
COMP 102: Computers and Computing

Lecture 7: Machine Language

Instructor: Kaleem Siddiqi (siddiqi@cim.mcgill.ca)

Class web page: www.cim.mcgill.ca/~siddiqi/102.html

COMP-102: Computers and Computing (thanks to Joelle Pineau!)2

Quick Recap

• Weeks 1-2: Hardware approach

– Every problem is expressed with boolean variables and operators.

– Can implement any function using the right combination of AND, OR, NOT.

– Hardware solutions are quick (in terms of machine running time.)

– But this is very inflexible (need a new circuit for each program!)

• Week 3: Software approach

– Always same hardware, same set of circuits (any standard computer!).

– Can implement a large variety of programs and be reprogrammed.

– Need a layer to translate the programming language into something the

computer will understand.

• Today’s lecture: Machine Language

(Much more on this in COMP 273!!)_

COMP-102: Computers and Computing (thanks to Joelle Pineau!)3

Your PC

COMP-102: Computers and Computing (thanks to Joelle Pineau!)4

Your PC

Input

Input

COMP-102: Computers and Computing (thanks to Joelle Pineau!)5

Your PC

Input

Output

Output

Input

COMP-102: Computers and Computing (thanks to Joelle Pineau!)6

Your PC

Input

Output

OutputBRAIN

Input

COMP-102: Computers and Computing (thanks to Joelle Pineau!)7

Inside the BRAIN

COMP-102: Computers and Computing (thanks to Joelle Pineau!)8

Simplifying the picture

• CPU: Performs the operations in the current instruction.

• Memory: Stores the program (sequence of instructions and data).

RAM = Random Access Memory

CPU Memory
(RAM)

each cell corresponds to a bit (0 or 1)

0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1

Program start

Program instructions

COMP-102: Computers and Computing (thanks to Joelle Pineau!)9

The Memory Hierarchy

• Level 1: CPU’s registers.

• Level 2: cache (L1)

• Level 3: cache (L2)

• Level 4: RAM

• Level 5: Hard disk

COMP-102: Computers and Computing (thanks to Joelle Pineau!)10

The CPU is composed of 3 major parts:
• ALU (Arithmetic Logic Unit)

– Arithmetic & Logical operations

• Registers
– Storage areas for data and machine instructions operated on by the

ALU

• Control unit
– Acts as a coordinator between the ALU and registers

CPU: Central Processing Unit

COMP-102: Computers and Computing (thanks to Joelle Pineau!)11

Instructions do very simple things

• Read bits (i.e. accessing variables).

• Change the bits in a location (i.e. assigning variables).

• Move bits from 1 cell to another.

• Treat some bits as numbers to apply arithmetic operations (add,

subtract, multiply, …)

• Modify which instruction is executed next -> CONTROL FLOW

• Communicate with external devices.

COMP-102: Computers and Computing (thanks to Joelle Pineau!)12

Fetch-Decode-Execute Cycle

1. Fetch Cycle: The Control Unit fetches gets the next instruction

from memory.

2. Decode Cycle: The Control Unit decodes the instruction (figuring

out what the bits represent).

3. Execute Cycle: The ALU executes the required instruction and

stores results into memory.

This is the only thing the CPU does!

COMP-102: Computers and Computing (thanks to Joelle Pineau!)13

Fetch-Decode

1. Look at the Program Counter (PC) to determine the location in

memory where the next instruction is stored

2. Retrieve this instruction from program memory

3. Decode this instruction

4. After an instruction is fetched, increment the PC by the length

of the instruction

COMP-102: Computers and Computing (thanks to Joelle Pineau!)14

Problem!

Problem #1: Need to convert the program into a long stream of bits.

– Some parts are actual memory (e.g. variables).

– Some parts are the instructions / operations.

• Writing a program as bits directly is tedious!

• There are human-readable mnemonics for bit patterns.

COMP-102: Computers and Computing (thanks to Joelle Pineau!)15

Machine Instructions

Add the contents of the register r2 and the
immediate value 350 and store the result in the
register r1

COMP-102: Computers and Computing (thanks to Joelle Pineau!)16

Machine Instructions

• Other kinds of instructions include:

– Transferring data between registers or memory locations

– Arithmetic or logical operations (use the ALU)

– Control: test contents of a register and jump to a location

• There are binary codes for each of these (and associated

mnemonics).

COMP-102: Computers and Computing (thanks to Joelle Pineau!)17

Execute Cycle

1. Execute the instruction

– Connects the various components of the

computer so that the desired operation may be

carried out

2. Write back the results (if any) of the execute

step to some form of memory.

COMP-102: Computers and Computing (thanks to Joelle Pineau!)18

What does this MIPS program do?
.data
string: .asciiz "ecaf das a"

.text

.globl main

main:
 la $t0, string # $t0 and $t1 are pointers to
 la $t1, string # to the first element of the string

loop1:
 lb $t3, 0($t1)
 addi $t1, $t1, 1
 bne $t3, $0, loop1
 addi $t1, $t1, -1

loop2:
 ble $t1, $t0, exit
 addi $t1, $t1, -1
 lb $t3, 0($t1)
 lb $t4, 0($t0)
 sb $t4, 0($t1)
 sb $t3, 0($t0)
 addi $t0, $t0, 1
 j loop2

exit:
 li $v0, 4
 la $a0, string
 syscall

COMP-102: Computers and Computing (thanks to Joelle Pineau!)19

Well, let’s run it using spim…

This example, which we shall run in class,
illustrates many features including the PC, the
notion of registers, the fetch-decode-execute
cycle, the idea of a machine instruction and
the manner in which program code is stored in
memory.

You are not responsible for any of the details
or for MIPS syntax, but seeing such an
example in action is quite useful…

COMP-102: Computers and Computing (thanks to Joelle Pineau!)20

Computer Speed

• The CPU experiences high and low voltage changes, driven by the

clock (vibrating quartz crystal).

– The clock operates with a predetermined frequency (such as 500MHz).

• Each time the clock changes, the computer's processor processes a

machine instruction.

• A more accurate measurement would compare the number of

instructions per second (MIPS: million instructions per second) as

some computers use the clock ticks more efficiently than others.

COMP-102: Computers and Computing (thanks to Joelle Pineau!)21

Back to programming languages

• We write programs in a user-friendly programming language:

• How can we convert:

• This is a job for a compiler.

High-level
programming

language

Low-level
machine
language

Integer x
Integer i
x = 0
For i = 0 to 100

x = x + i
End loop
Print x

COMP-102: Computers and Computing (thanks to Joelle Pineau!)22

Compiler

• The compiler translates high-level programming language into low-level

machine language: Program -> Executable

– Each programming language needs its own compiler.

• Note: The compiler is a program! (So need a compiler for the compiler…)

– Here’s an idea: Our compiler is actually compiled by itself!

Program

Compiler

Executable

COMP-102: Computers and Computing (thanks to Joelle Pineau!)23

Example of an Executable

Figure reproduced from: http://pages.cs.wisc.edu/~larus/HP_AppA.pdf

COMP-102: Computers and Computing (thanks to Joelle Pineau!)24

Compiler

• Front End: Needs to know all about the input language.

• Back End: Knows all about the machine itself (CPU).

• Intermediate representation (IR):

– Generated by the Front End, understood by the Back End.

– Generic, medium-level “universal” language

Front
End

Back
End

Program IR Executable

COMP-102: Computers and Computing (thanks to Joelle Pineau!)25

Front End Parser

• Front End will parse the input program.

– All computer languages come with parsing rules.

– These parsing rules are the grammar (syntax) for the language.

– This produces a parse tree.

• Example:

Integer x
Integer i
x = 0
For i = 0 to 100

x = x + i
End loop
Print x

declaration
variable

type

x

integer

declaration
variable

type

i

integer

assignment
variable

value

x

0

for loop Etc.

COMP-102: Computers and Computing (thanks to Joelle Pineau!)26

Back End

• Once the program is in an Intermediate Representation:

– Step through the IR, considering each piece of the parse tree.

– Figure out which machine instruction template matches each piece.

– Use a look-up table to find the corresponding instruction in binary.

E.g. x = 0 mov, 0, [x]

x = y + z mov, r1, [y]
mov, r2, [z]
add, r3, r1, r2
store, r3, [x]

• Often we need to optimize the code (to make it faster):

– Lots of clever techniques to improve the code.

Now we have a program as a sequence of bits, which can be executed by the

CPU!

COMP-102: Computers and Computing (thanks to Joelle Pineau!)27

Linking different programs

• Often different pieces of the program are built separately.

• Each piece can go through the compiler individually, to get

separate executables. Need to put all this together somehow!

• Linker: Takes pieces of the program and puts them together

into an executable.

– Sometimes this is done as part of the compiler, sometimes

separately.

COMP-102: Computers and Computing (thanks to Joelle Pineau!)28

Take-home message

• Understand the main components of the computer.

• Be familiar with the principles of Fetch-Decode-Execute.

• Understand the role of machine language.

• Know the main components of the compiler (Front End, Back

End, Intermediate Representation) and what purpose they

serve.

COMP-102: Computers and Computing (thanks to Joelle Pineau!)29

Final comments

• Some material from these slides was taken from:

– http://www.cim.mcgill.ca/~sveta/COMP102/

