
COMP 102: Computers and Computing

Lecture 17: Computability

Instructor:  Kaleem Siddiqi (siddiqi@cim.mcgill.ca)

Class web page: www.cim.mcgill.ca/~siddiqi/102.html
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Paris, 1900

• On 8 August 1900, at the Paris

2nd International Congress of

Mathematicians, at La  Sorbonne.

• German mathematician David Hilbert presented ten problems in

mathematics from a list of 23 ( 1, 2, 6, 7, 8, 13, 16, 19, 21 and 22).
– The full list was published later.

• The problems were all unsolved at the time, and several of them turned

out to be very influential for 20th century mathematics.
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Fundamental question

• Can we prove all the mathematical statements that we can

formulate ? (Hilbert’s 2nd problem)

• Certainly, there are many mathematical problems that we do not

know how to solve.

• Is this just because we are not smart enough to find a solution ?

• Or, is there something deeper going on ?
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Computer science version of this question

• If my boss / supervisor / teacher formulates a problem to be

solved urgently, can I write a program to solve this problem in

an efficient manner ???

• Are there some problems that cannot be solved at all ?

• Are there problems that cannot be solved efficiently ? (related

to Hilbert’s 10th problem)
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Kurt Gödel

• In 1931, he proved that any formalization of mathematics

contains some statements that cannot be proved or disproved.
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Alan Turing

• In 1934, he formalized the notion of decidability of a language

by a computer.

• What else do we know about Turing?

(Yet more to come…)
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A language

• Let ∑ be a finite alphabet. (ex: {0,1})

• Let ∑* be all sequences of elements from this alphabet. (ex: 0,

1, 00000, 0101010101,...)

• A language L is any subset of ∑*.

• Typically the allowable subsets are specified by the rules of a

grammar.

• An algorithm decides a language if it answers Yes when x is in L

and No otherwise.
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Comparing cardinalities

All languages
languages
that we can

describe

languages
that we can

decide <
?
=
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Alonzo Church

• In 1936, he proved that certain languages cannot be decided by

any algorithm whatsoever...
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Emil Post

• In 1946, he gave a very natural example of an undecidable

language.
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Post Correspondence Problem (PCP)

• An instance of PCP with 6 tiles.

• A solution to PCP.
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Post Correspondence Problem (PCP)

• Given n tiles, u1/v1 ... un/vn where each ui or vi is a sequence of

letters.

• Is there a k and a sequence < i1, i2, i3, ..., ik> ( with each 1<ij<n )

such that ui1 | ui2 | ui3 | ... | uik = vi1 | vi2 | vi3 | ... | vik ?
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Post Correspondence Problem (PCP)

• Theorem:

The Post Correspondence Problem cannot be decided by any
algorithm (or computer program).

In particular, no algorithm can identify in a finite amount of
time the instances that have a negative outcome.

However, if a solution exists, we can find it.

• Proof: Reduction technique - if PCP was decidable, then
another  problem would be decidable.
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The Halting Problem

• Notice that an algorithm is a piece of text.

• An algorithm can receive text as input.

• An algorithm can receive an algorithm as input.

The Halting Problem:

Given two texts A,B, consider A as an algorithm and B as an input.

Will algorithm A halt (as opposed to loop forever) on input B?
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The Halting Problem

• Theorem:  No algorithm can decide the Halting Problem.

• Proof:

Assume for a contradiction that an algorithm Halt(A,B) exists to

decide the Halting Problem. Algorithm A should halt with B as input.

Consider this algorithm:

Bug(A):

If Halt(A,A) then While True do

{ when Halt(A,A) is true then Bug(A) loops }

{ when Halt(A,A) is false then Bug(A) halts }

Question: What is the outcome of Bug(Bug)?
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The Halting Problem

• If Bug(Bug) does not loop forever, it is because

Halt(Bug,Bug)=False, which means Bug(Bug) loops forever. 

Contradiction!

• If Bug(Bug) loops forever it is because Halt(Bug,Bug)=True which

means Bug(Bug) does not loop forever.

Contradiction!

Conclusion:  Halt cannot exist.
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The Halting Problem and PCP

• Any algorithm to decide PCP can be converted to an algorithm

to decide the Halting Problem.

• Also see: http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html

“Scooping the Loop Snooper”   

• Conclusion: PCP cannot be decided either.
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Computability Theory

All languages

languages
that we can

describe

languages
that we can

decide

Covered in COMP 330
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Decidable Programs

Can we always tell if a program is decidable?

Sometimes we just don’t know!
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Syracuse Conjecture

For any integer n>0, define the following sequence:

   s1   =  n

si / 2 if si is even

   si+1 =

3si +1 if si is odd

Then:

  least i such that s1=n, …, si=1, if it exists

   Syracuse(n) = 

0 if si ≠1 for all i.
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Example

• Syracuse(9) = 20

S1=9, S2=28, S3=14, S4=7, S5=22, S6=11, S7=34, S8=17, S9=52,

S10=26, S11=13, S12=40, S13=20, S14=10, S15=5, S16=16, S17=8,

S18=4, S19=2, S20=1

• Easy case:    Syracuse(2k) = k+1 for any integer k ≥ 0

• But not so easy for numbers which are not powers of 2!
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Program to calculate Syracuse(n)

• Example for n=22:

Note:  “n” is called “x” in this program.
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Syracuse Conjecture

• Observation:
– For all n that we have computed so far, Syracuse(n) > 0.

• Conjecture:
– For all n>0,    Syracuse(n)>0

But currently, no one knows if this program always stops!

• Problem:
– If there exists N such that Syracuse(n) = 0, we might not be able to

prove it.
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Syracuse Conjecture

• The Syracuse conjecture is believed to be true but no proof of

that statement was discovered so far.

• It is an open problem.

• Even worse, it might be decidable, but there might be no proof

that it is decidable !!!



COMP-102 (thanks to Joelle Pineau!)25

Summary

• There are many problems that turn out to be undecidable.

– All involve computations that might take an infinite number of operations to

solve and you’re never quite sure when to stop.

• It is useful to know which programs you should run, and which programs

you shouldn’t run!

• Showing that a problem is decidable often involves showing that this

problem is analogous to another problem which we already know is

decidable or not.

E.g. PCP is not decidable because it is analogous to the Halting Problem.
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Take-home message

• Know the difference between:

– Languages that we can describe.

– Languages that we can decide.

• Be familiar with the Post Correspondence Problem, and why it is

not decidable.

• Understand the general idea of the Halting Problem.

• Be familiar with the Syracuse Conjecture.
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Comments

• http://crypto.CS.McGill.CA/~crepeau/COMP102/

• http://www.cs.rutgers.edu/~mlittman/courses/cs105-07b/ch4.pdf


