiles, ranging, say, from circular to
triangular, one would expect the percept of the figure to
change as well. This does not happen, however (105); rather, a
range of different surface shapes are all perceived as roughly
circular. The impression is that shading cues are more qualita-
tive than quantitative. Cavanagh (106), in a recent psy-
chophysical study, has shown that depth cues such as occlu-
sion and shading interact only in certain ways, depending on
whether they derive from color, motion, stereo, etc.

The next example raises another kind of problem with
strict quantitative constraints in early vision.

Rigidity of Rigidity Assumption in Structure from Motion. Hu-
mans have the remarkable ability to see structure from mov-
ing-dot patterns (96,97). There is, of course, much more to
motion than is considered in this entry; consult the other arti-
cles in this Encyclopedia for a more complete treatment. Imag-
ine, e.g., a clear cylinder covered with tiny specks of dust.
Statically, the dust pattern would appear to just be random
dots arranged on a plane. If the cylinder were rotated, how-
ever, its full 3-D structure would be apparent. Ullman (98) has
referred to this ability as inferring structure from motion, and
a good deal of research, both computational and psychophysi-
cal, has been focused on it (96,97,107, and 108). In particular,
the apparent perceptual preference to see rigid configurations



has inspired researchers to build the rigidity constraint di-
rectly into the computation, leading to models in which sys-
tems of algebraic equations need to be solved exactly.

However, the computations arising from such formulations
are difficult, if not impossible, to realize biologically or percep-
tually because of a numerical problem called ill-conditioning.
A system of equations is ill-conditioned if a small change in
input (independent variable) leads to an arbitrary change in
output (dependent variable). Such small changes in input
arise from errors in measurement or lack of high numerical
precision, and hence such quantitatively sensitive algorithms
seem ideally unsuited for real vision. Visual systems must be
designed to function in the presence of noise and uncertainty.
Global rigidity assumptions are too rigid; they fracture under
the slightest pressure from uncertainty.

General Algorithms and General Position. The above point
about rigidity can be made in different terms by the notion of
general position. Imagine viewing a line drawing of a cube.
From all positions except one this line drawing will be topolog-
ically similar; there is one, however, at which it looks differ-
ent: when the corner nearest the viewer and the corner far-
thest from the viewer align along the viewing axis. In this
singular configuration that line drawing no longer looks 3-D;
rather, it looks like a flat triangulated hexagon (see Fig. 10).
Note, however, that such singular configurations are de-
stroyed if one moves ever so slightly off the axis connecting the
two corners. In all but this one configuration the cube is
viewed from a general position. By definition, then, a general-
positional view of an object is one in which the image does not
change qualitatively. Other examples of singular arrange-
ments could be obtained if one were to view scenes from singu-
lar viewpoints; recall the Ames room demonstrations (109).
They did not look the same from any other viewpoint. Vision
algorithms must be general in precisely this sense; the rigidity
assumption is analogous to a singular view.

From Structure to Function

In the beginning of the entry, two pendula are described, one
of which indicates the tension between low and high-level
knowledge and the other between task and technique. Al-
though the field has become much more experienced, the pen-
dula still remain. Ten years ago there was great concern about
whether processing was top-down or bottom-up; now it is what
kinds of knowledge must be applied; what are legitimate as-
sumptions to make and what constraints do they imply. How-
ever, the assumptions and constraints are usually ones of prin-
ciple; e.g., the assumption of rigidity in motion (97,98). How

Figure 10. Two line drawings of cubes. The one on the left illustrates
a cube from an arbitrary viewpoint; although the details change, the
topological features remain the same. On the right is an illustration
from a singular viewpoint, in which the three-dimensionality may or
may not be present. Any slight change in viewpoint destroys the trian-
gulated hexagon and results in a drawing like the one on the left.
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should they be made discrete in practice? The need for modu-
larity has arisen within both tensions; the question has be-
come which structures in the scene project into which struc-
tures in the image (informational modularity), and how might
these be recovered reliably and consistently (processing modu-
larity)? Spatial parallelism is clearly indicated in the early
stages; how high it goes is still an open question (110,111).

The idea here is more than that certain scene structures are
preserved under projection. Helmholtz (19) and Gibson (88)
were both aware of this (the classic examples from Helmholtz
concern how straight lines in space project into straight lines
in the image; Gibson, of course, discovered texture gradients
and optical flow). The idea is that vision consists of a fabric of
inferences, some or many of which are interrelated. Not all of
the scene information is recoverable directly; rather, only
some kinds of structure in the scene domain give rise to image
structures from which the “projection” transformation can be
“inverted.” It is this network of local (in every sense of the
term) inferences on which the global scene recovery is an-
chored. Somehow the global structure must be interpolated
from the local anchors. It is the discovery of such structures
that provides the keys into visual function.

On the Mechanisms For Early Inferences. Three major les-
sons have been learned about how to approach early vision:
the mechanisms for structuring the early inferences must in-
corporate assumptions that hold abstractly over significant
subclasses of real-world structure; they must be as insensitive
to noise and uncertainty as possible; and they must be utiliza-
ble within distributed “hardware” (either networks of neurons
or VLSI circuits) to deal with the complexity of size. It has
been slowly realized that such inferences can be carried out by
distributed optimization, relaxation, or related machinery.
The constraints are more satisfiable, when posed within mini-
mization- or hypothesis-testing frameworks than as rigid sys-
tems of equations (112-115). And since constraints on these
inferences exist from many different sources, the mechanisms
within which they are utilized must permit their interaction
as well.

Local Structure of Intensity Discontinuities. Both issues—
how qualitative and how encompassing assumptions are—em-
erge in the search for the elusive edge-detection process (re-
call The Elusive Edge Operator). Concentrate on the first
lesson listed above: that there should be a significant but “lo-
cal” problem, i.e., a significant amount of knowledge about the
local structure of images that provides a solid foundation for
inferring a local piece of the scene that gave rise to it. Since
the range of physical events is large that can project into what
one should like to call edges in the image, it follows that the
description of the edge must be rich enough to support deci-
sions about the physical cause (edge events can arise from
surface-reflectance changes, surface-orientation changes, oc-
clusions, and lighting changes taken individually or in combi-
nation). Simple image differentials are unlikely to work, since
they only localize changes in intensity (e.g., Ref. 116). More
complex processing is needed for determining not only the
locations of the image-intensity discontinuities but also the
shape of the intensity function in a local neighborhood around
it.

The importance of the local structure of image intensities in
the neighborhood of an edge has been realized since the blocks
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orld. Binford and Horn (29) matched intensity profiles along
n edge; however, their matching relied heavily on assump-
‘ons about the blocks world (e.g., planarity of surfaces). More
ecently Quam (117) used the intensity structure across linear
=atures to track roads, and Witkin (118) correlated intensity
‘ructure across putative edges to verify their presence. Most
mportant, however, Witkin tried to use these across-edge cor-
-elations to infer something about the physical event that
7ave rise to the edge, observing that when objects stand in an
rcclusion relationship, the pattern of intensities on either side
»f the occlusion should be similar, but not necessarily across
-he occlusion. Such information clearly supports the mapping
Tom the image back to the scene under certain circumstances.

One can go further. Not only should intensity structures be
similar on either side of an edge, but their detailed structure
*an be used to support inferences about the edge (41). To illus-
‘rate, recall the above discussion of shape from shading. Con-
sider a matte surface smoothly varying in orientation. By the
‘mage-irradiance equation it follows that the projected inten-
sity function will be smooth as well. Now, suppose that a
shadow were cast on the surface. This would add a step to the

log) intensity distribution, resulting in an image structure in
which the slope of the intensity function would be the same
‘and almost certainly not flat!) on either side of the discontinu-
ity. Therefore, to locate this type of edge, and to distinguish it
from others, it is necessary to describe both the intensity func-
tion and its slope on either side of a discontinuity. Other
schemes that simply locate discontinuities at the cost of irre-
trievably modifying the local intensities cannot support infer-
ences back to the world.

Leclerc and Zucker (41) have developed a nonlinear scheme
for accomplishing this estimation of local intensity structure
concurrently with detection of discontinuities. It involves spa-
tial interactions between convolutions of similar sizes as well
as “level” or scale interactions between different sizes. Such
intra- and interscale interactions are necessary because of the
trade-off between neighborhood size and noise immunity: the
larger the neighborhood, the better the performance at detect-
ing and describing an edge. But the performance will degrade
if more local edge events are smoothed over in the process. The
network interactions are necessary to guarantee that this does
not take place.

Edge detection is therefore not Jjust a matter of finding the
right edge operator but rather requires understanding the in-
teractions between measurements as well. This leads to infer-
ences. The structure across edges has been stressed—the Jocal
structure of intensities in the neighborhood of discontinuities;
now a different aspect of the structure is considered—that
along curves rather than across edges. This is dealt with by
differential geometry.

Analysis of Orientation: Curve and flow recovery. As another
example, consider the (related) problem of curve detection.

all images (as occluding contours, surface creases, hair and
other surface coverings, etc.), and they provide information on
which subsequent surface inferences can be based (115, 119).
How can they be recovered, or inferred, from images?

Early approaches to curve detection were barely distin-
guishable from early edge detection. Simple cell operators
were convolved against images and maximal values selected
by thresholding. This is because they respond maximally

when centered exactly on a line and oriented similarly to it;
hence they have been called line detectors. Unfortunately,
they run into the same problems as “edge” detectors.

Lines versus Tangents. What relationship do so-called line
detectors have to the actual detection of a curve? A logical
place to start is by asking what a curve really is: Mathemati-
cally, a curve is a function that maps an interval of the line R!
into an embedding space (say, the plane ®? or space %°%). What
is given in an image is not a curve, but rather a discrete
sampling of the trace of a curve, or a set of points through
which it passes. Curve detection is the process of inferring a
curve from its trace subject to additional constraints.

It is important to view curves abstractly and mathemati-
cally rather than pragmatically as image structures because it
suggests that the intermediate structures should be abstract
as well; in this case lines are not what need be detected but
rather tangents to curves. Curvature can then also be shown
to play a role, so that tangent fields can be recovered by mini-
mizing a functional of curvature variation (115). Since the
tangent is the first derivative of the curve with respect to arc
length, the global curve can be easily recovered from such
local representations of it by a process of integration. Tangent
fields are an arrangement of discretized and quantized tan-
gents in retinotopic coordinates,

If the problem were viewed as one of line detection rather
than tangent detection, subsequent stages (smooth global
curve inferences, placement of corners and discontinuities,
etc.) would be difficult to formulate in a mathematically con-
sistent manner.

Viewing curves abstractly also raises additional possibili-
ties for interpreting scale as well. Recall the traditional view
that larger operators detect larger events (recall Edge Detec-
tion and Scale). However, since curvature is a relationship
over neighboring tangents along a curve, it suggests that per-
haps the role of the larger operators is related to these higher
order properties (115). One should certainly expect this to be
the case mathematically, and computationally it works as
well. Indications are that the biological equivalent to curva-
ture measurements are embodied in the hypercomplex cells
(see Naive Physiology, above) or, more precisely, in their “end-
stopping” property. This is a case in which the explanation of
biological data together with basic mathematics has yielded a
successful computational-vision algorithm (115); but see also
Ref. 120.

Parallel Surface Contours. Consider a surface covered in par-
allel pinstripes. These will project into “parallel” curves in the
image. Stevens (119) studied the inverse situation, or the in-
ference of a surface from a collection of “parallel” curves. Such
displays give strong impressions of surfaces when viewed (see
Fig. 11).

Flow Patterns. 1t is rarely the case that the surfaces of ob-
Jects in natural scenes are covered with regularly arranged
contours, however. The more natural case is that the curves
are arranged so densely that they cover the surface in a physi-
cal sense, often winding in and out of occlusion relationships.
Thisisthecaseforhairandfurpattemsconsistingofonly
roughly parallel arrangements of curves (hairs), or in the case
of motion, such flow patterns arise in waterfalls, or when the
projected image of a complex physical arrangement changes
rapidly, as when one runs through a forest. Note that hairs are
different from the pinstripe patterns discussed above in that
pinstripes almost never touch and are continued for a long
distance, whereas hairs almost always touch and are rarely
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Figure 11. Illustration of how parallel surface contours (pinstripes)
provide a strong cue for surface orientation.

visible for long distances. Somehow the surface covering (the
hair pattern) must be recovered from the (relatively) sparse
information available in the image as highlights.

The issue here is another abstract mathematical one, and
the way in which it connects image events (patterns of intensi-
ties) to events in the world (patterns of hairs). Topologically,
curves are 1-D constructs; surface coverings are, like surfaces,
2-D constructs. One should therefore expect the recovery of
surface-covering descriptions to require processing in addition
to that required for curve inferencing. In particular, the recov-
ery of orientation information for flow patterns involves a di-
rect form of interpolation, or the spreading of curve informa-
tion, to “fill in” the areas between “highlights” of projected
image structure (see Fig. 12). The result is a tangent field, or
description of the orientation information, over an entire 2-D.

Texture. There are other regularities in addition to those in
image structure that are connected to orientation. Such ar-

EECAENEN

Figure 12. Flow pattern covering a surface with the same kind of
undulations as the one in Figure 11. Now, however, the covering is
more like a hair covering. Local indication of orientation is provided
by pairs of random dots; global 2-D erganization is inferred by one’s
visual system. Note that, unlike Figure 11, there are no long contours
and that they are not evenly spaced but rather appear to cover the
surface densely.
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rangements are called textures (88), and their structural geo-
metric regularities have been modeled by Zucker (121). Beck
(122) has shown that most of the perceptually relevant struc-
ture of (static) textures is contained in intensity, orientation,
and color distributions, and Haralick (123) has reviewed the
different approaches to computing texture descriptions.

If textures are that class of image structures that indicates
regularity, at least in some sense, the other end of the extreme
are those image structures that indicate (and arise from)
chaos; consider, e.g., clouds, trees covered with leaves, and the
surf. Pentland (84) has studied how such fractals can arise in
images and how their structure can be inferred.

Surfaces. Once information about surface coverings, con-
tours, and edges is available, the question arises i
how to infer surfaces (or other abstract structures) from them.
Many other examples of such inferences abound; recall the
discussion of shape-from-X methods above (Tasks, Tools, and
Techniques).

To illustrate the technique, recall the observation of
Helmholtz that straight lines in space project to straight lines
in images. Now, if it were known that the lines in space were
regularly arranged, say as a square grid or as (in the case of
contours) circles, their projection onto a surface would give
rise to a regular geometric distortion; the square grid would go
into a trapezoidal one, and the circles would go into ellipses.
Hence, given these figures, the projection equation could be
inverted for them (85,124). Again note that this is not a case of
doing inverse optics in general but rather doing it for a local
problem (a specific grid). Such ideas underlie much of the 3-D
vision in robotics (qv), in which structured light arrays are
projected onto objects using either patterned sources or lasers
(125).

Kass and Witkin (126) present a more radical attempt at
structural inference; they would like to characterize the pro-
cess by which objects are formed, as, e.g., the flow of tree bark
around a knot.

Corners and Parts. At a level of abstraction up from curves
and edges, even sparsely supported, are structures that are
derivable from them, say their discontinuities, inflexions, and
extrema. For a discussion of how to detect corners, see Brady
and Asada (120), Davis (58), and Zucker (115). In a collection
of parallel contours, e.g., corners that align along smooth con-
tours provide a curve inferencing problem one level higher
(than the curve inferencing), and similarly these corner con-
tours could be grouped. The study of such grouping processes is
related to the way in which complex objects are decomposed
into parts, an area currently under investigation (95,127). In-
tersections between objects almost always map to singularities
in the bounding contour, for example.

Figure/Ground and Structural Grouping. The Gestalt psy-
chologists emphasized the role of structure and organization in
early vision nearly 65 years ago (e.g., see Ref. 128). They iden-
tified a phenomenological level of processing in which figure
was separated from ground according to a number of princi-
ples, including proximity, good continuation, common fate,
etc. But their proposals have defied quantification until now
(16). Perhaps the reason is because of the complexity issues
that have been discussed here. There are, e.g., many different
ways in which curves can arise in the physical world, as is the
case for edges, and their subsequent uses are likely different.
Bounding contours arise from inferences that link discontinui-
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ties with similar local intensity structures, and surface con-
tours may have similar intensities along them. Discussed
above is how curves such as surface contours can be detected,
but this requires an assumption that the given trace of the
curve is dense enough to properly stimulate the initial convo-
lutions. Curves that are sparse with respect to this metric will
certainly require different techniques.

Grouping is a term usually taken to denote the agglomera-
tion of local structures into more global, and perhaps more
abstract, wholes. The standard example is Wertheimer's (129)
observation that collections of points are not seen as points but
rather as figures. As discussed above, the Gestalt psycholo-
gists believed that the (physical) minimization of real quanti-
ties was the mechanism by which this grouping was accom-
plished, in much the same way that soap bubbles minimize
surface area. Although it is now known that minimization can
be accomplished by more computational methods (e.g., see the
section Relaxation Labeling), the original idea that grouping
could be accomplished by a single mechanism is extant [e.g.,
Marr (1)]. Given the arguments about the diversity of infer-
ence mechanisms for curves and edges, however, this seems
unlikely, in much the same way that a single-edge mechanism
now seems unlikely. Rather, one might guess that there are a
diversity of grouping processes, each tailored to different
(classes of) function (115). Curve and edge processes are dis-
cussed above; a few other examples follow. This argument has
now been generalized by Witkin and Tenenbaum (130), Lowe
and Binford (131), and Lowe (132). It holds that, in general,
structure is unlikely to arise randomly in images; rather the
structure of the world is such that, should events somehow
“line up,” a common cause should be attributed to them. Gen-
eral-purpose models capture this common cause at early, but
still abstract, levels.

Differential Equation Metaphor. The way in which, say, oc-
cluding contours and hair patterns relate to the physical world
leads to another difference between them, a difference that
can be generalized to include many other classes of structural
information. Occluding contours arise when surfaces intersect
projectively; they give rise to intersurface constraints. Hair
patterns, on the other hand, provide information about the
particular surface on which they lie; they give rise to intrasur-
face constraints. This difference is fundamental to the pro-
cesses that must put various sources of information together.
Again one is led to the metaphor provided by differential equa-
tions, in which the solution is governed by two distinct classes
of constraints: the differential operator, which constrains how
the solution varies over its domain, and the boundary condi-
tion, which constrains the domain and the value at the edges
of this domain. Note that, for 2-D differential equations, such
as Laplace’s equation, the differential operator is an infinitesi-
mal function of two variables, whereas the boundary condition
is given by, say, the values along a 1-D contour. Infinitesi-
mally such differential operators represent the kind of con-
straint available from flow patterns, whereas the boundary
conditions resemble 1-D contours. In terms of the previous
examples, the Laplacian corresponds to the orientation infor-
mation provided by an infinitesimal “piece” of a waterfall, and
the boundary condition corresponds to its bounding contour.

To be more specific, recall that Laplace’s equation is

Viulx, y) = 0,

where V2 denotes the Laplacian (differential) operator (3%ax2
+ 3%3y®). If Q is an open neighborhood, a well-defined problem
would be to find u in Q from prescribed values of V2u in ) and
of u on 4, the boundary of ). Such problems are known as
Dirichlet problems. Within (), u is completely determined by
the constraints provided by Laplace’s equation and by the
value of u along the boundary a().

The above example is, of course, metaphorical. This is not to
say that intrasurface constraints are Laplacians. Rather, it is
the abstract mathematical form that is of concern, and it is not
limited to waterfalls. Other sources of static intrasurface con-
straint come from monocular shape cues, such as shape from
shading (150, 151), from binocular stereo disparities
(70,93,133), and so on as has been discussed. Intrasurface cues
only hold for particular surfaces; they take abrupt jumps as
the projected image from one surface undergoes a transition to
that from another. Similar arguments hold for the transitions
in lighting, which has also been discussed, say from an illumi-
nated area to one in a cast shadow (41). Topologically all of
these transitions are 1-D contour boundary conditions that
constrain the area over which the other, 2-D intrasurface con-
straints can be integrated.

Free Boundary-Value Problems. Clearly there are many
sources of both inter- and intrasurface constraint, including
motion, stereo, shading, texture, color, and their differences. I
have already argued that their inference will involve interpo-
lation and that “edges” provide the boundary conditions for
limiting them. How can these different sources of information
be put together? Clearly situations will arise in which the
intrasurface information will be ambiguous, as will the inter-
surface information, and both inferences must occur simulta-
neously so that they can mutually constrain one another. Intu-
itively the situation is like computing the shape of a soap
bubble over a flexible ring; clearly, the final shape will depend
both on the ring and on the soap. Such problems are called free
boundary-value problems, and they arise in many areas of
mathematical physics (134).

An early attempt to implement these ideas in a simplified
vision context involved dot clusters, in which the problem was
to label the dots defining the edge of clusters simultaneously
with labeling the dots interior to the clusters (135). Separate
processes for intracluster and intercluster (edge) labeling were
specified, as were their interactions. Briefly, one might specu-
late that, in the vision context, the intracluster processes
would be integrative, region-growing-type algorithms over in-
tensity (concretely) or shape and reflectance (abstractly) con-
straints; the intercluster processes would delimit the various
type of edges between them. More recent attempts at integrat-
ing information from different sources in vision systems are
discussed by (136). Much remains to be done along these lines.

Generalization of the Framework. The framework provided
by inter- and intrasurface information, or, in different terms,
by differential equations, holds not only for the features de-
scribed here but also for abstractions over them. Contours
arising from abrupt changes, in, say, a flow or hair pattern
could provide the boundary constraint to a higher level pro-
cess. This could correspond to a physical situation in which the
underlying surface changed orientation abruptly but the sur-
face markings smoothed it over somewhat. Thus, issues of how
to differentiate flows become as important as the flows them-
selves.



High Level Vision

The beginning of this entry differentiates between low-level
and high level vision by asserting that low level vision is the
study of general constraints on special-purpose hardware
whereas high level vision is that of special constraints on gen-
eral-purpose hardware. In the evolution of this entry many
different low level constraints are uncovered with nontrivial
roots in higher level vision. The earliest work on computa-
tional grouping may be Guzman’s (75) “matched T's” for join-
ing pieces of contour occluded by a common block together. As
these different constraints were refined and “moved down” in
visual systems, the need emerged for intermediate-level struc-
tures to support them. Perhaps the earliest tenable idea in this
direction is Binford’s (137) notion of a generalized cylinder
(qv); see also Brady and Asada (120). More specialized con-
straints are bound to emerge here, in the sense that they are
more global. Rather than searching for local structures that
can be inverted, here one is searching for a vocabulary of inter-
mediate objects; a kind of modeling language for prototypes.
The most recent contribution in this direction is a proposal by
Pentland (138) for “superquadrics,” an extension of quadric
surfaces done for solid modeling in computer graphics (139).
But it is not yet clear how these superquadric constructs relate
to more traditional graphics modeling primitives (140).

The requirements for intermediate structures are influ-
enced both by what is coming from “below™” and what remains
to follow from “above.” Lowe (132) makes the point that the
result of grouping operations should provide indices into
model databases, and attention (141), may well provide a con-
nection in the opposite direction. Robotics imposes its own
special constraints (e.g., see Ref. 142).

High level vision has a very different structure than what
has been described throughout most of this entry. Although
constraints still play a fundamental role (143), now they relate
properties of objects (in object databases) to image structure.
“Analog,” continuous methods, of the sort that have been de-
scribed throughout, get replaced by more symbolic program-
ming tools (4,144-146,152); for a review, see Ref. 147. It is
these symbolic tools that provide the general “inference en-
gine” for interpreting the specific, high level constraints. And
these high level constraints are more symbolic than those in
early vision; see, e.g., the complex frames and other data struc-
tures described in the references above. The mixture of the two
can often provide nice solutions to constrained engineering
problems (e.g., see Refs. 148 and 149; see also Image under-
standing).

Conclusions

Light reflected from physical objects gives rise to images. Vi-
sion is the inverse of this process: the recovery of descriptions
of objects in the world from images of them. It is clearly an
underconstrained problem: somehow a description of 3-D
scenes must be recovered from 2-D images. Yet it is possible,
as the human visual system demonstrates. But where does the
trick lie? How is the structure of the world reflected in the
structure of one’s visual system? Which aspects of the struc-
ture of the world are important, and how are they—should
they be—organized? Is it in the gross organization, or in the
details of neural interconnections? How can the processing be
described so that it could be understood and tested? How does
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one's internal percepts relate back to the world? And how can
principles be uncovered that allow observations about biologi-
cal perception to be related to machine perception? These are
the kinds of questions that computational-vision research
would like to be able to answer.

As shown, there are many ways to approach these ques-
tions. Psychology, physiology, anatomy, evolutionary biology,
mathematics, computer science, engineering, physics, philoso-
phy, and psychoanalysis all have something to contribute. The
diversity of these fields gives some indication of the diversity
of constraints that are active in vision, and the goal of this
entry has been to illustrate how they can work together. A
metaphorical example may help, in retrospect, to put the
pieces of this entry together.

Suppose that you were an extraterrestrial who happened to
land on this planet in the midst of a museum collection of
clocks. That some relationship existed between the objects
might be inferred from their proximity, but how might you go
about discovering it. Physical and anatomical observations
would reveal differences in their microstructure, with some
objects composed of sand and others of wood or metal. How-
ever, the introduction of the abstract concept of energy would
greatly unify the investigation and might even point out some
macroscopic principles of organization; namely, that clocks
contain (or depend on) a source of energy and have internal
structure that acts reliably on the external world. For exam-
ple, the internal gears might move hands or the transistors
control LED displays. To take the next step toward under-
standing how these devices relate to one another requires an-
other abstract concept: the mathematical notion of periodicity
and modular arithmetic. Now consider concepts of time and
eventually connect them with the many tasks for which time-
keeping is important, ranging from agriculture to social cus-
toms.

Of course, the above vignette is grossly oversimplified. The
difficulties inherent in making the many leaps are immense.
But the point is clear: theoretical ideas from many different
levels lead to constraints that percolate via reductionism and
constructivism to other levels.

Investigations of the problems of vision rarely yield com-
plete theories. Rather, their contribution results in the formu-
lation of constraints for shaping any theory. Such constraints
stand no matter whether the parent theoretical framework
changes. The evolution of one’s understanding of these con-
straints has been the principal theme running through this
entry; this is probably what is considered to be progress in
understanding vision.

BIBLIOGRAPHY

1. D. Marr, Vision, W. H. Freeman, San Francisco, CA, 1982.

2. D. Ballard and C. Brown, Computer Vision, Prentice-Hall,
Englewood Cliffs, NJ, 1982.

3. R. Duda and P. Hart, Pattern Classification and Scene Analysis,
Wiley, New York, 1973.

4. M. Levine, Vision in Man and Machine, Prentice-Hall, Engle-
wood Cliffs, NJ, 1985.

5. T. Pavlidis, Structural Pattern Recognition, Springer, New York,
1977.

6. T. Pavlidis, Algorithms for Graphics and Image Processing, Com-
puter Science Press, Rockville, MD, 1982.



1150

10.

11

12.
13.

14.

15.

16.

17.

18.

19.

21.

g

26.

27.

31.

32.

VISION, EARLY

. R. Nevatia, Machine Perception, Prentice-Hall, Englewood Cliffs,

NJ, 1982.

. A. Rosenfeld and A. Kak, Digital Picture Processing, Academic

Press, New York, 1982.

. W. Pratt, Digital Image Processing, Wiley-Interscience, New

York, 1978.

R. Gonzalez and P. Wintz, Digital Image Processing, Addison-
Wesley, Reading, MA, 1977.

T. Cornsweet, Visual Perception, Academic Press, New York,
1970.

R. Gregory, The Intelligent Eye, McGraw-Hill, New York, 1970.
R. Haber and M. Herschenson, The Psychology of Visual Percep-
tion, Holt, Rhinehart, and Winston, New York, 1973.

L. Kaufman, Sight and Mind, Oxford University Press, New
York, 1974.

I. Rock, The Logic of Perception, MIT Press, Cambridge, MA,
1984.

W. Uttal, A Taxonomy of Visual Processes, Erlbaum, Hillsdale,
NJ, 1981.

J. Beck, B. Hope, and A. Rosenfeld (eds.), Human and Machine
Vision, Academic Press, Orlando, FL, 1983.

O. Braddick and A. Sleigh (eds.), Physical and Biological Pro-
cessing of Images, Springer, New York, 1983.

H. von Helmholtz, in J. P. C. Southall (ed.), Treatise on Physio-
logical Optics, Dover (reprint), Mineola, NY, 1962.

. G. Fry, Blur of the Retinal Image, Ohio State University Press,

Columbus, 1955.
S. Coren, L. Ward, C. Porac, and R. Fraser, “The effect of optical
blur of visual-geometric illusions,” Bull. Psychon. Soc. 11(6),
390-392 (1978).

. L. Roberts, “Machine perception of 3-dimensional solids,” in J.

Tippett (ed.), Optical and Electro-Optical Information Processing,
MIT Press, Cambridge, MA, 1965.

. Reference 22, p. 267.
. F. Ratliff, Mach Bands: Quantitative Studies on Neural Networks

in the Retina, Holden Day, San Francisco, CA, 1965.

. F. S. Werblin, “Functional organization of a vertebrate retina:

Sharpening up in space and intensity,” Ann. NY. Acad. Sci. 193
(1972).

R. Kirsch, “Computer determination of the constituent structure
of biological images.” Comput. Biomed. Res. 4, 315-328 (1971).
A. Hildebrandt, Introduction to Numerical Analysis, Wiley, New
York, 1956.

. A. Herskovitz and T. Binford, On Boundary Detection. Al Memo

183, MIT, Cambridge, MA, 1970.

. B. Horn, The Binford-Horn Line Finder, Al Memo 285, MIT,

Cambridge, MA, 1973.

. J. M. S. Prewitt, Object Enhancement and Abstraction, in A.

Rosenfeld and J. Prewitt (eds.). Picture Processing and Psycho-
pictorics, Academic Press, New York, 1970.

R. Haralick, and L. Watson, “A facet model for image data.”
Comput. Vis. Graph. Im. Proc. 15, 113-129 (1984); R. Haralick,
“Digital step edges from zero crossing of second directional deriv-
ative, IEEE Trans. Pattern Analysis and Machine Intelligence
PAMI-6, 58-68 (1984).

M. Heuckel, “An operator which locates edges in digital pic-
tures,” JACM 18, 113-125 (1971).

. D. Hubel and T. Wiesel, “Functional architecture of macaque

monkey visual cortex. Proc. Roy. Soc. London B 198, 1-59,
(1977)—a review.

. R. Rodieck, “Quantitative analysis of cat retinal ganglion cell

response to visual stimuli,” Vis. Res. 5, 583-601 (1965).

. C. Enroth-Cugell and J. Robson, “The contrast sensitivity of reti-

37.

41.

42.

47.

52.

57.

59.

61.

62.

nal ganglion cells of the cat.” J. Physiol. (Lond.) 187, 517-552
(1966).

. H. Wilson and J. Bergen, “A four mechanism model for threshold

spatial vision,” Vis. Res. 19, 19-32 (1979).

S. Laughlin, M. Srinivasan, and A. Dubs, “Predictive coding: A
fresh view of inhibition in the retina,” Proc. Roy. Soc. London B,
427-459 (1982).

. E. H. Land, “The retinex theory of color vision,” Sci. Am. 237(6),

108-128 (1977).

. A. Witkin, Scale Space Filtering, in A. Pentland (ed.), From Pix-

els to Predicates, Ablex, Norwood, NJ, 1986, pp. 5-19.

. D. Marr and E. Hildreth, “Theory of edge detection,” Proc. Roy

Soc. London B 207, 187-217 (1980).

Y. Leclerc and S. W. Zucker, “The local structure of intensity
changes in images,” IEEE Trans. PAMI 9, (1987).

R. Watt and M. Morgan, “Mechanisms responsible for the assess-
ment of visual location: Theory and evidence,” Vis. Res. 23, 97—
109 (1983).

. S. W. Zucker and R. Hummel, Receptive Fields and the Repre-

sentation of Visual Information, Human Neurobiology 5, 121-
128 (1986).

. J. Lettvin, H. Maturana, W. McCulloch, and W. Pitts, “What

the frog’s eye tells the frog's brain,” Proc. IRE 47, 1940-1951
(1959).

. H. Barlow, R. Narasimhan, and A. Rosenfeld, “Visual pattern

recognition in machines and animals.” Science 177, 567-575
(1972).

. D. Ballard, “Parameter networks,” Artif. Intell. 22, 235-267

(1984).

L. Davis, “Hierarchical generalized Hough transform and line-
segment based generalized Hough transforms,” Patt. Recog. 15,
277-285 (1982).

. M. B. Clowes, “On seeing things,” Artif. Intell. 2, 79-116 (1971).
49.

M. Minsky and S. Papert, Perceptions, MIT Press, Cambridge,
MA, 1969.

. G. Kanisza, Organization in Vision, Praeger, New York, 1979.
5l.

Y. Shirai, Analyzing Intensity Arrays Using Knowledge about
Scenes, in P. Winston (ed.), The Psychology of Computer Vision,
McGraw-Hill, New York, 1975, pp. 93-114.

A. K. Mackworth, “Interpreting pictures of polyhedral scenes,”
Artif. Intell. 4, 121-137 (1973).

. B. Horn, “Understanding image intensities,” Artif. Intell. 8, 201-

231 (1977).

. S. Shafer, Shadows and Silhouettes in Computer Vision, Kluwer

Academic, Boston, MA, 1985.

. R. Woodham, “Analyzing images of curved surfaces,” Artif. In-

tell. 17, 17-45 (1981).

. G. Falk, “Interpretation of important line data as a three-dimen-

sional scene,” Artif. Intell. 3, 77-100 (1972).

K. Turner, Computer Perception of Carved Objects Using a Tele-
vision Camera, Ph.D. Thesis, University of Edinburgh, 1974.

. L. Davis, “Shape matching using relaxation techniques,” IEEE

Trans. PAMI PAMI-1, 60-72 (1979).

H. Freeman, “Computer processing of line drawing images,”
Comput. Surv. 5, 57-97 (1974).

. J. Tsotsos, “Knowledge of the visual process: Content, form and

use,” Patt. Recog. 17, 13-28 (1984).

S. Zucker, A. Rosenfeld, and L. Davis, “General Purpose Models:
Expectations about the Unexpected,” Proceedings of the Fourth
International Joint Conference Artificial Intelligence, Thblisi,
Georgia, 1975, pp. 716-720.

A. Rosenfeld, “A nonlinear edge detection technique,” Proc.
IEEE 58, 814-816 (1970).



b4

&

228 3 8

71.

73.

74

75.

76.

77.

78.

79.

81.

83.

84.

D. Marr, “Early processing of visual information,” Proc. Roy.
Soc. (London) B275, 483-534 (1976).

. S. Tanimoto and L. Uhr, Structured Computer Vision, Academic

Press, New York, 1983.

_ W. McCulloch and W. Pitts, “A logical calculus of the ideas im-

manent in nervous activity,” Bull. Math. Biophys. 5, 115-133
(1943).

. J. McCarthy and C. Shannon, Automata Studies, Princeton Uni-

versity Press, Princeton, NJ, 1956.
S. Winograd and J. Cowan, Reliable Compulation in the Presence
of Noise, MIT Press, Cambridge, MA, 1963.

. M. Arbib, The Metaphorical Brain, Wiley, New York, 1972.
. D. Hebb, The Organization of Behavior, Wiley, New York, 1949.
. B. Julesz. Foundations of Cyclopean Perception, University of

Chicago Press, Chicago, IL, 1971.
E. Ising, “Contribution to the theory of ferromagnetism,” Z. Phy-
sik. 31, 253-258 (1925).

. D. Luenberger, Optimization by Vector Space Methods, Wiley,

New York, 1969.

G. Sperling, “Binocular vision: A physical and a neural theory,”
Am. J. Psych. 83, 461-534 (1870).

M. Fischler and R. Elschlager, “The representation and match-
ing of pictorial structures,” JEEE Trans. Comput. 22, 67-92
(1973).

A. Guzman, Decomposition of a Visual Scene into Three-Dimen-
sional Bodies, in A. Grasselli (ed.), Automatic Interpretation and
Classification of Images, Academic Press, New York, 1969.

D. Huffman, Impossible Objects as Nonsense Sentences, in Melt-
zer and Michie (eds.), Machine Intelligence, Vol. 6, Edinburgh
University Press, Edinburgh, 1971

D. Waltz, Understanding Line Drawings of Scenes with
Shadows, in P. Winston (ed.), The Psychology of Computer Vi-
sion, McGraw-Hill, New York, 1975.

A. Rosenfeld, R. Hummel, and S. W. Zucker, “Scene labelling by
relaxation operations,” IEEE Trans. Sys. Man Cybernet. SMC-6,
420-433 (1976).

R. A. Hummel and S. W. Zucker, “On the foundations of relaxa-
tion labeling processes,” IEEE Trans. Patt. Anal. Mach. Intell.
PAMI-5, 267-287 (1983).

. D. Ballard, G. Hinton, and T. Sejnowski, “Parallel visual compu-

tation,” Nature 306, 21-26 (1983).

L. Davis and A. Rosenfeld, “Cooperating processes for low-level
vision: A survey,” Artif. Intell. 17, 245-264 (1981).

. 'W. Kohler, The Task of Gestalt Psychology, Princeton University

Press, Princeton, NJ, 1969.

B. Horn, Obtaining Shape from Shading Information, in P. Win-
ston (ed.), The Psychology of Computer Vision, McGraw Hill,
New York, 1975, pp. 115-156.

A. Pentland, “Local shading analysis,” IEEE Trans. PAMI
PAMI-6, 170-187 (1984).

84a. A. Pentland, “Fractal based descriptions of natural scenes,”

85.

g &8 3 B

IEEE Trans. PAMI PAMI-8, 661-675 (1984).

J. Kender, Shape from Texture, Technical Report, Computer Sci-
ence Department Carnegie-Mellon University, Pittsburgh, PA,
1980.

. A. Witkin, “Recovering surface shape and orientation from tex-

ture,” Artif. Intell. 17, 17-47 (1981).

. J. Beck, Surface Color Perception, Cornell University Press,

Ithaca, NY, 1972.

J. J. Gibson, The Perception Of The Visible Worild, Houghton
Mifflin, Boston, MA, 1950.

S. Ullman, “Against direct perception,” Behav. Br. Sci. 3, 373
415 (1980).

95.

S

&

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.
110.

111.
112.

113.

114.

115.

116.

117.

118.

VISION, EARLY 1151

. Reference 1, p. 37.
91.

H. Barrow and J. M. Tenenbaum, Recovering Intrinsic Scene
Characteristics from Images, in A. Hanson and E. Riseman
(eds.), Computer Vision Systems, Academic Press, New York, 3—
26, 1978.

. W. E. L. Grimson, From Images to Surfaces, MIT Press, Cam-

bridge, MA, 1983.

. D. Terzopoulos, Multilevel Computational Processes for Visible

Surface Reconstruction, Ph.D. Thesis, MIT, Cambridge, MA,
1984.

_ J. J. Koenderinck and A. van Doorn, “Photometric invariants

related to solid shape,” Opt. Acta 27, 981-996 (1980).

J. J. Koenderinck and A. van Doorn, “The shape of smooth ob-
jects and the way contours end,” Perception 11, 129-137 (1982).

. G. Johanssen, Configurations in Event Perception, Almquist and

Wiksells, Uppsala, Sweden, 1950.

_ H. Wallach and D. O'Connell, “The kinetic depth effect,” J. Exp.

Psych. 45, 205-217 (1953).

. S. Ullman, The Interpretation of Visual Motion, MIT Press, Cam-

bridge, MA, 1979.

. J. Fodor, The Modularity of Mind, MIT Press, Cambridge, MA,

1984,

D. Dennett, Brainstorms, Bradford Books/MIT Press, Cam-
bridge, MA, 1978.

D. van Essen and J. Maunsell, “Two-dimensional maps of the
cerebral cortex,” J. Comp. Neurol. 191, 255-281 (1980).

M. Regan and M. Cynader, “Motion-in-depth neurons; effects and
speed and disparity,” Invest. Ophth. Vis. Sci. 20, 148 (1981).

G. Orban, Neuronal Operations in the Visual Cortex, Springer,
New York, 1984.

S. Zeki and S. Shipp, “Segregation of pathways leading from area
V2 to areas V4 and V5 of macaque monkey cortex,” Nature 315,
322-324 (1985).

H. Barrow and J. M. Tenenbaum, “Computational vision,” Proc.
IEEE 69, 572-595 (1981).

P. Cavanagh, “Reconstructing the third dimension: Interactions
between color, texture, motion, binocular disparity, and shape,
Comput. Vis. Graph. Im. Proc., 37 (1987).

D. Hoffman and B. Flinchbaugh, “The interpretation of biologi-
cal motion,” Biol. Cybernet. 42, 195-204 (1982).

J. Cutting, “Coding theory adapted to gait perception,” J. Exp.
Psych. Hum. Perc. Perf. 7, T1-87 (1981).

W. Ittleson, Visual Space Perception, Springer, New York, 1960.
J. Feldman and D. Ballard, “Connectionist models and their
properties,” Cog. Sci. 6, 205-254 (1982).

S. Ullman, “Visual Routines,” Cognition 18, 97159 (1984).

M. Brady and A. Yuille, An Extremum Principle for Shape from
Contour, Proc. of the Eighth International Joint Conference on
Artificial Intelligence, Karlsruhe, FRG, 1983.

B. Horn and B. Schunk, “Determining optical flow,” Artif. Intell.
17, 185-204 (1981).

K. Ikeuchi and B. Horn, “Numerical shape from shading and
occluding boundaries,” Artif. Intell. 17, 141-184 (1981).

S. W. Zucker, “Early orientation selection: Tangent fields and
the dimensionality of their support,” Comput. Vis. Graph. Im.
Proc. 32, 74—103 (1985).

J. Canny, A computational approach to edge detection, IEEE
Trans. PAMI PAMI-8, 679-698 (1986).

L. Quam, Road Tracking and Anomaly Detection, Proceedings of
the DARPA Image Understanding Workshop, pp. 51-55, 1978.
A. Witkin, Intensity Based Edge Classification, Proceedings of
the Second AAAI Conference, Pittsburgh, PA, pp. 36-41, 1982.



1152

119.

120.

121.

123.

124,

125.

126.

127.

128.

129.

130.

131

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

VISUAL DEPTH MAP

K. Stevens, “The visual interpretation of surface contours,” Artif.
Intell. 17, 47-T74 (1981)..

M. Brady and Asada, “Smoothed local symmetries and their im-
plementation,” Int. J. Robot. Res. 3, 36-61 (1984).

S. W. Zucker, “On the structure of texture,” Perception 5, 419—
436 (1976).

. J. Beck, Texture Segregation, in J. Beck (ed.), Organization and

Representation in Perception, Erlbaum, Hillsdale, NJ, 1982.

R. Haralick, Statistical and Structural Approaches to Texture,
Proceedings of the Fourth International Joint Conference on Pat-
tern Recognition, Kyoto, Japan, 1978, pp. 45-69.

T. Kanade, “Recovery of the three-dimensional shape of an object
from a single view.” Artif. Intell. 17, 409-460 (1981).

G. Dodd and L. Rossol, Computer Vision and Sensor-Based Ro-
bots, Plenum, New York, 1979.

M. Kass and A. Witkin, Analyzing Oriented Patterns, Proceed-
ings of the Ninth International Joint Conference on Aritificial
Intelligence, Los Angeles, 1985, pp. 944-952.

D. Hoffman and W. Richards, Parts of Recognition, in A.
Pentland (ed.), From Pixels to Predicates, Ablex, Norwood, NJ,
1986, pp. 268-294.

K. Koffka, Gestalt Psychology, Harcourt, Brace and World, New
York, 1935.

M. Wertheimer, “Laws of organization in perceptual forms,”
Psych. Forsch. 4, 301-350 (1923); translated in W. Ellis, A
Source Book of Gestalt Psychology, Routledge and Kegan Paul,
London, pp. 71-88, 1938.

A. Witkin and J. M. Tenenbaum, On the Role of Structure in
Vision, in J. Beck, B. Hope, and A. Rosenfeld (eds.), Human and
Machine Vision, Academic Press, New York, 1983.

D. Lowe and T. Binford, Segregation and Aggregation: An Ap-
proach to Figure/Ground Phenomena, Proceedings of the
DARPA Image Understanding Workshop, 1982, pp. 168-178.
D. Lowe, Perceptual Organization and Visual Recognition, Ph.D.
Thesis, Stanford University, 1984.

J. Mayhew and J. Frisby, “Psychophysical and computational
studies towards a theory of human stereopsis,” Artif. Intell. 17,
349-385 (1981).

D. Kinderlehrer and G. Stampacchia, An Introduction to Varia-
tional Inequalities and their Applications, Academic Press, New
York, 1980.

S. W. Zucker and R. A. Hummel, “Toward a low-level description
of dot clusters: Labelling edge, interior, and noise points,” Com-
put. Graph. Im. Proc. 9, 213-233 (1979).

D. Terzopoulos, Integrating Visual Information from Multiple
Sources, in A. Pentland (ed.), From Pixels to Predicates, Ablex,
Norwood, NJ, 1986, pp. 111-142.

T. Binford, Visual Perception by Computer, Proceedings of the
IEEE Conference on Systems and Control, Miami, 1971.

A. Pentland, “Perceptual organization and the representation of
natural form,” Artif. Intell. 28, 293-331 (1986).

A. Barr, “Superquadrics and Angle-Preserving Transforma-
tions,” IEEE Computer Graphics and Applications, 11-23 (1981).
dJ. Foley and A. van Dam, Fundamentals of Interactive Computer
Graphics, Addison-Wesley, Reading, MA, 1982.

A. Triesman, “Preattentive processing in vision,” Comput. Vis.
Graph. Im. Proc. 1-22 (1985).

O. Faugeras, Steps toward a Flexible 3-D Vision System for Ro-
botics, in H. Hanufusa and H. Inoue (eds.), Robotics Research:
The Second International Symposium, MIT Press, Cambridge,
MA, 1985.

R. Brooks, “Symbolic reasoning among 3-D models and 2-D im-
ages,” Artif. Intell. 17, 285-348 (1981).

144. T. Garvey, Perceptual Strategies for Purposive Vision, Technical

Note 117, SRI International, Menlo Park, CA, 1976.

A. Hanson and E. Riseman, Computer Vision Systems, Academic
Press, New York, 1978.

J. K. Tsotsos, J. Mylopolous, D. Covvey, and S. W. Zucker, “A
framework for visual motion understanding,” IEEE Trans. Patt.
Anal. Mach. Intell. PAMI-2, 563-573 (1980).

T. Binford, “Survey of model baséd image analysis systems.” Int.
J. Robot. Res. 1, 18—-64 (1982).

F. Ferrie, M. D. Levine, and S. W. Zucker, “Cell tracking: A
modeling and minimization approach,” IEEE Trans. Patt. Anal.
Mach. Intell. 4, 277-291 (1982).

M. Levine and S. Shaheen, “A modular computer vision system,”
IEEE Trans. PAMI PAMI-3, 540-556 (1981).

B. K. P. Horn, Obtaining shape from shading information, in P.
Winston (ed.), The Psychology of Computer Vision, McGraw-Hill,
New York, 1975.

A. Pentland, Local shading analysis, IEEE Trans. Patt. Analysis
and Machine Inst. PAMI-6, 170-187 (1984).

M. Nagao and T. Matsuyama, A Structural Analysis of Complex
Aerial Photographs, Plenum, New York, 1980.

145.

146.

147.

148.

149.

150.

151.

152.

S. W. Zucker
McGill University

Thanks to the Natural Sciences and Engineering Research Council
(Canada), grant A4470, and the Canadian Institute for Advanced Re-
search for their support.

VISUAL DEPTH MAP

Early vision (qv) is often characterized as a process that recon-
structs the three-dimensional properties of scenes from their
2-D images. The dimension lacked by images is the distance
along lines of sight from the viewer to points on physical sur-
faces in the environment. This distance is known as depth.

Humans effortlessly gain a strong sense of depth as they
navigate the natural world with both eyes open, and a weaker
though definite depth percept results from viewing a monocu-
lar image of a 3-D scene. Furthermore, synthetic visual stim-
uli such as random-dot stereograms and kinetic displays are
known to elicit compelling percepts of coherent surfaces in
depth.

The recovery of depth from images may be formulated as an
inverse problem, converse to the direct problem in computer
graphics of rendering images of 3-D geometric models. Evi-
dently, the human visual system is adept at solving this in-
verse problem at an early processing stage, and it is reason-
able to hypothesize the existence of an internal representation
of three-dimensionality, putatively in terms of perceived depth
z over the visual field. This representation, naturally ex-
pressed as a single valued depth function z = u(x, y), where
x and y are retinotopic or image coordinates, is commonly
known as the visual depth map.

The visual depth map has attracted substantial attention in
the study of human and machine vision. The first section
briefly examines techniques for acquiring initial 3-D informa-
tion to construct depth maps. These include range sensors en-
gineered to actively acquire depth data from the environment
and computational processes of early vision that perform a 3-D
analysis of images. In computational vision the visual depth



