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Abstract. The method of moving frames provides powerful geometrical
tools for the analysis of smoothly varying frame fields. However, in the
face of missing measurements, a reconstruction problem arises, one that
is largely unexplored for 3D frame fields. Here we consider the particular
example of reconstructing impaired cardiac diffusion magnetic resonance
imaging (dMRI) data. We combine moving frame analysis with a diffu-
sion inpainting scheme that incorporates rule-based priors. In contrast to
previous reconstruction methods, this new approach uses comprehensive
differential descriptors for cardiac fibers, and is able to fully recover their
orientation. We demonstrate the superior performance of this approach
in terms of error of fit when compared to alternate methods. We antic-
ipate that these tools could find application in clinical settings, where
damaged heart tissue needs to be replaced or repaired, and for generating
dense fiber volumes in electromechanical modelling of the heart.

1 Introduction

The method of moving frames (MMF), armed with the machinery of exterior
calculus, offers tools for the analysis of smoothly varying frame fields. This ap-
proach provides useful geometrical descriptors which generalize the concepts of
curvature and torsion for space curves, and the shape operator for surfaces [6].
Various problems can be analyzed from a moving frame perspective, including
fluid flows in computational mechanics, equivalence and symmetry problems in
physics [4], and invariant geometrical features in computer vision. The latter
includes the geometry and evolution of curves in the euclidean, affine and pro-
jective planes [5], the differential geometry of motion paths [7] and the classical
structure from motion problem [3].

In applications that involve acquired or fitted frame data, regions with miss-
ing measurements require data reconstruction. Although there exists a literature
on the inpainting of 1D and 2D signals [11], the case of 3D frame fields is rel-
atively unexplored. Here we consider the reconstruction of such frame fields fit
to cardiac diffusion magnetic resonance imaging (dMRI) data. Prior work has
shown that for normal hearts such frames rotate smoothly in the myocardium,
lending them to moving frame analysis [9, 12]. The presence of pathologies can
upset this organization and impair the ability of the heart muscle to operate effi-
ciently. Modern treatments of such conditions include tissue engineering, where
a synthetic material or stem cell therapy is used to mimic cardiomyocyte growth



to restore cardiac contractile muscle properties in vitro [14], and mechanical ven-
tricular restoration techniques that involve reconstruction, cauterization, and/or
ablation of impaired or necrotic regions. Clinical studies have demonstrated that
these techniques effectively improve ventricular function [1]. However, at present
no formal rigorous geometrical constraints are used to guide or validate the re-
construction process. Among the presently available techniques for recovering
missing information in dMRI are the interpolation of the diffusion tensor or the
diffusion signal itself [15] and the application of rule-based methods [2].

Motivated by the recovery of fiber differential signatures using atlas-based
methods in [8], we consider a new approach where moving frame analysis is
combined with an intrinsic diffusion inpainting scheme that also allows for the
inclusion of cardiac image priors. In contrast to [8] where only differential signa-
tures were recovered, this new approach also recovers the local fiber direction,
which is critical for most applications such as electromechanical modelling and
guidance [2]. We demonstrate the use of our method for reconstruction in test
settings simulating prototypical dMRI volumes and show that it achieves low
error compared to other alternatives. Our key contributions include the devel-
opment of a novel closed-form method for connection forms in 3D frame fields,
and its use in a frame field inpainting scheme.

The paper is organized as follows. In Sec. 2 we review basic principles of
cardiac fiber anatomy. In Sec. 3 we derive differential descriptors for three-
dimensional frame fields, following which we present methods for computing
them in Sec. 4 and a frame field inpainting scheme in Sec. 5. These tools are
then adapted to reconstructing frame fields derived from cardiac dMRI data in
Sec. 6. We conclude and review our main contributions in Sec. 7.

2 Cardiac Fiber Anatomy

To situate our work we provide a brief review of cardiac anatomy based on [13].
The heart is a hollow, fibromuscular organ with a truncated ellipsoidal shape.
Its orientation is determined by a well-defined lower extremity, the apex, and
an ill-defined upper part, the base. The heart can be divided in four distinct
chambers: the left (LV) and right (RV) ventricles, a pair of synchronized valved
muscular pumps, respectively connect with the left (LA) and the right (RA)
atria. Structurally, the LV is considerably larger and thicker than the RV, since
it pumps oxygenated blood to the entire body. The bulk of the heart mus-
cle is called myocardium. It is principally composed of elongated muscle cells
called cardiomyocytes which measure approximately 10-20 µm in diameter and
50-100 µm in length. Their primary function is to produce mechanical tension
during ejection, but certain specialized cells also serve to conduct electrical ac-
tivation of the heart muscle. Cardiomyocytes are densely and smoothly packed
within a three-dimensional extracellular matrix principally made of connective
tissue. The term myofiber is often used as a proxy for localized parallel groups of
cardiomyocytes, although they do not exist at a microscopic level. Histological
and medical imaging studies have established certain key geometrical proper-



ties of cardiac myofibers: 1) they form a smoothly varying medium which wraps
around each ventricle, 2) this wrapping generates the truncated ellipsoidal shape
of the myocardium, 3) focusing on the LV, the helix angle, which is the angle of
cardiomyocyte orientation taken with respect to the short-axis plane smoothly
rotates from outer to inner wall by a total amount of approximately 120 degrees.

3 Moving Frames in R3

Let a point x =
∑
i xiei ∈ R3 be expressed in terms of e1, e2, e3, the natural

basis for R3. We define a right-handed orthonormal frame field f1,f2,f3 : R3 →
R3. Each frame axis can be expressed by the rigid rotation f i =

∑
j aijej , where

A = {aij} ∈ R3×3 is a differentiable attitude matrix such that A−1 = AT .
Treating f i and ej as symbols, we can write [6][

f1 f2 f3

]T
= A

[
e1 e2 e3

]T
. (1)

Since each ei is constant, the differential geometry of the frame field is completely
characterized by A. Taking the exterior derivative on both sides, we have

d
[
f1 f2 f3

]T
= (dA)A−1

[
f1 f2 f3

]T
= C

[
f1 f2 f3

]T
, (2)

where d denotes the exterior derivative, and C = (dA)A−1 = {cij} ∈ R3×3

is the Maurer-Cartan matrix of connection forms cij . Writing f i as symbols,
(2) is to be understood as df i =

∑
j cijf j . The Maurer-Cartan matrix is skew

symmetric [6], hence we have

C =

 0 c12 c13
−c12 0 c23
−c13 −c23 0

, (3)

such that there are at most 3 independent, non-zero 1-forms: c12, c13, and c23. 1-
forms operate on tangent vectors through a process denoted contraction, written
as dw〈v〉 ∈ R for a general 1-form dw =

∑
i widei and tangent vector v on R3,

which yields dw〈v〉 =
∑
i widei〈

∑
j vjej〉 =

∑
i wivi, since dei〈ej〉 = δij , where

δij is the Kronecker delta.
The space of linear models for smooth frame fields is fully parametrized by

the 1-forms cij . This space can be explored by considering the motion of f i in
a direction v =

∑
k vkfk, using the first order terms of a Taylor series centered

at x0:

f̃ i(x0 + v) = f i + df i〈v〉+O(||v||2) ≈ f i +
∑
j 6=i

f j
∑
k

vkcijk, (4)

where f i and df i are evaluated at x0, and cijk ≡ cij〈fk〉 are the connection
forms of the local frame. Since only 3 unique non-zero combinations of cij are
possible, there are in total 9 connections cijk. These coefficients express the rate



of turn of the frame vector f i towards f j when x moves in the direction fk. Fig. 1
illustrates the behavior of the frame field described by cijk. For example, with
f1 taken to be the local orientation of a fiber and f3 taken to be the component
of the heart wall normal orthogonal to f1, c131 measures the circumferential
curvature of a fiber and c123 measures the change in its helix angle [9].

c121

c122

c123

c131

c132

c133

Fig. 1: (Left) Turning of frame axes at x expressed in the local basis f1,f2,f3

when x moves in the direction v. (Right) frame field variation characterized by
the connections cijk for i = 1 (c23k are not shown).

4 Computation of Connection Forms

A first order generator for frame fields using (4) requires knowledge of the under-
lying connection forms cijk. We shall explore three ways of computing these: 1) a
direct estimate based on finite differences, 2) a regularized optimization scheme,
and 3) a novel closed-form computation which yields exact results on linear man-
ifolds. In Sec. 4.4 we discuss conditions under which each method could be used,
and later in Sec. 5 we use various combinations of these for inpainting 3D frame
fields.

4.1 Connections via Finite Differentiation

In smooth frame fields, the connection 1-forms cij can be directly obtained using

(2), i.e., df i · fk =
(∑3

j cijf j

)
· fk =

∑3
j cijδjk = cik. The differentials df i can

be computed by applying the exterior derivative for a function, i.e., for the k’th
component of f i, f ik : R3 → R, df ik =

∑3
l
∂f ik

∂xl
del,

df i · f j 〈v〉 = fTj df i 〈v〉 =

3∑
k

3∑
l

f jk
∂f ik
∂xl

del 〈v〉 = fTj Jiv, (5)



where Ji =
[
∂f ip

∂xq

]
∈ R3×3 is the Jacobian matrix of partial derivatives of f i.

Setting v = fk, we obtain

cijk = fTj Jifk. (6)

The Jacobian matrix Ji can be approximated to first order using, e.g., finite

differences on f i with a spacing of size δx:
∂f ij

∂xk
(x) ≈ f ij(x+ek)−f ij(x)

δx .

4.2 Connections via Energy Minimization

The connection forms cijk at a point x0 can also be obtained as the minimizer
of an extrapolation energy E contained within a neighborhood Ω:

c∗ijk(x0) = arg min
cijk
E(x0, Ω) + λ |cijk| , (7)

where λ is a regularization weight used to penalize high curvature. Denoting
f̃ i as the normalized approximation to f i at x0 + v using (4), we follow [8]
and choose E to minimize the angular error between f̃ i and f i: E(x0, Ω) =
1
|Ω|
∑

v∈Ω
∑3
i εi(x0 + v), with εi(x0 + v) = arccos

(
f i(x0 + v) · f̃ i(x0 + v)

)
.

4.3 Closed-Form Connections in Linear Space

A disadvantage of using the previous energy minimization approach is that cou-
pling between the connections cijk is not explicitly enforced, i.e., the requirement
that cij 〈v〉 =

∑
k cijkvk. Thus it may lead to non-integrable differential descrip-

tors. We now develop a novel way of computing connection forms that is based
on trigonometrical considerations in the first-order structure of 3D frame fields
and which enforces that coupling. This method also provides exact cijk measure-
ments in manifolds that have low second-order curvatures (d2f i → 0). Given a
local basis f i and data-driven neighboring bases f i (v ∈ Ω), the 1-forms cij 〈v〉
can be solved for using linear least-squares. We begin by expanding (4),

f i(v) = f i+cij 〈v〉f j+cik 〈v〉fk (8)

and analyze this expression geometrically using Fig. 2. Let f ji (v) denote the pro-

jection of f i(v) in the f i–f j plane, i.e., f ji (v) = f i(v)− (f i(v) · fk)fk, k ∈
(1, 2, 3) 6= i 6= j, and let θij(v) denote the signed angle between f i and f ji (v)
with positive values assigned to θij(v) rotating f i towards f j , obtained as

θij(v) = sgn
(
f ji (v) · f j

)
· arccos

(∣∣∣f i · f ji (v)/||f ji (v)||
∣∣∣) . (9)

Using trigonometry, we obtain

tan (θij(v)) =
cij 〈v〉
||f i||

= cij 〈v〉 since f i is a unit vector. (10)



Expanding the contraction cij 〈v〉:

cij 〈v〉 = (v · f1) cij1 + (v · f2) cij2 + (v · f3) cij3 (11)

= v1cij1 + v2cij2 + v3cij3 with vk ≡ v · fk (12)

⇒
[
c12 〈v〉 c13 〈v〉 c23 〈v〉

]
=
[
v1 v2 v3

] c121 c131 c231c122 c132 c232
c123 c133 c233

 (13)

and substituting in (10), we get a linear system in the 9 unknowns cijk:v1v2
v3

T c121 c131 c231c122 c132 c232
c123 c133 c233

 =

tan (θ12(v))
tan (θ13(v))
tan (θ23(v))

T . (14)

Aggregating n measurements vi ∈ Ω(x), we have

v11 v12 v13
...

vi1 vi2 vi3
...

vn1 vn2 vn3


︸ ︷︷ ︸

V ∈Rn×3

c121 c131 c231c122 c132 c232
c123 c133 c233


︸ ︷︷ ︸

C∈R3×3

=



tan (θ12(v1)) tan (θ13(v1)) tan (θ23(v1))
...

tan (θ12(vi)) tan (θ13(vi)) tan (θ23(vi))
...

tan (θ12(vn)) tan (θ13(vn)) tan (θ23(vn))


︸ ︷︷ ︸

C̃∈Rn×3

. (15)

We need n ≥ 3 otherwise the system will be undetermined. In general, vi ·vj 6= 0
such that V is not full row rank. A QR factorization or singular value decom-

position (SVD) pseudoinverse can be used to solve for C =
(
V TV

)−1
V T C̃.

}

}

Fig. 2: Differential of the frame axis f1(x) expressed in local coordinates.



4.4 Method Comparison

We compare the three previous methods by computing mean connection forms
along with fitting errors in a neighborhood containing 50K voxels in Fig. 3.
The frame field data is from a healthy rat heart, taken from [12], where f1 is
the fiber direction, f3 is approximately normal to the heart wall, and f2 =
f3 × f1. For the energy-minimizing approach we experimented with Nelder-
Mead (NM) and BOBYQA (BQ) [10] optimizers1 to solve the energy term in
(7). Here, all connection forms are estimated in an isotropic neighborhood of
size 33, seeds are obtained using (6), and λ = 0.0001. On an SSD quad-core
2.5GHz machine, fitting 1k voxels takes about 3ms using finite differentiation,
100ms using 200 Nelder-Mead iterations, 30ms using closed-form estimation, and
1s using BOBYQA optimization. Seeded NM computations converge faster than
unseeded, and reach comparable values at about 150 iterations. BOBYQA yields
a slightly lower error but is impractical due its large time complexity. Our closed-
form method yields a slightly larger global error than both optimizers beyond
100 iterations but has the advantage of being considerably faster, and, unlike
the other methods, offers the theoretical advantage of enforcing integrability of
the reconstructed frame field while being exact to first order.

iterations
0 50 100 150 200

ǫ
1
 (

d
e

g
re

e
s
)

1

1.5

2

2.5

3

3.5

Finite
ClosedForm
NM-not seeded
NM-seeded
BQ

m
e

a
n

 v
a

lu
e

 (
d

e
g

re
e

s
)

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

c 1
2
1

c 1
2
2

c 1
2
3

c 1
3
1

c 1
3
2

c 1
3
3

c 2
3
1

c 2
3
2

c 2
3
3 ε 1 ε 2 ε 3

Finite

ClosedForm

NM-not seeded

NM-seeded

BQ

Fig. 3: (Left) Mean f1 fitting error ε1 (radians), and (right) mean connection
forms and errors (radians) for different cijk estimation techniques in 50k voxels.

5 Frame Field Reconstruction

We now describe our frame field inpainting procedure. Here, Ω is a region where
frame field data is available, and A is a reconstruction domain. Starting with
A0 = A, each iteration propagates information on the boundary ∂An such that
∂An+1 = ∂An ⊕ Br is eroded with a ball element Br of radius r = 1 and cijk
is updated in Ω and ∂An+1 until An+1 = ∅. Frames f i are transported from
x ∈ ∂An in a direction v across ∂A using a neighbor accumulation of (4),

f̃ i
n+1
|x+v =

∑
x∈∂An

(fni |x +
∑
j 6=i

fnj |x
∑
k

cijk(x + v) · fnk |x), (16)

1 See [10] for these and other optimization strategies.



which is then normalized. cijk at x ∈ ∂An are obtained by combining the meth-
ods described in Sec. 4, using the following heuristics2, where κ = ||V −1||F ||V ||F
is the condition number of V in (15) and F is the Frobenius norm:

cijk(x) =

{
Closed-form of (15) : x has > N neighbors, and κ < κ0
Energy of (7) with λ = 0.0001 and seeding with (6) : else,

(17)

where N = 1
2 (2r + 1)3 and κ0 = 3 were determined empirically and offer

a good tradeoff between neighborhood connectivity and well-conditioning of
V , although these should be tailored to the application at hand. Unrealisti-
cally large cijk values can still arise in spite of the regularization. To see this,
make f1(x + v) parallel to f2(x) in a neighboring voxel. Using (4), we have
f̃1(v) ≈ f1 + c12 〈v〉f2 + c13 〈v〉f3, such that f1(v)\\f2 ⇒ c12 〈v〉 → ∞.
When necessary, we thus apply a hard threshold on E and cijk in (17). We set
cijk = 0 if E > π

4 , or if cijk exceeds bounds obtained as follows. Using dis-
crete forward differences, the frame differential df i = d(f i1e1 + f i2e2 + f i3e3)

is bounded since
∣∣∣ ∂f i

∂xk

∣∣∣ ≈ 1
2 |f ij(x + ek)− f ij(x)| ≤ 1 and ||f i|| = 1. Thus,

|cij〈v〉| = |fTj Jf i
(x1, x2, x3) v| ≤ fTj ·

[
||v||1 ||v||1 ||v||1

]T ≤ ||v||1 , and
cijk = min(cijk, ||v||1).

The diffusion process guided by (16) and (17) does not enforce orthogonality
of the resulting frame field. Since this is a first-order method we expect to see
some orthogonality drift as we get deeper into the region A. To see this, using (8)
we get f1(v)·f2(v) = (f1 + c12 〈v〉f2 + c13 〈v〉f3)·(f2 + c21 〈v〉f1 + c23 〈v〉f3)
and similarly for the other axis products. Since f i is by definition orthogonal at

0, we have f i ·f j = δij such that f i(v)·f j(v) =

{
1 + c2ij + c2ik : i = j
cikcjk : i 6= j

for k 6=

i, k 6= j. The extrapolated frame f i(v) will therefore never be exactly orthonor-
mal. To enforce orthonormality we therefore fix f1(v) and find its orthogonal
complement f⊥2 (v) using

f⊥2 (v) = f2 − (f1(v) · f2(v))f1(v) (18)

= (−c12 − c13c23)f1 + (1− c13c23c12)f2 + (c23 − c213c23)f3, (19)

where cij is taken as cij 〈v〉. We proceed similarly for f⊥3 (v).

6 Application to Cardiac Fiber Reconstruction

Given a partial volume Ω of fiber orientations f1 in a mask H of the heart, we
now explore the problem of reconstructing f1 everywhere in A = H −Ω.

6.1 Rule-Based Orientation Priors

Our inpainting procedure is guided by rule-based priors for fiber orientations
based on H and estimated heart wall normals: one relating to the circumferential
arrangement of myofibers and the other to their helix angle turning.

2 When Jacobian matrix computations are available using a combination of backward,
central, and forward differences, we seed (7) using (6) which improves convergence.



Estimating the circumferential component Using a smoothing kernel Gσ, the Eu-
clidean distance transforms Gσ∗D+ and Gσ∗D− to the outer and inner walls are
first computed. From the average D = 1

2 (D+−D−) local wall normal directions

are computed using f̂3 = ∇D. The apex ξ0 and an upward unit direction as û
are identified, and used to obtain heart centerline measurements ξt parametrized

over t steps along û, ξt =
∑

x w(x)Ξ(x)x∑
x w(x)Ξ(x) , where Ξ(x) = sgn (|(x− ξ0 − tû) · û|),

i.e., Ξ(x) is 1 in the current short axis plane and 0 elsewhere, and w(x) is 1 if
x is in the myocardium and is 0 otherwise. A smooth heart centerline is then
obtained as L(t) = Gσ ∗ ξt. We can now obtain a local long-axis direction fL
using fL = ∂L(t)

∂t and finally estimate the circumferential direction f c from the

cross product of fL and the local wall normal f̂3 as f c = fL × f3.

Estimating the helical component We use a rule-based helix angle variation prior
from α+ to α− from outer to inner wall, similarly to the work of [2]. A voxel
x is first parametrized over the local depth of the heart wall in the range [0, 1],
where 0 indicates that the voxel is lying on the outer wall and 1 on the inner

wall, using γ(x) = D+

D++D−
(x) =

(
1 +D−D

−1
+

)−1
(x) ∈ [0, 1]. Then, the local

helix angle at x is linearly interpolated using α(x) = (α+ − γα+ + γα−)(x).

Finally, the helix fiber direction f̂1 is obtained using a helical rotation of f c
about the local transmural axis f̂3 from the axis angle 〈f̂3, α〉 using Rodrigues’

formula, f̂1 = cosαf c + sinα(f̂3 × f c) + (1− cosα)(f̂3 · f c)f̂3.

Coupling Rule-based Prior and Diffusion Each diffusion pass n + 1 combines
current frame field estimates f̃ i, differentials df i and rule-based priors f̂ i using

f̃1
n+1

= φ1f̂1(x) + (1− φ1)
∑
y∈∂A

(
f̃1

n
+ c12 〈v〉 f̃2

n
+ c13 〈v〉 f̃3

n
)

f̃3
n+1

= φ3

(
f̂3 −

(
f̂3 · f̃1

n
)
f̃1

n
)

+ (1− φ3)f̃3
n
(x), f̃2

n+1
= f̃3

n+1
× f̃1

n+1
.

Here, v = x−y, ∂Ω(x) denotes the current (diffused) boundary around x from
which data is inpainted, and φ1 = 0.1 and φ3 = 0.7 are prior weights determined
empirically. The higher the confidence in the rule-based model, the larger these

coefficients should be. Each f̃ i
n+1

is normalized after each diffusion pass.

6.2 Experiments

Damaged diffusion volumes were simulated using Poisson disk stochastic sam-
pling, where each sample point p satisfies a minimum distance constraint to
others. At p, an ellipsoid with random semi-axis lengths (range = 1 to 10 vox-
els) is carved out. A prototypical synthetic in vivo mask was also obtained by
regularly slicing H along its long-axis. We applied these corruptions to a dMRI
volume of a healthy rat heart from [12]. We compared our frame inpainting
method against a standard vector interpolation scheme based on spatial dis-
tance weighting, against a pure vector diffusion scheme using (16) with cijk = 0,



and against a ruled-based model similar to [2] and described in Sec. 6.1. We
also tested robustness to noise by combining Poisson sampling (10% sparsity)
and random angular perturbations to f1, prior to reconstruction. Table 1 shows
the reconstruction of cardiac fibers in a short axis slab near the mid-section
from which a chunk of tissue was removed, and from a synthetic transmural
cardiac sample obtained using a rule-based helix angle variation (total turning
120 degrees). Our reconstruction method shows a significantly reduced angular
error compared to other methods. Table 2 shows Poisson and slicing error maps
using our method. Error increases with the amount of damage, and is higher
near boundaries. Fig. 4 shows that our frame inpainting outperforms compared
methods in minimizing the reconstruction error in all corruption scenarios, and
also shows comparable robustness to noise.
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Table 1: Reconstructed volumes and errors using our frame inpainting for (left) a
damaged portion of a rat short axis slab, and (right) a sparse (93% damage) rule-
based synthetic field (without rule-based priors). In comparison, vector interpo-
lation yields (20.6± 10.7, 4.5± 5.3), vector diffusion yields (18.6± 9.9, 3.7± 3.5),
and rule-based yields (14.66 ± 4.8,−) degrees respectively for ε1(a,b). Color-
coding is based on the helix angle, from −90 (blue) to +90 (red) degrees.

7 Conclusion

We proposed a cardiac fiber inpainting method based on the theory of mov-
ing frames, which makes use of a novel closed-form computation for connection
forms in 3D frame fields, and incorporates rule-based cardiac priors. We demon-
strated its use by recovering fiber orientations in highly sparse and damaged
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Table 2: (Top) Mean angular reconstruction error ε1 between reconstructed fibers
and the ground truth (top) for increasingly Poisson-sparse volumes (s is the per-
centage of available data) using our frame inpainting methods. 100 realizations
were performed, one of which is shown. (Bottom) Reconstruction for increasingly
interleaved volumes (s is the number of slices available), in a long-axis cutout.
Available data slices are marked with blue arrows.
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Fig. 4: Mean volume error ε1 of reconstruction (degrees) for vector interpolation,
vector diffusion, our frame inpainting, and rule-based methods, for various ex-
periment settings: Poisson sampling, axial interleaving, and angular noise. The
error is measured as the mean angular difference between reconstructed fibers
and the ground truth. Interleaving values increases from 2 to 7 slices; Poisson
sampling sparsity ranges from 10% to 50%; angular perturbations range from
±2◦ to ±11◦, added to a Poisson-sampled volumes (sampling=10%). Poisson
sampling and angular noise experiments are averaged out of 100 realizations.



volumes, and showed that it achieves low error compared to other alternatives,
and is robust to noise. We anticipate that the application of these tools could
aid computer-assisted guidance and repair of damaged heart walls, and the su-
perresolution of fiber volumes. Future work includes validation with real in vivo
beating hearts, and extending our work with higher order and temporal pa-
rameterizations of connection forms along with the development of atlas-based
cardiac differential priors.
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