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Abstract

Subpizel interpolation methods often use local surface
fits or structural models in a local neighborhood to ob-
tain the interpolated curve. Whereas their performance
15 good in smooth regions of the curve, it is typically
poar in the vicinity of singularities. Similarly, when geo-
metric estimates are regularized, discontinuities are often
blurred over, leading to poor estimates in their vicinity.
In this paper we propose a geometric interpolation tech-
nique to overcome these limitations by: 1) not blurring
across discontinuities, and 2) ezplicitly and accurately
placing them. The essential idea is to prevent the prop-
agation of information across singularities by explicitly
placing a “shock”; information is only allowed to prop-
agate from the smoother side. The placement of shocks
is guided by geometric continuity constraints, resulting in
subpizel interpolation with accurate geometric estimates.
The interpolations are shown to be better than spline-like
interpolations in smooth regions, and far better in dis-
conlinuous ones. We demonstrate the usefulness of the
technique in capturing not only smooth evolving curves,
but also discontinuous ones, even when multiple or entire
curves are present in the same pizvel.

1 Introduction

Hyperacuity, or the ability of the human visual sys-
tem to detect features at resolutions an order of magni-
tude better than retinal resolution, is a remarkable phe-
nomenon. This phenomenon is particularly impressive
since locating curves, e.g., for image registration [4], as
well as obtaining reliable estimates of geometric quanti-
ties, such as orientation and curvature, e.g., for stereo
and optical flow, have traditionally proven to be difficult
problems. We follow [9] in exploiting two main sources of
information to obtain measurements of differential struc-
ture in images: 1) normal conditions to utilize informa-
tion along profiles orthogonal to image curves, and 2) tan-
gential conditions to take advantage of continuity along
image curves. Our goal is to achieve robust localization
and accurate geometric estimates, not only at regular,
but also at subpizel resolution.

First, observe that image structure is rarely present in
binary form. It contains “contrast” information that can
be used to locate curves with subpixel accuracy [8, 13].
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In other work, curves have been viewed as level sets of a
surface, e.g., edges as the zero-crossings of the Laplacian
of a Gaussian operator [17], isophotes of image inten-
sity for scale [14], etc. In addition, more recently, curve
evolution applications have used an embedding surface to
represent the evolving curve, thus utilizing the additional
dimension to regularize computations [18, 5], e.g., shape
representation [10, 11], shape from shading [12], image
smoothing [3], affine invariant curve evolution [22, 1],
shape modeling [2, 16, 26], optical flow [15], etc. In the
above examples, the process of locating the curve and
computing its geometric properties, e.g., orientation and
curvature, can benefit from the information contained in
the embedding surface in the direction orthogonal to the
curve.

Second, since slight variations in pixel data can cause
large variations in computations of orientation and cur-
vature, smoothing along the boundary is often employed
to make the estimation procedure more robust, e.g.,
spline interpolation, regularization, etc. While in smooth
regions regularization achieves excellent geometric esti-
mates, this is often at the expense of blurring across
singularities, as observed in [8], thus leading to grossly
inaccurate estimates in their vicinity, Figure 1 (middle
column). However, observe that discontinuities are usu-
ally finite in number and are isolated, while the object
boundaries are smooth between them. Thus far, it has
not been clear how to exploit these constraints without
also blurring across singularities; see [21] for a promis-
ing approach in the domain of curve evolution. In recent
years, a large number of nonlinear approaches to smooth-
ing shapes and images have been introduced, with the
goal of preserving discontinuities, e.g., see the articles
in [27] for an overview. The ideas developed here can be
utilized for curve localization and geometric estimation.

The paper is organized as follows. In Section 2 we re-
view the essentially non-oscillatory (ENO) interpolation
method, originally proposed to overcome the problem of
smoothing across discontinuities in fluid dynamics appli-
cations. In Section 3 we suggest a modification of the
scheme to explicitly capture and represent the discon-
tinuities, leading to more accurate geometric estimates
in their vicinity. In Section 4 we extend the technique
for interpolating 1D functions to one for interpolating a
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Figure 1: Cubic spline interpolation versus ENO interpola-
tion. LEFT CoLUMN: The data points are marked with “*”s.
MmpLE CoLUMN: The cubic spline interpolation is overlaid
on the data. RIGHT COLUMN: The second-order ENO inter-
polation is overlaid on the data. Observe that in contrast to
cubic spline interpolation, ENO interpolation does not blur
across singularities or introduce spurious oscillations.

2D curve, via a two stage approach, the first to obtain
a set of ordered subpixel sample points, and the second
to interpolate between them using geometric basis func-
tions. Finally, in Section 5 we illustrate the advantages
of this geometric ENO (GENO) interpolation scheme in
application to curve evolution.

2 Background: ENO

Splines or polynomials are commonly used to interpo-
late discrete data and provide geometric estimates (ori-
entation, curvature, etc.) in a variety of computer vision
and graphics applications. Whereas the estimates are
generally reliable in regions where the data is smooth,
they are prone to error in the vicinity of discontinuities.
This follows because such fitting techniques blur over
discontinuities by propagating information across them,
Figure 1 (middle column). Recently, a class of schemes
have been proposed in the numerical analysis literature
to address this problem, in application to the numeri-
cal solution of conservation laws and the propagation of
fronts. These Essentially Non-Oscillatory schemes were
introduced by Harten et al. [6, 7], were adapted to the
numerical solution of Hamilton-Jacobi equations by Os-
her et al. [18, 19], and were later made more efficient by
Shu and Osher [24].

The key feature of ENO schemes is an adaptive stencil
high order interpolation which tries to avoid shocks or
high gradient regions whenever possible [24]: at regions
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Figure 2: LEFT: The interval AB supports two discontinu-
ities, one at A and one at B. RIGHT: As an alternate interpo-
lation, one may “relieve” these two shock points by smoothly
continuing the neighboring interpolations and introducing a
single singularity at C.

neighboring discontinuities, the smoothing is always from
the side not containing the discontinuity. The basic idea
is to select between two contiguous sets of data points for
interpolation the one which gives the lower variation. To
illustrate, to find the polynomial approximation between
the grid points z; and 241, we start by interpolating a
first-order polynomial between z; and ;1. A second-
order polynomial is constructed by adding either z;_; or
Z 42, whichever produces the smoother polynomial, .e.,
that which has a lower coefficient for the highest order
term. A third-order polynomial is interpolated by choos-
ing an additional data point, and so on, for higher degree
polynomial interpolations. The procedure is known to
give very good numerical results: sharp, non-oscillatory
transitions at shocks and high order accuracy in regions
where the data is smooth, Figure 1.

3 Shock Placing ENO

The ENO interpolation algorithm effectively deals
with areas where the underlying data is smooth, and with
areas neighboring discontinuities. However, since singu-
larities are not explicitly placed, geometric estimates in
an interval containing a singularity are still error prone.
In seeking a solution to this problem we follow Harten’s
idea of explicitly placing a “shock”, but rather than use
“conservation’ to guide its placement [6], we suggest the
use of geometric constraints for the vision applications
we have in mind. Two questions are addressed: what
constraints can be employed to signal the presence of a
singularity, and, how should the singularity be placed?

Observe that the placement of shocks can be signaled
by the ENO interpolation algorithm: in smooth regions,
ENO interpolation in one interval continuously follows to
interpolations in neighboring intervals, with little or no
change in orientation or curvature, Figure 2. However, in
an interval appearing to contain a discontinuity, e¢.g., AB,
the orientation and curvature limits at each boundary
point are different when approached from the left than
when approached from the right. Therefore, the interval
AB typically supports a discontinuity at each boundary
point. As an alternate interpolation, one may “relieve”
these two discontinuities (shock points) and introduce
a single shock C by smoothly extrapolating neighboring
interpolations, Figure 2 (right). Such a choice is guided
by minimizing curvature and orientation variations. To
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Figure 3: ENO interpolation versus ENO interpolation with
shock placement. LEFT CoLUMN: The data points are
marked with “*”s. MIDDLE CoLUMN: The second-order ENO
interpolation is overlaid on the data. Note that singularities
that e within an interval are not captured. RIGHT CoOL-
UMN: In a modified algorithm a shock is placed (marked with
a cross) when there are significant orientation and curvature
changes at the end points of an interval, (MIDDLE AND BOT-
TOM ROWS), but not when the data is smooth (TOP ROW).

formalize these ideas we make two assumptions explicit:

Assumption 1 The underlying curve is piecewise

smooth with finite total curvature.

Assumption 2 The curve has a finite number of singu-~
larities, with the singularities being at least one interval
apart.

Our strategy for shock placement is as follows. First,
all intervals where singularities may occur are “flagged.”
Second, the constraint of piecewise smoothness between
singularities is enforced by extrapolating the interpola-
tions from the neighboring intervals, and placing the sin-
gularity at the point of their intersection. Thus, the in-
terpolating curve on one side of the shock is obtained
solely from the neighboring interval on that side. Ex-
amples illustrating this strategy are shown in Figure 3
(right column). The resulting shocks, which are marked
by crosses, are intuitive. Observe also that for smooth
data, no shocks are placed, and the interpolation agrees
with the unmodified ENO interpolation, Figure 3 (top).
We now extend this “shock placing” ENO scheme to one
for 2D data.

4 Geometric ENO (GENO)

The approach developed thus far applies to 1D data
that is ordered. In extending the scheme to one for 2D
data, we face at least two difficulties. First, in general
the 2D data is not ordered until the shape’s boundary
has been traced. Second, the independent variable for
interpolation, e.g., arc-length §, is not readily available

—
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Figure 4: The 1D shock placing ENO interpolation is per-
formed along gridlines. The zeros of the interpolation poly-

nomials provide subpixel sample points, e.g., the crosses in
the intervals As2Ass and Az3Ass.

prior to obtaining the interpolation itself'. In the follow-
ing we propose a two-stage solution where: (i) ordered
subpixel sample points of the boundary are obtained, and
(i1) the 2D sample points are interpolated, using a geo-
metric generalization of the 1D ENO scheme.

First Stage: Subpixel Samples The goal of the first
stage is to obtain samples of the trace of the boundary
with subpixel accuracy, and later to order these points.
Subpixel sample points can be obtained by 1D ENO in-
terpolation of the surface in the direction of any line pass-
ing through 2D grid points?: for each interval along such
a line, we apply the shock-placing ENO algorithm, Sec-
tion 3. When no shock is placed, the sample points cor-
respond to the zeros of the interpolation polynomial that
lie within the interval under consideration. When a shock
is placed there are two polynomials to consider, i.e., one
from the left and one from the right. The sample points
correspond to the zeros of each polynomial that lie within
the interval under consideration and on the appropriate
side of the shock.

To illustrate, consider shock-placing ENO interpola-
tion using second-order polynomials, Figure 4. The in-
terpolation in the interval Asp;Aszs will use the points
Asa, Asz and either A3y or Asq, depending upon which
leads to the smaller coefficient for the second-order term.
Similarly, the interpolation in the interval Az3Ass will
use the points As3, Aaz and either A;3 or A43. The valid
zeros will be stored for further processing, as indicated by
the crosses in Figure 4. Note that the subpixel samples
are found without explicitly representing a high resolution
sub-grid between any two neighboring grid points.

The sample points must now be ordered such that they
lie consecutively along the boundary of the shape. This
can be done by generalizing a standard contour tracing
algorithm such that instead of grid points, it uses the
high resolution sample points. The details of this proce-
dure are described in [25]. We should mention that the
final algorithm merges the procedures for obtaining sam-

1See [20] for a similar dilemma in the problem of curve detection
from images.

2In practice we have found that grid lines, or lines that pass
through (normal resolution) grid points in both the horizontal and
vertical directions, give excellent results, and there is limited used
for interpolation along diagonals.



ple points and tracing them, thus achieving significant
computational savings.

Second Stage: Geometric ENO interpolation
The goal of the second stage is to interpolate between
the subpixel sample points, while simultaneously placing
singularities when required. Note that there are difficul-
ties with applying the shock placing ENO algorithm to
the 2D samples. A description of the shape’s boundary
as a function in some local coordinate frame is infeasible
because: 1) the coordinate system, e.g., the Frenet Frame,
may not be computable prior to obtaining the interpola-
tion, 1i) the function can become multivalued in intervals
containing high curvature points, and iii) the results are
not invariant to rotations of the data. On the other hand,
interpolating the original (extrinsic) z and y coordinates
of the boundary points as separate functions of the arc
length parameter § is also infeasible because: i) the mea-
sure of arc length is not available prior to obtaining the
fit, ii) unless a joint criterion is designed for selection, the
data points used for ENO interpolation may not coincide
for 2(5) and y(§), and iii) once again, the results are not
invariant to rotations of the data set.

The solution we propose rests in replacing extrinsic
polynomials with a set of geometric basis “functions” for
interpolation. The essential idea is to use fits that are
not dependent on the choice of a coordinate system, but
rather depend only on the geometry of the underlying
curve. Recall that in ENO interpolation using polynomi-
als, all but the highest order derivative of the interpolant
are zero. In a geometric sense, the variables of interest
are orientation and its derivatives: curvature, curvature
variation, etc. In analogy to the algebraic case, the basis
functions can be found by setting various order deriva-
tives to zero. For example, §; = 0 yields a straight line,
0:: = 0 gives a circle, and 63535 = 0 results in an Eu-
ler spiral 3. These constitute our geometric interpolation
bases, with an associated sense of order.

The Geometric Essentially Non Oscillatory (GENO)
interpolation begins, therefore, with a straight line, in-
terpolating the boundary C{s) = (z(s),y(s)) between
two consecutive sample points C(sn) and C(sp41). If
we stopped here, we would have the first-order (line)
interpolation. A second-order (circular arc) interpo-
lation is constructed by adding either of the points
C(sp-1) or C(sn+2), whichever provides the circular arc
fit with lower curvature, and so on for higher order
interpolations?. Further, to deal with the presence of
singularities within an interval, the same shock placing
algorithm developed in Section 3 is used, with the excep-

3The Euler spiral is a curve with linear curvature variation,
studied by Euler in 1781, which has found practical use in applica-
tions such as laying railroad tracks.

4In this paper we have used second order (circular arc) interpo-
lations, for which the accuracy of the results is generally excellent.
Higher order interpolations will lead to improved accuracy when
curvature varies significantly within an interval.
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Figure 5: A comparison of interpolation techmques. TOP:
The original images are 128x128 signed distance transforms
of a triangle with a 10 degree right vertex. oriented at 0, 20,
and 30 degrees respectively. The box depicts a 10x10 region
under examination. SECOND Row: The shape’s interior at
the resolution of the grid. THIRD Row: -Bilinear interpola-
tion truncates or rounds corners, and introduces gross arti-
facts. FOurRTH Row: Geometric ENO interpolation preserves
corners {marked with circles) and accurately places them with
subpixel resolution.

tion that geometric basis functions are used in place of
polynomials for interpolation.

In Figures 5 and 6 we illustrate GENO interpolation
on straight-edged and curved shapes, comparing it with
the commonly used bilinear interpolation technique. Ob-
serve that: 1) the GENO fits are intuitive both in smooth
regions, and in the vicinity of singularities, 2) GENO ex-
plicitly captures singularities and places them accurately,
and 3} GENO is robust to rotations and does not trun-
cate corners or introduce artifacts in the vicinity of sin-
gularities. We conclude by illustrating the advantages of
GENO in application to curve evolution.

5 Subpixel Curve Evolution

Geno interpolation can benefit curve evolution by: 1)
providing for more accurate geometric estimates, thus
leading to more accurate numerical simulations, and ii)
allowing for a refined description of the evolving curve.
First, we have theoretically and numerically compared
geometric estimates of curvature using GENO with those
from two other techniques [25], and have found that
GENO provides more accurate estimates in smooth re-
gions, and far better ones in regions containing singu-
larities. Second, we illustrate the advantages of using
GENO for locating the curve for a particular ‘applica-
tion of curve evolution, namely, shape representation in
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Figure 6: A comparison of interpolation techniques. Top:

The original images are 128x128 surfaces for an ellipse with
major/minor axes equal to 20/20, 20/10, and 20/5 respec-
tively. The box depicts a 10x10 region under examination.
SEcOND Row: The shape’s interior at the resolution of the
grid. THRD Row: Bilinear interpolation. FOUuRTH Row:
Geometric ENO interpolation.

computer vision [11]. Here deformations of the shape
are given by %% = ﬁ(.)ﬁ, where C is the boundary vec-
tor of curve coordinates, N is the outward normal, t is
the time duration (magnitude) of the deformation, and
B is an arbitrary function. For numerical [18] as well
as theoretical [5] reasons, the evolution is embedded in
a higher dimension, i.e., C is taken to be the zero level
set of an evolving surface ¢, ¢(z,y,t) = 0. Typically ¢
is taken to be the distance transform of the shape. Its
evolution is given by %? + B()IV¢| = 0, and after each
iteration the evolving curve C must be recovered. To this
end, Figure 7 illustrates the advantages of using GENO
over: 1) straightforward discretization, and 2) bilinear
interpolation®. Observe that in contrast to the other
techniques, GENO interpolation deals with the presence
of corners and also multiple curve segments per cell, both
of which can be significant aspects of the evolution.
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Figure 7: A comparison of interpolation techniques for four evolved shapes. Each row depicts the interior of the shape at the
resolution of the grid (left), the bilinear interpolation of the boundary (middle) and the GENO interpolation of the boundary,
with detected corners marked with circles (right). Whereas straightforward discretization results in a “jagged” appearance,
GENO and bilinear interpolation are comparable in smooth regions. However, in contrast to bilinear interpolation, GENO is
able to: i) capture the corner of the evolving triangle with subpixel resolution and without introducing artifacts (first-order
shock, TOP LEFT), ii) detect and represent the topological split at the neck, followed by the formation of cusps on either side
(second-order shock, TOP RIGHT), iii) represent the collapse of the bend without introducing artifacts (third-order shock, BoTTOM
LEFT), and iv) preserve the “circular” shape of the circle even when it becomes very small (fourth-order shock, BOTTOM RIGHT).
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