
COMP102: Computers and Computing
Data Compression

Instructor: Kaleem Siddiqi (siddiqi@cim.mcgill.ca)

Class web page:
www.cim.mcgill.ca/~siddiqi/102.html

Why compress data?

• Up until now we’ve assumed that anything we
want to encode can be encoded (i.e. variables,
states in transition systems etc.)

Data Compression

• Data compression means encoding a data file
using fewer bits than the original file

• Possible when the file has redundancies

• Example: In English, the letter ‘e’ occurs more
often than the letter ‘z’. If we could come up
with an encoding scheme where ‘e’ would
require less bits than ‘z’ or any other letter,
then the encoded data file would now be
slightly shorter

Types of compression

1. Lossless - encoding data and then decoding it will
give back exactly the original data

• we don’t lose any information by compressing
it

• the encoded file will be longer as a result

2. Lossy - the decoded data will not be exactly the
same as the original, but will be close enough

• we lose some information by encoding it, but
the encoded file is much shorter

• this is ok for image/audio compression but not
for text files

Definitions

• An alphabet is a set of symbols that we
wish to encode

• Examples:

• the digits from 0 to 9 : A = {0,1,...,9}

• lowercase letters: A = {a,b,c,...,z}

• pixels in an image

Codewords
• A codeword (or code) is a mapping from an alphabet to a set

of binary strings. The code of a symbol Ai is C(Ai)

• The length of a codeword is the number of bits in the
codeword, and is denoted by λ

• Example: A= {A1, A2, A3}

• C(A1) = 0, C(A2) = 0011, C(A3) = 0

• λ(A1) = λ(A3) = 1, λ(A2) = 4

• Is this a good code? No! A1 and A3 are mapped to the
same binary string. This will make decoding them
impossible.

• Better code: C(A1) = 0, C(A2) = 0011, C(A3) = 1

Types of codewords

1. Fixed length - the codewords for all symbols have
the same length λ

• good: easy to decode (read the same number of
bits at a time from the encoded file)

• bad: the encoded file might be longer

2. Variable length

• pro: encoded file will be shorter

• con: need a smart algorithm to read bits from
the encoded file

Types of code words
• Example: A= {A1, A2, A3}. Encode s = A2 A1 A1 A3 A1

• Fixed length: C(A1) = 00, C(A2) = 10, C(A3) = 11

• C(s) = 1000001100

• Can we decode it? Yes! Just read 2 bits at a time, and look up
which symbol has that codeword

• Variable length: C(A1) = 0, C(A2) = 10, C(A3) = 1

• C(s) = 100010

• Can we decode it? No! When we get to the last 2 bits, we don’t
know whether it should be A2 or A3 A1. In fact, the
interpretation of even the first bit is ambiguous.

• How to fix it? Prefix codes

Prefix codes

• A prefix code is a code such that no codeword is a prefix of
any other codeword.

• Is C(A1) = 00, C(A2) = 10, C(A3) = 11 a prefix code? Yes

• Is C(A1) = 0, C(A2) = 10, C(A3) = 1 a prefix code? No! C(A3) is a
prefix for C(A2).

• Better: C(A1) = 0, C(A2) = 10, C(A3) = 11.

• Now we can decode the string C(s) = 1000110

Side note: binary trees

• A binary tree is a data structure where each node has at
most two children

• Sometimes, it is useful to label left branches with ‘0’ and
right branches with ‘1’

• A node with no children is called a leaf

0

0

1

11

leaf

0

Prefix codes as binary trees

• We can represent any prefix code as a
binary tree, such that each codeword is
obtained by following the path to a leaf

• This works for variable or fixed length
codes

• Example on next slide

Prefix codes as binary trees
• C(A1) = 00, C(A2) = 10, C(A3) = 11

• C(A1) = 0, C(A2) = 10, C(A3) = 11

0

0

1

11

0

0

1

1

0

A1 A2 A3

A1

A2 A3

Prefix codes as binary trees

• What about codes that are not prefix trees?

• C(A1) = 0, C(A2) = 10, C(A3) = 1

• This doesn’t work because A3 is no longer a leaf! This is
why in the example we weren’t able to decode any
strings containing “10”.

0

0

1

A1

A2

A3

Frequencies of symbols

• We can talk about how likely a symbol is to appear in a string
in terms of probabilities

• When we say p(A1)= 0.5, that means that 1 out of 2 symbols in
a string is likely to be A1

• The probabilities for all symbols should sum to 1

• p(A1)= 0.2, p(A2)= 0.5, p(A3)= 0.3

Huffman Coding

• Input: any alphabet A= {A1, A2, ...,AN} and the frequencies
p(A1),..., p(AN) of the symbols in the alphabet

• Output: an optimal prefix code such that the symbol with the
highest frequency has the shortest codeword and the symbol
with the lowest frequency has the longest codeword.

Huffman Coding Algorithm

1. Re-order the symbols in order of decreasing
frequencies (i.e. the number with the highest
frequency comes first)

2.Merge the last two symbols, AN and AN-1 into a new
symbol AN,N-1 such that p(AN,N-1) = p(AN) + p(AN-1).
Remove AN and AN-1 from the list, and add AN,N-1

instead

3.Add AN and AN-1 to the Huffman tree (if not already
there)

4.Repeat steps 1-2 until there is only one symbol left

Huffman Coding example

• Input: A = {A1, A2, A3,A4}

• p(A1) = 0.25, p(A2) = 0.2, p(A3) = 0.4, p(A4) = 0.15

1. Order the symbols:

• p(A3) = 0.4
• p(A1) = 0.25
• p(A2) = 0.2
• p(A4) = 0.15

2. Merge A2 and A4, creating A2,4 with p(A2,4) = 0.35

3. Update the list:

• p(A3) = 0.4
• p(A2,4) = 0.35
• p(A1) = 0.25

4. Add A2 and A4 to the tree:

0 1

A2 A4

Huffman Coding example(2)

5. Merge A2,4 and A1, creating A1,2,4 with p(A1,2,4) = 0.6

6. Update the list:

• p(A1,2,4) = 0.6

• p(A3) = 0.4

7. Since A2,4 is already in the tree (i.e the node above A4 and A2), add A1 to the left or right of the tree.

A1

0 1

A2 A4

A1

0 1

A2 A4

or0 01 1

Huffman Coding example(2)

8. Merge A1,2,4 and A3, creating A1,2,3,4 with p(A1,2,3,4) = 1

9. Add A3 to the tree

• Now we can read off the codewords from the tree:

• C(A1) = 01, C(A2) = 000, C(A3) = 1, C(A4) = 001

A1

0 1

A2 A4

A31
10

0

Huffman coding remarks

• We could have constructed more than one tree (i.e. adding
the new nodes to the left or to the right)

• This decision does not affect the final codeword lengths

• If there are more than two symbols with the same
probability, we can choose any of them to merge. This will
affect the codewords in the sense that one of those
symbols will have a longer codeword than the other ones.

• However, because the symbols have equal frequencies, it
does not make a difference which one of them has a
longer codeword. Thus, the order in which we merge
symbols with equal frequencies does not matter.

