COMP 102: Computers and Computing Lecture 1: Introduction

Instructor: Kaleem Siddiqi (siddiqi@cim.mcgill.ca)

Class web page: www.cim.mcgill.ca/~siddiqi/102.html

Outline for today

- What are computers? What is computing?
- What will this course contain?
- Interesting success stories from the field of computer science.
- A brief history of computers and computing.

About Me

- How did I get here?
 - Cathedral and John Connon School, Bombay
 - B. Sc. in Electrical Engineering (Lafayette College)
 - Masters/Ph.D. in Electrical Engineering (Brown University)
 - Prof. at McGill 1998-...
- What else do I teach?
 - Intro to Computer Systems (COMP-273)
 - Fund of Computer Vision (COMP-558)
 - Shape Analysis (COMP-766)
- What kind of research am I interested in?
 - Computer Vision, Medical Imaging, Artificial Intelligence, Brain Imaging

The Shape Analysis Group

http://www.cim.mcgill.ca/~siddiqi

Am I taking the right course?

- I want to learn how to program.
- I want to know how to use Word and Excel.
- I want to build intelligent robots.
- I want to design cool Web pages.
- I want to understand how the human brain works.

Goals for the course

• Discuss interesting facts and ideas related to *computers and*

computing.

- How computers represent data.
- How we can give instructions to computers.
- What problems computers can (or not) solve.
- Improve your computer-literacy quotient.
- Explore current applications of computer science and computing.

Course Syllabus

Part 1: What do we know about computation?

- Storing information (bits, bytes, memory)
- Manipulating data (searching, sorting and more)
- Hiding data (how and why)
- Computer Systems
- Examining what problems can be solved and how fast.

Part 2: What can we do with computation?

- Designing simulations
- Robotics, artificial intelligence
- Computer vision and imaging
- Other applications

Evaluation method

- Four assignments (40%)
 - Individual work.
 - Some theory, some application.
 - No formal programming required.
 - Late policy: assignments are due in class on due date, -20% for each day late.
- In-class midterm examination 1 (30%)
- In-class midterm examination 2 (30%)

Other details about the course

• Textbook:

None required.

- Office hours:
 - Kaleem Siddiqi: McConnell 420. See web page for day/time.
 - TA: See web page.
- Course material and announcements available on class website:

www.cim.mcgill.ca/~siddiqi/102

The ancestors of the computer

- Counting machines (abacus, etc.)
- Analog computers to perform astronomical calculations.
- Intricate mechanical automatons.
- Why aren't these computers? What's missing?

Charles Babbage (1791-1871)

- Lived in England.
- He was a polymath (solved problems from Astronomy to Zoology, in particular mathematics, philosophy, engineering).
- Held Newton's chair at Cambridge.
- Invented:
 - The cowcatcher,
 - Flat-rate postage,
 - Operations research
- His design for the <u>analytical engine</u> presaged much of the design of modern digital computers.

The Difference Engine

- Originally a <u>computer</u> was a job description of a person who created numerical tables, e.g. log₂(x)
- Babbage had a scheme to <u>automate</u>

table creation using finite differences.

- The Difference Engine No.1 required

25,000 parts, 15 tons, 8 feet high,

and was never built.

His redesigned Difference Engine No.2

was built in 1990 and actually worked!

Difference Engine: Main idea

- Let's play a game:
- 0, 1, 2, 3, 4, ...?
- 3, 5, 7, 9, 11, ...?
- 1, 4, 9, 16, 25, ...?
- 1, 3, 6, 10, 15,?

Generating Even Numbers

- Instructions:
 - 1. Start with **2**.
 - 2. To get the next number, add **2** to the previous one.

Generating Squares

- Instructions:
 - 1. Start with 1.
 - 2. Start the increment with 3.
 - 3. To get the next square, add the increment.
 - 4. To get the next increment, add 2 to the previous increment.

Naming the sequences

• The Evens: "2 2"

$$2 \longrightarrow 4 \longrightarrow 6 \longrightarrow 8 \longrightarrow 10 \longrightarrow 12$$

$$+2 +2 +2 +2 +2 +2$$

• The Squares: "1 3 2"

(thanks to Joelle Pineau!)

Programming the Different Engine

- To produce the Evens, we enter "2 2" into the Difference Engine and turn the crank.
- For the Squares, enter "1 3 2"
- For the Triangle numbers, enter "1 2 1"

Why is this "programming"?

There's a way to <u>say what you want to say</u>, in a way the <u>machine understands</u>.

 Simple operations (in this case, repeated addition) used to build up more <u>complex</u> objects.

 If I had to characterize Computer Science in 1-word: REDUCTION.

Limitations of the Difference Engine

- It was never built! (Or at least, not until 1990).
- It was engineered for a very specific task.
 - It can only compute <u>polynomial</u> functions.
 - Some other functions (e.g. log, trig functions) can be approximated by polynomials.
 - To perform very different calculations, we would need to re-build the machine.

The Analytical Engine

- Much more general, with many of the characteristics of the modern-day computers.
 - Input: program and data can be entered through punched cards.
 - Output: through printer, curve plotter and bell.
 - Internal memory.
 - Arithmetical unit, capable of basic mathematical operations.

• Never built, more of a thought experiment by Babbage.

The first programmer: Ada Lovelace (1815-1852)

- Ada August, Countess of Lovelace
 - Daughter of the writer Lord Byron.
- Designed many sequences of Babbage's machine's basic operations.
- Used a number of modern software design elements, e.g. the loop.

<u>What's a loop?</u> Repeat an operation until a specified condition is met.

1940: First demo of remote computing

- The Complex Number Calculator.
- Designed by Bell Telephone Labs.
- On its own, just a fancy calculator.
- Noteworthy because <u>calculations</u>

were performed remotely

(NYC - Darthmouth) using a

Teletype connected via phone lines.

1944: Room-sized computers

- Harvard Mark-1.
- 765,000 component parts:
 - switches, relays, rotating shafts, clutches
 - hundreds of miles of wire
- Used to produce mathematical tables.
- <u>Programmable by punched-paper tape.</u>

1948: ENIAC

- The Electronic Numerical Integrator And Computer (ENIAC)
- First <u>purely electronic digital computer</u>.
- Built at the University of Pennsylvania to calculate artillery firing tables for the US Army.
- 80 feet wide, 27 tons, 120,000 pieces.
- 300 times faster than the Mark 1 at addition.
- <u>Programmable by rewiring</u> (switches and cables).
- <u>No memory.</u>

1945: von Neumann's stored-program computer

- Early computers had fixed programs.
- Key idea is to hold the program

in memory as a series of instructions.

• The control unit (i.e. "computer") treats these instructions in the

same way as other data.

<u>Allows the program to change</u> (even as it is running.)

The Transistor Revolution

- Early days: computers worked with vacuum tubes.
 - Think of this as an "on/off" switch.
 - Switch is caused by electrons.
 - So we call this "electronics".
 - Vacuum tubes were about size of a modern light bulb.
 - ENIAC had 17,000 vacuum tubes.
- 1947: engineers at Bell Laboratories invent the transistor.
 - Also an electronic on/off switch.
 - Much smaller, less hot, less expensive.
- 21st century:
 - Intel's Core 2 Duo processor (2006):
 253 million transistors.

(thanks to Joelle Pineau!)

Integrated Circuits

- Integration of large numbers of tiny transistors into a small chip
- Mass production capability, reliability, and building-block approach to circuit design ensured the rapid adoption of standardized ICs

(thanks to Joelle Pineau!)

Personal Computing

- By late 1970's, price of computer processors was much more affordable. Companies were starting to produce "microcomputers".
 - But not clear whether there was a market for personal computers.
 - Computers were still seen as "number-crunchers".
- In early 80's, hobbyists starting buying machines like Apple II and IBM PC.
- Two key developments:
 - Graphical User Interfaces ("GUI")
 - Application software

(thanks to Joelle Pineau!)

What came next?

• 1977: "There is no reason for any individual to have a computer in his home." Ken Olsen, CEO of Digital Equipment Corporation

• 2012: How many computers have you used today?

Computers and your education

COMP-102: Computers and Computing

(thanks to Joelle Pineau!)

Computers and your health

http://www.cim.mcgill.ca/~shape/projects.html

Computers and your social life

Computers and the entertainment industry

Godzilla, 1954

Godzilla, 1998

COMP-102: Computers and Computing

(thanks to Joelle Pineau!)

Let's start with a few basic concepts

- What is **computing**?
 - Take an input
 - e.g. text, numbers, image, sound
 - Calculate for a while
 - e.g. add/subtract, filter/amplify, summarize
 - Produce an output
 - e.g. new text, new numbers, error message
 - Store the results
- The **computer** is the machine which allows us to do all of this.

We begin the course by trying to understand these different components.

Something to think about

• Define computer science's contribution to the world in one-word:

REDUCTION

- Computer scientists solve problems by reducing them to simpler problems.
- Use simple operations to build up more complex objects.

"We are trying to build a machine to do all kinds of different things simply by programming rather than by the addition of extra apparatus," Turing, 1947.

We will see this concept arise in a number of instances throughout the semester.

Quick quiz

• What is the "Nobel prize" of Computer Science?

Take-home message

• Understand how the difference engine works.

Understand the link between <u>what we can compute</u>
 > polynomials vs full weather prediction

and how we compute it

>> difference engine vs modern computer with millions of transistors

Final comments

- For the rest of the semester, we explore the <u>current state</u> of computing.
 - Some emphasis on hardware&engineering, more emphasis on the science behind computer science.
- Coming up next:
 - What is data, and how is it represented?
- Material and images from these slides was taken from:
 - http://www.cs.rutgers.edu/~mlittman/courses/cs442-06/
 - http://www.computerhistory.org
 - http://www.columbia.edu
 - http://www.calvin.edu/academic/rit/webBook
 - <u>http://en.wikipedia.org</u>
 - http://www.cs.mcgill.ca/~jpineau/comp102/