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Abstract

Bounding contours of physical objects are often frag-
mented by other occluding objects. Long-distance percep-
tual grouping seeks to join fragments belonging to the same
object. Approaches to grouping based on invariants assume
objects are in restricted classes, while those based on min-
imal energy continuations assume a shape for the missing
contours and require this shape to drive the grouping pro-
cess. We propose the more general principle that those frag-
ments should be grouped whose fragmentation could have
arisen from a generic occluder. The gap skeleton is intro-
duced as a representation of this virtual occluder, and an al-
gorithm for computing it is given.

1 Introduction

Mother Nature can appear vindictive, or at least obstruction-
ist. Such complaints are most frequent at the intermediate
levels of computer vision, where, for example, object con-
tours are interrupted by occlusion (Figure 1). If only objects
were not obscured, we would not have to invent procedures
for linking across the missing boundaries. We claim that this
property of Nature is not obstructionist, but rather provides
the key to long-distance perceptual grouping. The insight
motivating this claim is that long-distance perceptual group-
ing is a kind of inverse to physical occlusion:

Principle of Perceptual Occlusion (i) Forward: Suppose
we are given a collection of (opaque) objects distributed in
space. Occlusion will arise generically under projection (ei-
ther perspective or orthogonal) onto images. The result is a
composite bounding contour which, by transversality, will
contain discontinuities at the occlusion points. The result
is that only fragments of the bounding contours of occluded
objects will be present in the image.

(ii) Inverse: Suppose we are given a collection of contour
fragments. Long-distance perceptual grouping is the associ-
ation of fragments that could belong rogether in the follow-
ing sense: if there were a generic occluder, then the given
fragment arrangement would ensue.
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Figure 1: (LEFT) The bounding contour of a camel is broken
by a foreground palm tree. (CENTER) Curve fragments re-
maining after depth separation using T-junctions. (RIGHT)
Standard approaches do not link the fragments correctly.
“Optimal” continuations «, 3, and v, joining end point a to
endsb, c, and d, respectively, all have similar energies based
on length and total squared curvature.

A classical consequence of the forward principle (1) is
the formation of “T”-junctions. In the “blocks world”,
the existence of aligned T-junctions is sufficient to per-
form the inverse inference, because all projected sides are
straight lines [8]. Connecting T-junctions with straight
lines has emphasized a boundary-completion view of group-
ing, and modern approaches generalize polyhedral objects
to those with sides obeying minimal energy or convex-
ity principles [16, 20, 11]. Natural objects may not con-
form to such principles, and counter-examples abound (Fig-
ure 1(RIGHT)). Furthermore, whether these “optimal” con-
tinuations are necessary for recognition is unclear. The other
currently popular approach is to use algebraic or differential
invariants, but these only apply to extremely limited classes
of shapes, such as surfaces of revolution [21].

Our approach amounts to implicitly hypothesizing a vir-
tual occluder, with both an outline and an interiorregion. We
wish the process to be generic, so we do not make assump-
tions limited to particular shapes or particular energy forms.
Rather, our process is based on a classical aspect of shape
description—Blum’s skeleton [3]—and on modern methods
for calculating it. Our contributionis to unify a subset of the
Blum skeleton with end points via the above occlusion prin-
ciple. This defines the gap skeleton, which in turn provides
a description of an implicit occluder, and explicitly indicates
which fragments to group.
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Figure 2: Grouping using the gap skeleton. (TOP LEFT)
Two objects with their skeletons. (TOP RIGHT) The two ob-
jects in an occlusion relationship; observe the formation of T-
junctions. (BOTTOM RIGHT) The bounding contours are sep-
arated by a partial ordering in depth induced by T-junctions:
the fragments of the rectangle are “farther” than the bound-
ing contour of the occluder. (BOTTOM LEFT) The skeletons of
the fragments are shown as thin lines, while the gap skeleton
is the thick vertical line. Note the similarity between the gap
skeleton and the skeleton of the occluder; consider the gap
skeleton as representing a “virtual occluder”.

2 Overview of approach

The minimal universe in which contour fragmentation arises
from occlusion is that of contrasting paper cutouts arranged
with a partial ordering in depth. This 2.1-D world [16] gives
rise to T-junctions when objects occlude, and we begin with
a decomposition at T-junctions as shown for the pair of ob-
jects in Figure 2. Thus fragments explicitly arise, and our
main goal is to recover a linking of such fragment endpoints.
We seek the groups that most naturally account for the data
in the sense of the above principle of perceptual occlusion.
As this simple example illustrates, the linking is dictated by
the gap skeleton (shown in bold, bottom left, Figure 2). In
particular, two curve endpoints are grouped only if they have
a gap skeleton. This also provides a rough (skeletal) approx-
imation to an object that, if it were present, would have bro-
ken the rectangle into the fragments shown. The main con-
tent of the paper is the introduction of the gap skeleton and
an algorithm for computing it.

3 Skeleton and gap skeleton

Recall the definition of the skeleton [3] of a closed set A C
R? in terms of MAXIMAL OPEN DISCS, where an open disc
D is maximal if and only if there exists no other open disc
contained in the complement of A that properly contains D:

Definition 1 (Blum) The SKELETON S of A is the set of
centers of maximal open discs contained in the complement
of A.

An equivalent definition of the skeleton introduces the
notion of the projection of a point to the nearest point(s) in
A. The distance p(z) from the point z € R? to the set
A is the minimum distance from z to any point of A4, or
p(z) £ min{|jz — p|| : p € A}. The PROJECTION 7(z)
is the set of points in A closest to z, or 7(z) = {p € A :
llz — p|| = p(z)}. The ray beginning at point p and passing
through ¢ and the line segment joining points p and ¢ will be
denoted ¢ and 57, respectively. Using these terms, Calabi
and Hartnett [5] then defined the skeleton S of A as the set
of points ¢ ¢ A satisfying:

Vz € 7g,
vz' € 73 \ 77,

p(q) = llg = z|| + p(z)
p(z’) <z’ = qll + p(q)

where p € 7(q).

The RADIUS FUNCTION r is the restriction 7 £ p|g of p
to the skeleton S and so 7(g) is the the radius of the maxi-
mal disc at g. The projection 7(g) to A is the set of points
at which the maximal disc at ¢ “touches” A. In fact, the in-
tersection of the closure of the maximal disc at ¢ and A is
precisely 7(g). Except at a finite number of points of S, the
maximal disc will touch A at two points.

To formalize the notion of the set of curve fragments to
be grouped, consider A as the disjoint union of traces of a fi-
nite number of simple, piecewise smooth curves, either open
or closed. We introduce the gap skeleton through the more
general notion of pregap skeleton.

Definition 2 The PREGAP SKELETON with respect to end-
poinis a and b is the set pre(a,b) = {q¢ € S : 7(q) =
{a,b}}.

Note that pre(a,b) may be empty (see Figure 3) and
pre(b, a) = pre(a,b).

Proposition 1 pre(a, b) is contained in the perpendicular
bisector of the line segment joining a and b.

The proof is by geometric construction. Since the circle of
radius r(g) at any ¢ € pre(a, b) intersects A at a and b, ¢ is
the apex of an isosceles triangle whose base is the linc seg-
ment joining a and b. The result follows.

For proofs of the following, see [2].

Proposition 2 pre(a, b) is connected.

Let 8, be the signed angle from the tangent extending out
of endpoint a fo the line segment ab. Define 6, similarly.

Proposition 3 If pre(a, b) is nonempty and 19, + 6| is not
equal to 180°, then pre(a, b) has nonzero length.
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Figure 3: (LEFT) The definition of pregap illustrated: only
endpoints a and b are a distance r(q) away from the skele-
tal point ¢, so w(q) = {a,b}. All such skeletal points form
pre{a, b), and extend along a ray on the perpendicular bisec-
tor of the endpoints. Note here that the gap skeleton with
respect to a and b is empty because the midpoint is not in
pre(a, b). (RIGHT) Here there is nonempty gap skeleton with
respect to a and b, and the radius function r obtains a local
minimum at m, the midpoint between a and b.

Coupled with these properties, we see that “almost al-
ways” a nonempty pregap skeleton is a “chunk” of the per-
pendicular bisector between its related endpoints.

Definition 3 The GAP SKELETON with respect to a and b is
the pregap skeleton with respect to a and b provided that r
achieves a local minimum in pre(a, b):

pre(a, b),
ap(a,b) &
gap(a,b) {z, otherwise.

if r has a local min. in pre(a, b);

Conjecture 1 The - midpoint between a and b lies in
pre(a, b) if and only if r has a local minimum in pre(a, b).

Intuitively, gap skeleton arises when maximal discs touch
a given pair of endpoints and become smallest “between”
those endpoints. Thus there will be nonempty gap skeleton
with respect to a pair of endpoints when no curve enters into
the disc whose diameter is the line segment joining the end-
points. Note that, for a given pair of endpoints, nonempty
pregap skeleton does not imply nonempty gap skeleton, as
shown in Figure 3. In addition, if the pregap skeleton is
empty with respect to all pairs of endpoints of a given set
of curves, then so is the related gap skeleton.

For the task of grouping, we use the gap skeleton with
respect to two endpoints as a cue for linking. Interestingly,
others have used the related notion of Voronoi tesselation
for grouping [1, 9], but in these approaches no special sta-
tus is given to endpoints. Endpoints and the discontinuities
in boundary orientation that give rise to them are critical for
unit formation in human psychophysics [12].

4 Skeletons and shocks

In Blum’s grassfire formulation, the skeleton is obtained as
quench points of a fire front moving parallel to the shape’s

First-Order Shocks

Second-Order Shock

Figure 4: Some shock types which occur during curve evolu-
tion with 8 = constant. At two shock points the related max-
imal disc is shown. (LEFT) A FIRST-ORDER SHOCK is a dis-
continuity in orientation of the boundary of a shape. (RIGHT)
A SECOND-ORDER SHOCK is formed when two distinct non-
neighbouring boundary points join, but none of their immedi-
ate neighbours collapse together.

boundary. Here there is an explicit ordering on the locus
of skeletal points in time: they appear in the direction of
grassfire flow, in the direction of increasing object width.
An evolutionary approach to shape description supports and
complements this view by introducing a partial differential
equation [4, 13]: & = BN, with the initial condition
C(s,0) = Co(s), where C(-,?) is the closed curve describ-
ing the boundary of the shape after a deformation by time
t, N is the outward normal, s is the arc-length parameter,
and § is an arbitrary function of the local geometry of C(-, ).
The special case where (3 is a constant is precisely the Blum
grassfire.

Curves evolving according to the above equation de-
velop shocks [15], or entropy-satisfying singularities, which
are points where some information is lost during deforma-
tion. The shocks are classified into four types [13], two
of which directly relate to the gap skeleton (see Figure 4).
Numerical algorithms have recently been developed for de-
tecting, classifying, and grouping shocks into higher level
data structures [19]. We use this algorithm to detect gap
skeletons because: (i) the approach provides shock locations
with sub-pixel resolution; in principle the speed of the prop-
agating front can be made arbitrarily small, (ii) the algo-
rithm provides accurate estimates of the radius function as
well as shock velocities, both of which are are critical for
the computation of the projection 7(g) of a shock point g,
and (iii) the detected shocks are already grouped into shock
branches, along the direction of shock flow.

As we show, first- and second-order shocks are extremely
important. First, however, we note that the curve evolution
approach is designed for a collection of closed curves in the
plane having a topologically well-defined inside (the com-
putation being carried out on an associated embedding sur-
face [17]). Open curves, however, are slightly more sub-
tle since they arise from edges for which the orientation is
known modulo 180 degrees: the polarity of the orientation
is undefined (see Figures 1 and 2). Thus both polarities must
be considered, which we effect by dilating the curve an e-



‘Binth’ of Gap Skeleton

Figure 5: (LEFT) The bold figure is the dilation of the broken
bounding contour of an hourglass. A front during curve evo-
lution is overlaid, with first-order shock points forming in high
curvature regions. Arrows denote the direction and speed
of first-order shocks. End points propagate as semi-circular
arcs. (CENTER) Gap skeleton is “born” at both at the top and
bottom: two first-order shock branches emerge from a col-
lision of fronts from endpoints. (RIGHT) The front continues
to propagate outwards, with first-order shocks tracing out the
skeleton.

amount. The boundary of the dilation is a closed curve with
interior, and evolution can now proceed as usual (see Fig-
ure 5).! These ideas can be extended to objects with holes
by observing how the optical projection of the tangent to
the surface defines an inside and outside to a closed curve:
this generalized “inside” may be the space outside the closed
curve.

We are now in a position to see the relationship between
the shocks formed during curve evolution and the defini-
tion of gap skeleton. The locus of points through which
the shocks migrate corresponds to a Blum skeleton. In
Figure 5 [7], note how the endpoints propagate outwards
as semicircular arcs (Huygens’ principle). At the top of
the figure, the collision of the two arcs midway between
the endpoints causes a second-order shock, which instanta-
neously becomes two high-velocity first-order shocks head-
ing in opposite directions. Since the time of shock formation
1s equivalent to the radius of the maximal disc at the shock
(Figure 4), the gap skeleton of a pair of endpoints is the set
of shocks of the corresponding semicircular arcs, provided
that this set includes a second-order shock. In summary, we
have:

Proposition 4 A second-order shock q satisfies m(q) =
{a, b} ifand only ifgap(a, b) # @.

Having related shocks to the gap skeleton, we now pro-
ceed to demonstrate the detection of gap skeleton for real ex-
amples.

' This informal argument is supported by the topological observation
that a curve is the boundary of a set with empty interior; the e-dilation re-
alizes this connection in discrete domains.

Figure 6: The geometry of the computation of the projection
n(q) = {p1, p-} of skeletal point g. The unit vector u points in
the direction of the first-order shock.

5 Gap skeleton computations

To compute the gap skeleton, we first compute the projection
7(g) for all skeletal points ¢, then detect the pregap skeleton
for pairs of endpoints, and finally search for gap skeleton, if
any, within the pregap skeleton.

To compute the projection of ¢, we need not only the
skeleton, but also local derivative properties. Specifically,
the formulas for the two points, p; and p,, in the projection
n(¢) are as follows:

pi,pr = ¢ — r(g)Rot(F8/2)u,

where § = arcsin(1/s), s is the speed of the first-order
shock, and u is the unit vector in the direction of the shock,
and Rot(¢) is the two-dimensional rotation matrix through
angle ¢ (Figure 6) [18]. Thus the we require the position,
radius, direction, and speed of a skeletal point to compute
its projection. Accurate estimates of all these quantities are
provided by the algorithm for shock detection [19].

Our method for detecting pregap skeletal points exploits
the uncertainty in the detection of endpoints of a curve.
Given an end point uncertainty ¢, the pregap with respect to
endpoints @ and b is the set of skeletal points whose projec-
tion falls within an ¢-ball around these endpoints. The con-
nectedness of the one-shock branches from the shock detec-
tion and the manner in which one-shock branches flow out
of a two-shock branch greatly simplify the computation of
the gap skeleton. Essentially we need only search for two
pregap one-shock branches travelling in opposite directions,
where each branch is induced by the same pair of endpoints.

We now illustrate the computation of gap skeleton with
a variety of examples. For numerical as well as theoretical
reasons, the curve flow & = AN, with f a constant, is for-
mulated as the level set evolution of an evolving embedding
surface [17]. In our simulations, the initial embedding sur-
face is the signed distance function (slightly blurred to com-
bat discretization) of the set of dilated curve fragments. Fig-
ure 7 depicts the process of gap detection. Note that as pre-
dicted the gap skeleton lies on the perpendicular bisector of
the line joining two endpoints.

Figure 8 depicts our view of a complete system whereby
grouped curves can be obtained from a real image. The
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Figure 7: The process of gap detection. (LEFT) The ini-
tial level set is displayed in grey and the thin lines are first-
order shock branches obtained from its outward evolution.
Second-order shocks are not shown, giving a broken ap-
pearance to the skeleton. (MIDDLE) The e-balls (circles)
around the curve fragment endpoints (manually positioned)
and the projection =(q) (dots) of each skeletal point ¢ are
overlaid. (RIGHT) The detected gap skeleton (thickened
lines) is shown connected due to Proposition 2.

curve fragments are dilated “curve-like” tangents [6] ob-
tained from the discrete tangent map after logical/linear
edge detection followed by relaxation labelling [10]. Fig-
ure 9 illustrates how the gap skeleton explains a visual il-
lusion [14, p. 168, adapted from Kohler]. Figure 10 illus-
trates the computation of gap skeleton on curve fragments
of a Kanizsa triangle. Finally, in Figure 11, curve fragments
from the scene in Figure 1 are now appropriately grouped
via the detected gap skeleton.

6 Conclusion

In this paper we have formally defined the gap skeleton and
related it to the formation of shocks during curve evolution.
The gap skeleton detected on a variety of examples groups
fragments appropriately, and moreover has a physical inter-
pretation as describing a virtual occluder. In Figure 12 we
suggest three views of this virtual occluder. The *“least com-
mitment” virtual occluder is a disc centred where the radius
function has alocal minimum in the gap skeleton. When two
gap skeletons align we gain a stronger impression of an oc-
cluder, and so we extend these discs along the gap skeleton,
in a minimum area sense. Finally, from the perspective of
a maximal possible region of the occluder, the third view is
the other extreme.
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