COMP 102: Computers and Computing Lecture 19: Constraint Satisfaction Problems

Instructor: Kaleem Siddiqi (siddiqi@cim.mcgill.ca)

Class web page: www.cim.mcgill.ca/~siddiqi/102.html

Overview

What is a Constraint Satisfaction Problem (CSP)?

Common examples of CSPs

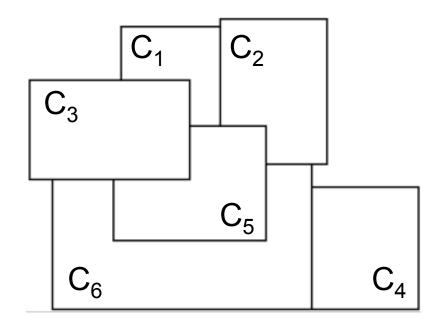
- How can we solve CSPs?
 - A constructive approach.
 - An iterative approach.

Example #1: Map coloring

Color a map so that no adjacent countries have the same color.

How should we do this?

What do we know of this problem?



Example #2: Satisfying boolean expression

• Find an assignment (*True* or *False*) for each variable $x_1, x_2, ..., x_n$ such that the boolean expression evaluates to **True**.

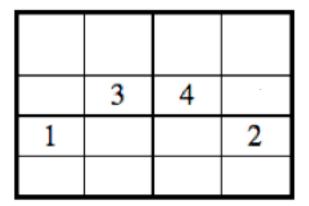
E.g. Boolean expression =

 $(x_2 AND x_4) OR (x_5 AND (NOT x_2) AND x_1) OR (x_4 AND x_5 AND x_3)$

How should we solve this problem? Is it tractable?

Example #3: Sudoku puzzle

A simple puzzle:



Rule: Each number {1, 2, 3, 4} must appear once (and only once) in every row, in every column, and in every 2x2 square.

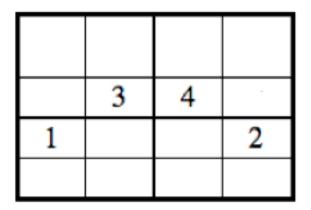
How should we solve this problem? Is it tractable?

Constraint satisfaction problems (CSPs)

- A CSP is defined by:
 - Set of variables V_i, that can take values from domain D_i
 - Set of constraints specifying what combinations of values are allowed (for subsets of variables)
 - Constraints can be represented:
 - Explicitly, as a list of allowable values (E.g. C₁=red)
 - Implicitly, in terms of other variables (E.g. C₁=C₂)
- A CSP solution is an assignment of values to variables such that all the constraints are true.
 - Want to find any solution or find that there is no solution.

Example: Sudoku puzzle

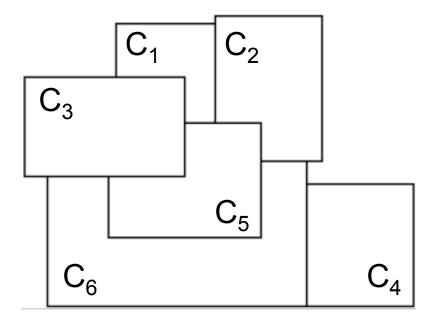
A simple puzzle:



- Variables:
- Domains:
- Constraints:

Example: Map coloring

- Color a map so that no adjacent countries have the same color.
 - Variables:
 - Domains:
 - Constraints:



Varieties of variables

- Boolean variables (e.g. satisfiability)
- Finite domain, discrete variables (e.g. colouring)
- Infinite domain, discrete variables (e.g. start/end of operation in scheduling)
- Continuous variables.

Problems range from solvable in poly-time (using linear programming) to NP-complete to undecidable

Varieties of constraints

- Unary: involve one variable and one constraint.
- Binary.
- Higher-order (involve 3 or more variables)

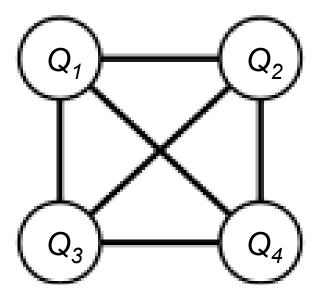
 Preferences (soft constraints): can be represented using costs and lead to constrained optimization problems.

Real-world CSPs

- Assignment problem (e.g. who teaches what class)
- Timetable problems (e.g. which class is offered when and where)
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floor planning
- Office space allocation

Constraint graph

- Binary CSP: each constraint relates at most two variables.
- Constraint graph: nodes are variables, arcs show constraints.



 The structure of the graph can be exploited to provide problem solutions.

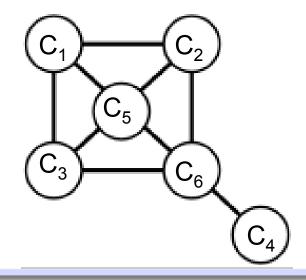
Applying standard search

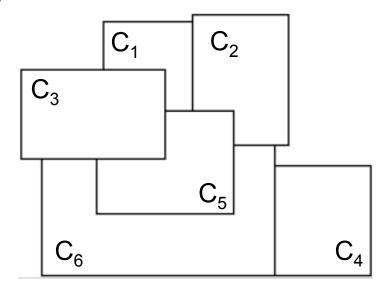
- Assume a constructive approach:
 - State: defined by set of values assigned so far.
 - Initial state: all variables are unassigned.
 - Operators: assign a value to an unassigned variable.
 - Goal test: all variables assigned, no constraint violated.
- Build a <u>search tree</u>, continue until you find a path to the goal.

This is a general purpose algorithm which works for all CSPs!

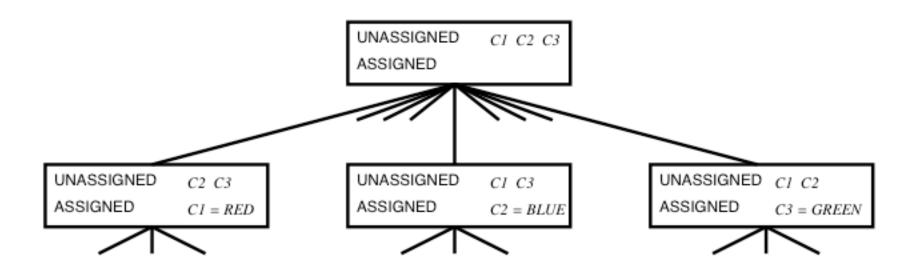
Example: map coloring

- Color a map so that no adjacent countries have the same color.
 - Variables: Countries C_i
 - Domains: {Red, Blue, Green}
 - Constraints: $\{C_1 \neq C_2, C_1 \neq C_5, ...\}$
- Constraint graph:





Standard search applied to map coloring



Is this a practical approach?

Analysis of the simple approach

- Maximum search depth = number of variables
 - Each variable has to get a value.
- Number of branches in the tree = $\sum_{i} |D_{i}|$

This can be a big search! Often requires lots of backtracking!

BUT: Here are a few useful observations

- Order in which variables are assigned is irrelevant -> Many paths are equivalent!
- Adding assignments cannot correct a violated constraint!

Heuristics for CSPs

- What is a heuristic?
 - A simple guide that helps in solving a hard problem.

- How does this help us solve CSPs?
 - It guides our choice of:
 - which value to choose for which variable.
 - which variable to assign next.

Heuristics for CSPs

E.g. Map coloring

- Say $C_1 = red$, $C_2 = blue$
- Choose which variable next?
- Choose C₅

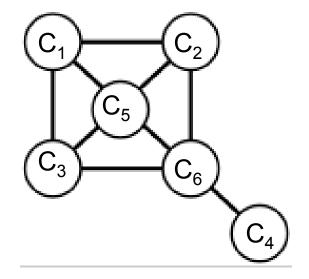
(most constrained variable!)

- Assign which value?
- Let C_5 = green

(least constraining value!)

- Choose C₃ (alternately, could also choose C₆).
- Let C_3 = blue

Etc.



Summary of heuristics for CFP

Most Constrained Variable

Choose the variable which has the least possible number of choices of value.

Least Constraining Value

Assign the value which leaves the greatest number of choices for other variables.

Note: For both of these heuristics, it is useful to keep track of the possible choices of value at each variable.

Another way to solve CSPs

<u>Iterative improvement method</u>:

- Start with a <u>broken</u> but <u>complete</u> assignment of values to variables.
 - Broken = some variables may be assigned values that don't satisfy some constraints.
 - Complete = each variable is assigned a value.
- Repeat until all constraints are satisfied:
 - Pick a broken constraint.
 - Randomly select one of the variables involved in this constraint.
 - Re-assign the value of that variable using the Min-conflicts heuristic.
 - Min-conflicts heuristic = choose value that violates the fewest constraints.

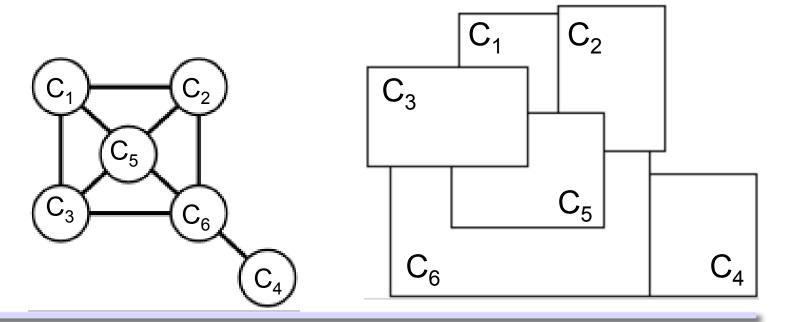
Iterative improvement example

E.g. Map coloring

- Let C₁=red, C₂=green, C₃=blue, C₄=red, C₅=green, C₆=red
- Where are the conflicts? (Useful to look at the constraint graph for this.)

$$C_2 \neq C_5$$
 $C_4 \neq C_6$

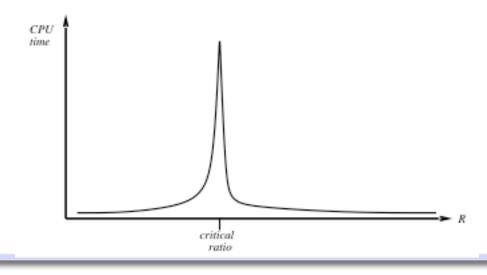
– How can we apply the min-conflict heuristic to resolve those?



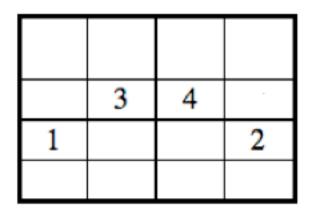
Performance of min-conflicts heuristic

- Given random initial state, works very well for many large CSP problems (almost constant time).
- This holds true for any randomly-generated CSP <u>except</u> in a narrow range of the ratio:

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$



Solving our Sudoku puzzle



Assume we try a <u>constructive</u> approach:

- What variable should we select next?
- What value should we assign it?
- What next?

Now you know how to become a Sudoku master!

The Pentagon Problem

- Imagine that you have a 5-sided polygon where each side has a node in its middle. There is also a node at each corner.
- Therefore, there are 10 nodes in all.
- Can you place the digits 0,1,2,3,4,5,6,7,8,9 in the nodes, with each digit appearing exactly once, and only once, such that the numbers on each side add up to 13?
- How about the same problem, but with the numbers totaling to 11?
- This is an example of a problem where SCP ideas could be applied.

Take-home message

- CSPs are everywhere!
- CSPs can be solved using either <u>constructive methods</u> or <u>iterative improvement methods</u>.
- Heuristics are useful guides to focus the search. You should understand the basic heuristics.
- Iterative improvement methods with min-conflicts heuristic are very general, and often work best.