COMP 102: Computers and Computing
 Lecture 2: Bits\&bytes, Switches, and Boolean Logic

Instructor: Kaleem Siddiqi (siddiqi@cim.mcgill.ca)

Class web page: www.cim.mcgill.ca/~siddiqi/102.html

The Lowly Bit

What is the smallest unit of information?

- Chemistry has its molecules.
- Physics has its strings.
- Computer science has its bits:
- True / False
- On / Off
$-1 / 0$
- Think of it as a switch:

Recall

- The vacuum tube:

- The transistor:

- These are electronic on/off switches.
- The difference engine used mechanical on/off switches (think "lever").

What's a Bit?

- Word "Bit" is a contraction of "Binary digit"
- What's a binary digit?
- Base 10: In decimal number system, a digit can be any of the ten values 0, ..., 9
- Base 2: In binary number system, a digit can be any of the two values 0, 1
- Bits are nice because they are:
- Simple: There's no smaller discrete distinction to be made.
- Powerful: Sequences of bits can represent seemingly anything.

Representing numbers

- Decimal System uses 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Base 10
- Place-value number system: position of a digit interpreted to give the value

Representing numbers: Decimal system

- $102=1 \times 100+0 \times 10+2 \times 1$

$$
=1 \times 10^{2}+0 \times 10^{1}+2 \times 10^{0}
$$

- 1 decimal digit produces 10 distinct values
- 2 decimal digits produce 100 distinct values
- 3 decimal digits produce 1000 distinct values
- n decimal digits produce 10^{n} distinct values

Representing numbers: Binary system

- Binary System uses 2 digits: 0,1
- Base 2

Representing numbers: Binary system

- Binary System uses 2 digits: 0,1
- Base 2

Representing numbers: Binary system

$$
\begin{aligned}
1,100,110_{2} & =1 \times 64+1 \times 32+0 \times 16+0 \times 8+1 \times 4+1 \times 2+0 \times 1 \\
& =1 \times 2^{6}+1 \times 2^{5}+0 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}
\end{aligned}
$$

- 1 binary digit produces 2 distinct values
- 2 binary digits produce 4 distinct values
- 3 binary digits produce 8 distinct values
- n binary digits produce 2^{n} distinct values

Representing numbers: Arbitrary Base

$23641_{7}=$?
$85342_{9}=$?
In general, use positional notation:
A number $a_{n} a_{n-1} a_{n-2} \ldots a_{0}$ in base b has the value

$$
a_{n}{ }^{*} b^{n}+a_{n-1}{ }^{*} b^{n-1}+\ldots+a_{0}{ }^{*} b^{0}
$$

Converting from Base 10 to Base 2

$136_{10}=?_{2}$
Keep dividing by 2 and storing the remainder:

$$
\begin{aligned}
& 136 / 2=68, R=0 \\
& 68 / 2=34, R=0 \\
& 34 / 2=17, R=0 \\
& 17 / 2=8, R=1 \\
& 8 / 2=4, R=0 \\
& 4 / 2=2, R=0 \\
& 2 / 2=1, R=0 \\
& 1 / 2=0, R=1 \quad \text { Answer: } 10001000_{2}
\end{aligned}
$$

Binary Numbers in Computing

- Easy to make fast, reliable, small devices that have only 2
states
- 1/0 represented by
- hole/no hole in punched card
- hi/low voltage (memory chips)

- light bounces off/light doesn't bounce off (CDs/DVDs)
- magnetic charge present/no magnetic charge (disks)

Measuring Data

We can group number of binary digits and refer to the group sizes by special names:

- 1 bit(b) $=2^{1}=$ represents 2 different values
- 1 byte $(B)=8$ bits $=2^{8}=256$ values
- 1 kilobyte $(\mathrm{KB})=1024$ bytes $=2{ }^{10}$ bytes
- 1 megabyte $(\mathrm{MB})=1024 \mathrm{~KB}=2^{20}$ bytes
- 1 gigabyte $(\mathrm{GB})=1024 \mathrm{MB}=2^{30}$ bytes
- 1 terabyte $(\mathrm{TB})=1024 \mathrm{~GB}=2^{40}$ bytes

Combining bits to represent complex information

- Remember bit can only be 0 or 1.
- We can combine multiple bits to represent more complex data.
- Text
- Images
- Sound
- Video

Etc.

Representing Text

- Each character is encoded using 1 byte
- ASCII (American Standard Code for Information Interchange) table

Representing Text

"M	A	R	C"
1st byte	2nd byte	3rd byte	4th byte
77	97	114	99
01001101	01100001	01110010	01100011

Almost everything can be represented with bits

- Escher's drawing:
- Use one bit to represent the colour (black=0, white=1) at each particular image location.

Almost everything can be represented with bits

- Digital images:
- A group of bits represents the colour at each particular image location: we call this a pixel.
- An image pixel is one of Red, Blue or Green.
- How do we encode this information with bits?
- How many bits do we need?

Almost everything can be represented with bits

- Digital sound:
- Average sound intensity (= a number) over a short time interval is represented using a group of bits.

Modern technologies need lots of bits!

- Consider the iPod: 60Gb.
$-1 \mathrm{~Gb}=$ one billion bytes (1 byte $=8$ bits)
- Sound:
- 128 Kbps per second of sound (Kbps = kilobits).
- So 62,500 minutes of sound, or 15,000 songs (at 4 min. per song).
- Screen:
- 320x240(=76,800) pixels.
- Each pixel needs 1 byte of RGB (=Red-Blue-Green) intensity.
- At 30 frames per second, that's 55.3 million bits per second.
- So 144 minutes of (quiet) video.

Logical variable

- Bits are not just for sound and images.
- Bits can store logical variables.
- A logical variable is something that we can imagine as being True or False.
- TodaylsThursday = True
- ItlsDarkOutside = False
- IAmTeachingCOMP102 = True
- TodaylsThursday, ItlsDarkOutside and IAmTeachingCOMP102 are logical variables. They can be True or False.
- Logical variables are also sometimes called Boolean variables.

And, Or, Not

- Logical variables can be combined with logical operations.
- The most important logical operations are AND, OR, and NOT.

1. x AND y is True only if both x is True and y is True.
2. x OR y is True if either x or y are True.
3. NOT x is True only if x is False.

- Logical operations have the intuitive English meaning.

Logical expressions

- Logical expressions combine logical variables and logical operations into more complex expressions.
- IAmTeachingCOMP102 AND ItlsDarkOutside = False
- NOT ItlsDarkOutside = True
- IAmTeachingCOMP102 OR TodayIsThursday = True
- (TodaylsThursday OR IAmTeachingCOMP102) AND (IAmTeachingCOMP102 AND (NOT ItlsDarkOutside)) = ??

Implementing logic

- How do we implement a logical variable?
- Easy! One switch per logical variable
electrons in \qquad electrons out?

Closed switch = True
electrons in
 electrons out?

Open switch = False

- How do we implement logical operations?
- How do we implement logical expressions?

Implementing logical operations

Key Idea: Combining switches

- AND operation: Combine switches in series

$$
(x=\text { True }) \text { AND }(y=\text { True })=\text { True }
$$

$$
(x=\text { True }) \text { AND }(y=\text { False })=\text { False }
$$

Implementing logical operations

- OR operation: Combine switches in parallel

- NOT operation is slightly more complicated.

Implementing logical expressions

- Combine multiple switches.

E.g. (TodayIsThursday OR IAmTeachingCOMP102) AND
 (IAmTeachingCOMP102 AND (NOT ItlsDarkOutside)) = ??

Practice example

- Three friends are trying to decide what to do Saturday night (see a movie or go out clubbing). They settle the issue by a vote (everyone gets a single vote, the activity with the most votes wins.)
- Assume you want a computer to automatically compile the votes and declare the winning activity.
- What logical variables would you use?
- Can you write a logical expression, which evaluates whether or not you will go Clubbing (True $=$ Clubbing, False $=$ Movie $)$?

Take-home message

- Understand the concept of a bit.
- Know how to combine multiple bits to represent complex information (text, images, sound, video).
- Understand what are logical variables.
- Know the three basic logical operations.
- Be able to evaluate logical expressions.

Final comments

- Some material from these slides was taken from:
- http://www.cs.rutgers.edu/~mlittman/courses/cs442-06/
- http://cim.mcgill.ca/~sveta/COMP102/

