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Abstract

We propose a geometric smoothing method based on
local curvature in shapes and tmages which is governed
by the geometric heat equation and is a special case of
the reaction-diffusion framework proposed by [28]. For
shapes, the approach is analogous to the classical heat
equation smoothing, but with a renormalization by arc-
length at each infinitesimal step. For tmages, the smooth-
ing 1s similar to anisotropic diffusion in that, since the
component of diffusion in the direction of the brightness
gradient is nil, edge location and sharpness are left in-
tact. We present several properties of curvature defor-
mation smoothing of shape: it preserves inclusion order,
annihilates extrema and inflection points without creating
new ones, decreases total curvature, satisfies the semi-
group property allowing for local iterative computations,
etc. Curvature deformation smoothing of an image is
based on viewing it as a collection of iso-intensity level
sets, each of which is smoothed by curvature and then
reassembled. This is shown to be mathemalically sound
and applicable to medical, aerial, and range images.

1 Introduction

Shapes and images are often perceived as a hierarchi-
cal structure of elements. It has been argued that recog-
nition of objects should rely on a representation that cap-
tures this structure in a hierarchy of “scale”. The basic
idea is to introduce a family of shapes, or images, which
progressively become simpler. Witkin proposed Gaussian
convolution to remove zero-crossings features [61]. Koen-
derink showed that among the linear operators the heat
(diffusion) equation and its associated Gaussian kernel is
the only sensible way of smoothing images, by demand-
ing causality, homogeneity, and isotropy 35, 36, 7). Yuille
and Poggio extended this result to two dimensions [52].
See [38] for a smoothing kernel for discrete signals that
are modified Bessel functions.

Scale-spaces have also been constructed for shapes.
Asada and Brady [6] smooth the curvature function to
obtain a hierarchy of features. Mokhtarian and Mack-
worth [42] smooth the coordinates by a Gaussian fil-
ter. Horn and Weldon [24] point to the shrinkage prob-
lems of this method and propose instead to filter the
extended circular iinage of the curve with a Gaussian fil-
ter. Lowe corrects for the shrinkage problem by inflating
the curve proportional to the curvature of the smoothed
curve, which indicates how much shrinkage has occurred.
Oliensis [44] suggests that this is the case only for small
curvature and proposes instead to maintain the low fre-
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quencies exactly, while preserving the local nature of the
process. Koenderink and van Doorn embed a shape in a
morphogenetic sequence based on the Gaussian [36].
Recently, a number of nonlinear diffusion techniques
have been proposed to deal with the shortcomings of
the linear smoothing techniques. These are summarized
in Section 6. Our proposal for geometric smoothing of
shapes and images is also nonlinear and is related to the
idea of diffusion and the associated Gaussian kernel. To
smooth shapes, we deform the boundary along the nor-
mal proportional to its curvature. This leads to the geo-
metric heat equation which has many desirable smooth-
ing properties. To smooth Images, each iso-intensity level
set 1s considered as a shape, a view afforded by proper-
ties of the smoothing process. The curvature deforma-
tion smoothing method is related to the linear heat equa-
tion smoothing and to anisotropic diffusion. The method
has been implemented and applied to several shapes and
range and intensity images. In fact, the extension of
curvature deformation smoothing of shapes to curvature
deformation smoothing of images can be generalized to
a combination of constant and curvature deformation,
leading to an entropy scale space [29] for images. Details
of the full space and its mathematical justit%cation will
follow in a future paper [48].
The paper is organized as follows. In Section 2
the shape from deformation framework as originally pre-
sented in [26, 28] and later developed in [31, 29, 30, 34,
33, 32, 5] is briefly reviewed. The focus of this paper
Is a special case of the reaction-diffusion space, namely,
when the shape is deformed only by curvature deforma-
tion, giving rise to the geometric heat equation. In Sec-
tion 3 a number of desirable properties of this nonlinear
smoothing process are presented. In Section 4 the idea of
smoothing shapes by curvature deformation is extended
to the smoothing of images. In Section 5 the connection
between the geometric heat equation (curvature deforma-
tion smoothing) and the classical heat equation (Gaus-
sian smoothing) is shown. Section 6 shows the connec-
tion to anisotropic diffusion. F inally, in Section 7 the
process is illustrated o a number of shapes and images,
and comparisons are made with some other techniques.

2 The Shape from Deformation Frame-

work
In this section we review a framework for representing
two dimensional shape designed to capture its essence
in relation to “ncarby’ shapes. The geometric curva-
ture deformation is a special case of this framework and



provides a smoothing process for shape. We will then
extend the idea to smoothing intensity and range images
by considering their iso-intensity level sets as shapes.

Robust recognition under variations in the visual
scene, such as changes in viewpoint and viewing di-
rection, object movement, growth, etc. , demands that
shapes be represented not statically as a set of unre-
lated primitives, but dynamically in a rich sequence of
shapes [36], studied in the context of deformations of it.
Observing that slight changes in the shape boundary of-
ten causes slight changes in the shape itself, we proceed
to deform the shape boundary in an arbitrarily general
fashion, which is shown to be captured by simpler defor-
mations [26]:
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where C is the boundary vector of coordinates, N is the
outward normal, s is the path parameter, t is the time
duration (magnitude) of the deformation, and 3 is arbi-
trary. This form of deformation embeds certain known
techniques in image processing, e.g., § = +1 gives the
prairie fire model of Blum [9]. As another example,
when § = B(f), where 8 is the local orientation of the
curve tangent, all algebraic set-theoretic convex morpho-
logical operations are embedded, but now in a geomet-
ric, differential setting [5]. On the other hand, deforma-
tions can depend on the local geometry of the boundary,
B = B(k) [26, 28], and a special representative case is
B = Bo — Bix; see [26, 31, 27, 29, 30, 33]:
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The space of all possible deformations in this form is
spauned by two parameters: the ratio of the coeffi-
cients Fo/B1 and time, ¢, constituting the two axes of
the reaction-diffusion space. Underlying the represen-
tation of shape in this space are a set of shocks [37],
or entropy-satisfying singularities, which develop dur-
ing the evolution. The set of shocks which form along
the reaction axis, #; = 0, is indeed the skeleton pro-
posed by Blum [9]. Shocks also form along other axes
of the reaction-diffusion space and are the key to repre-
senting shape. To continue the evolution beyond these
singularities, the classical notions of normal, curvature,
etc. are considered in the generalized or weak sense
by using the concepts of entropy and viscosity solu-
tions [39, 12, 25, 11]. For theoretical as well as numerical
reasons the original curve flow is embedded in the level
set evolution of an evolving surface [45, 8, 33]. Let the
surface be denoted by z = ¢(z,y,t) with the correspon-
dence that the evolving shape is represented at all times
by its zero level set ¢(z,y,t) = 0. It can be shown that
the zero level set of surfaces evolving according to
¢: + B(x)[Ve| =0 3)
C(Err)es[pi)nd to the viscosity solutions of (1) with 8 =
B(x) [8].
The focus of this paper is to study curvature defor-
mation, i.e., when By = 0. Since B is captured by ¢, let

B =1

,B(s,t)l\_f; C(S,O) =CU(5)1

& — _kN; C(s,0) = Co(s).

The corresponding surface evolution is

4)

_— (¢z: ¢:_2¢sy¢c¢y+¢vy¢: )

ot (97+3)/°

Vé|=0. (5)
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We now consider curvature deformation in the context
of smoothing shapes and images. For shapes, we will con-
struct the surface ¢ from the distance transform of the
shape [33]. For intensity or range images it is mathemat-
ically valid to directly obtain the surface ¢ from the grey
level information, as we shall see in Section 4. Each level
set is then “smoothed” by curvature deformation. We
now discuss properties of this process in addition to its
connection to several standard smoothing techniques.

3 Nonlinear Smoothing by Curvature

Deformation

Curvature deformation smoothing exhibits a number
of interesting properties:

Order Preserving Smoothing: Curvature deforma-
tion evolution (4) is known as the “curve shortening flow”
in differential geometry. In the process of curvature de-
formation disjoint closed curves remain disjoint by an
application of the maximum principle for parabolic dif-
ferential equations [47, 50]. As a result, two shapes, one
inside another, will never cross in the process of smooth-
ing; see Section 4 for a more detailed analysis.

Smooth Smoothing: A shape lasts only a finite time
under curvature deformation smoothing, due to the order
preserving property, since any closed curve can be consid-
ered inside some large circle with a finite evolution time
(a circle lasts only for a finite time). This finite evolution
time under curvature deformation naturally raises three
interesting questions: First, must every curve collapse
to a point, or can it collapse to a set of points, or seg-
ments? Second, if a curve must collapse to a point, will
the limit point be round? Third, will the curve develop
self-intersections or become singular in the process?

Gage and Hamilton [18, 19, 21] answered these ques-
tions for a convex curve and showed that it must evolve
to a round point without developing self-intersections or
singularities. Grayson [22] generalized this result to show
that eny embedded curve will become convex without de-
veloping self-intersections or singularities. To appreciate
the significance of this theorem examine the spiral shape
in Figure 1 which must evolve to a circular point. We
now state the theorem as derived in Grayson [22].

Theorem 1 Let C(5,0) : ST — R? be a smooth embed-
ded curve in the plane. Then C: S x [0,T) — R? ezists
and satisfies %? = —&N, where C(s,t) is smooth for all
t, 1t converges to a point ast — T, and its limiting shape
ast — T is a round circle, with convergence in the C*
norm.

Decreasing Total Curvature: A measure of com-
plexity for a shape is the total curvature of its bound-

ary. Total curvature & is defined as & = foh |klgds =

foL || d5, where g is the metric (speed), § is the arc-
length parameter, and L is the length of the boundary.
The following theorem shows that all non-circular embed-
ded curves evolving by curvature deformation (4) have
strictly decreasing total curvature. A circle is the only
curve for which total curvature remains constant, & = 2.

Theorem 2 Let a family of curves satisfy (j) for which
B > 0. Then, tf k3(5,t) # 0 for all 5 and all t > 0,
k(t) < &(0).



Figure 1: The high curvature end points will move in much
faster than the low curvature points in such a way that self-
intersections are avoided, keeping the boundaries apart in the
process of evolving to a round point!

Proof. The proof is a special case of a general theorem
on evolution governed by equation (1) with g = B(k),
which states that the result for general deformations
holds when £, < 0 cg31}l. For curvature deformation,
B(k(s,1)) = —p1k, and the condition reduces to 8; > 0.
Note that for 8; < 0 the process is unstable in analogy
to the inverse heat equation; see also Section 5.

Annihilation of Extrema and Inflection Points:
Another issue of concern is whether new curvature ex-
trema or inflection points can be created in the process
of smoothing. The following theorem shows that no new
curvature extrema or inflection points can be created.
Since the total curvature is strictly decreasing for non-
circular shapes, we conclude that existing extrema and
zeros of curvature must also disappear in time.

Theorem 3 Let a family of curves satisfy (4) for which

i > 0. Then, the number of curvature ertrema (ver-
tices) is a non-increasing function of time. Similarly, the
number of zeros of curvature is a non-increasing function
of time.

Proof. This theorem [34] is based on an application of
the following theorem which itself is based on an appli-
cation of the maximum principle to the following linear
parabolic operator (2, 3, 4, 41]:

Uy = a(z, t)uze + b(x, t)u, + c(z, t)u, (6)

where the coefficients are smooth functions defined on the
rectangle Ry := [zq, 2] x [0,7], and a(z,t) is positive.
Suppose that u is a classical solution of (6) with u(z;,t) #
0fori=0,1,and 0 <t < 7. Let 2(t) be the number
of zeros of z — u(z,t) counted with multiplicity. Then
in [2, 41], it is proven that z() < oo, and 2(t) is a non-
increasing function of t. Moreover, at any time ¢ when
z — u(z,t) has a zero of order k > 1, z(z) drops by at
least k — 1.

The evolution of curvature when the curve evolves
by (4) follows 25 = «;;+x3 [31], which by letting v = ;
is transformed to

v = vz; + 4. )
Using the above theorem on the zeros of linear time-
varying parabolic PDEs, we see that the number of ver-
tices (curvature extrema) is non-increasing, as long as
v # 0 for one point, namely, if the curve is not a circle.
Circles, however, evolve to smaller circles without creat-
ing new curvature extrema. A similar argument holds
for flexes (curvature zero crossings); see [34] for details.
Therefore,
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Corollary 1 The number of vertices and flezes for a
non-circular curve is strictly decreasing; circles have no
flexes or vertices and will evolve none.

Iterative Smoothing: Ideally a smoothing process
should be implementable locally and iteratively, with the
potential of parallelization. A property that would make
this possible is the semigroup property. For example,
Gaussian smoothing satisfies the semigroup property:

[f(8) * K(s,t1)] * K(s,2) = F(s) * K(s,t1 + t2).  (8)
This implies that to smooth by an amount 2¢ one can
smooth by ¢ in two sequential steps. There is great com-
putational savings in doing so since the effective width
of a Gaussian is much smaller for smaller steps. Sim-
ilarly, deformation by curvature also satisfies the semi-
group property [16].

Theorem 4 Let Tgt) be the operator that evolves an ini-
tial curve Cy to C;, by curvature, i.e., C; = T(t)Co. Then
T(t+ s) = T()T(s).

Other Properties: Curvature deformation is the
fastest way to shrink the length of a curve [20]. The
speed of shrinkage of length, among all curves of length
L, is slowest for the circle. However, the enclosed area
decreases at a constant rate which equals the total cur-
vature of the curve. This shrinkage effect occurs in
other smoothing operators and various solutions have
been proposed; see for example [40] for a way to deal
with Gaussian smoothing shrinkage effects. Alterna-
tively, one can use results suggested by Gage to over-
come this effect: he defined an “area-preserving” flow
by subtracting the comnponent of the length gradient,

L =-[(c, nﬁ) ds, which lies parallel to the area gra-

—

dient, A; = — [(C;, N)ds, where L is the length and A
is the area of the curve [20]. This leads to the evolution

€= (e - 2T, (9)

namely, the gradient flew of the length functional among
curves of a fixed area. All convex curves evolving by
equation (9) remain convex and converge to round points
in the limit. Although this is not yet shown for simple
curves, simple curves remain simple with their isoperi-
metric ratio decreasing, with circles as the only station-
ary curves. A second approach to keep the area fixed is
also proposed by Gage {20]: magnify the plane by a ho-
mothety simultaneously with the evolution, leading to,

Co= (k= TN +of, (10)

where p is the support function of C; the tangential com-
ponent does not change the shape as explained earlier.

In our framework, flows that preserve area, length,
and other similar functionals are simply special cases in
the reaction-diffusion space, as represented by (2). For
example, the area preserving flow (]0}\;5 a special vertical
axis of the reaction-diffusion space. ote, however, that
the length and area measures are global and are seriously
affected by changes in the scene, ¢.g., partial occlusion.
The fact that such global measures can become variable
under visual transformations motivates the use of the full
reaction-diffusion space. In this context, the evolution of
a partially occluded shape by some ratio Bo/ B will match
the evolution of the full shape with a different ratio.



Figure 2: The extension from shapes to images of smoothing
by curvature deformation. An intensity image is represented
as a surface and each level set is smoothed by curvature defor-
mation. The smoothed image is obtained by superimposing
the smoothed level sets. For illustration, we superimpose level
set 75 in white on an image (bottom left), and a curvature
deformation smoothed version of it (bottom right).

4 Smoothing Images Via Level Set De-

formation

To extend curvature deformation to the smoothing
of images, recall that curve deformation is implemented
as the evolution of a surface which embeds the evolv-
ing curve as its zero level set (5). Since any continuous
surface can be used, this additional degree of freedom
enables grey level intensity or range information to be
represented by ¢. Our view of smoothing images, then,
is to smooth each iso-intensity level set by curvature de-
formation, in analogy to binary shapes, and superimpose
the smoothed level sets, Figure 2. However, first a num-
ber of essential properties must be established. The first
and second theorems allow us to consider images where
each iso-intensity level set may have singularities, e.g.,
corners, disconnected pieces, etc. , by viewing the surface
evolution in a “weak” sense [39, 13, 23, 37]. The third
theorem shows that the smoothing of each iso-intensity
contour is independent of the image itself, Figure 6. The
fourth theorem shows that the evolution process is order
preserving and does not allow iso-intensity level sets to
cross. In fact, although iso-intensity level sets may ini-
tially share segments in common due to discretization,
the fifth theorem shows that these will pull apart after
smoothing. The last theorem ensures that iso-intensity
level sets never move closer to one another than they
were initially. These recent mathematical results provide
essential theoretical justification for the extension of cur-
vature deformation smoothing to images.

Consider the parabolic partial differential equation

b =IVeldiv(Z4)  in R x[0,00)
é =do on R"™ x {t =0} (11)
for the hypersurface ¢ = ¢(z,t), (z € R",t > 0), where

$o : R® > R is some continuous function such that ¢,
is constant on R"™ N {|z| > S}, for some S > 0. This
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equation evolves each level set of ¢ according to its mean
curvature, at least where ¢ is smooth and its gradient
does not vanish. In our case, n = 2, (11) reduces to
(5). We now restate a number of useful and relevant
properties for n = 2, which were established in [16] for
general n. Cy denotes a particular level set of ¢o and C;
18 its evolution in time.

Theorem 5 A “weak” solution to (11) exists and is
unique.

It is important to consider the evolution in the weak
sense, in the context of “viscosity solutions” of nonlin-
ear partial differential equations [31”19, 13]. This allows us
to consider shapes that have corners or discontinuities in
orientation where, for example, the classical notion of a
normal is not well defined. However, we are assured that
when the classical solution exists, it coincides with the
weak solution:

Theorem 6 The evolution by curvature (11) agrees with
the classical motion by curvature, if and so long as the
latter exists.

Theorem 7 The evolution of Cy into C; is independent
of the choice of the initial function ¢q.

This important result stating that the evolution of a level
set by its curvature is independent of the choice of @¢
underlies our approach to smoothing images. Observe
that if we select the image intensity function as the sur-
face ¢o, each iso-intensity level set of ¢¢ will evolve by
curvature, exhibiting all the desirable properties detailed
in Section 3. This is equivalent to evolving each iso-
intensity curve separately by curvature, see Figure 6, but
with significant computational savings. This approach
exhibits properties of anisotropic diffusion for images, see
Section 6.

Theorem 8 IfCy and Co are two compact subsets of R?
sﬂuch that Cy c Co then the sybsequent evolutions C; and
C: of Co and Cy satisfy C; C Cq.

It is clear that in the continuous domain, the iso-intensity
contours of an image are isolated and non-overlapping.
Conversely, for a collection of level sets to represent iso-
intensity contours of an image, they too must be non-
overlapping. Theorem 8 assures us that the level sets
maintain this property during evolution by curvature de-
formation. We had earlier referred to this property as in-
clusion order preserving, Section 3. Whereas iso-intensity
contours are separated in the continuous domain, in the
discrete domain some level sets may partially overlap.
Theorem 9 assures us that so long as such level sets do
not cross, they will separate in the course of the evolu-
tion, Figure 3.

Theox:em 9 Givenhtwo initial curves Cy and Gy §uch that
Co C Cp but Cy # Co, their evolutions C; and C; do not
coincide for any 1 > 0.

In fact, Theorem 10 guarantees that two level sets cannot
move closer to one another than they were initially.

Theorem 10 Assume Co and Co are nonempty compact
sets in R? and {C;}i>0 and {C;}t>0 are the subsequent
generalized motions by curvature. Then dist(Co,Co) <
dist(C;, € fort > 0.



Figure 3: Initially overlapping contours separate during cur-
vature deformation, i.e., if Cp C Co but G # Co, the two
curves will pull apart instantly, even when Cy and G, coincide
except for a small region [16].

Whereas thus far we have specialized to the case of
curvature deformation, a number of the above proper-
ties hold for a larger, more general class of geometric
parabolic partial differential equations [11]. This includes
the evolution of each level set of ¢ by a combination of
constant and curvature deformation (2), where ¢ evolves
according to (3), with B(k) = fp — B1k. In particular,
a unique weak solution exists, and the evolution of each
level set of ¢ is independent of that of the other level
sets. As a consequence, the extension of curvature defor-
mation of shapes to curvature deformation of images may
be generalized to a combination of constant and curva-
ture deformation, leading to an entropy scale space [29]
for images. Examples are shown in Section 7; details wil
be presented in [48].

5 Connection to the Heat Equation and

Gaussian Smoothing

The coordinates of a curve evolving by curvature de-
formation (4) satisfy g—f = A;C, where A; = 8‘972,,, and
§ is arc-length. Note that this equation is coupled with
IC;| = 1, leading to a nonlinear system of equations.

Gaussian smoothing of the coordinates is given by
z(s,t) = zo(s) * K(s,1); y(s,t%: yo(sg* K(s,t), where ¢
is the extent of the Gaussian K(s,1). Since the Gaussian

is the heat kernel, %% = A,C. In the short time, since
arc-length is approximately preserved, the two smooth-
ing processes are similar. However, for larger smoothing
time, the two processes diverge in effect. Evolutions by
%{f— = A,C can cause self-intersections, since they place
too much significance on elongated features; the remedy
is to renormalize for arc-length in each step [43], effec-
tively yielding % = A;C.

A second connection between curvature deformation
and Gaussian smoothing is based on “volumetric blur-
ring” [35, 36] where the focus is on the blurring of the re-
gion rather than the boundary. In [14] Evans and Spruck
show that blurring the signed distance function with a
Gaussian kernel of small extent and then thresholding
is equivalent to curvature deformation. An intuitive ex-
planation of this result is as follows. The heat equa-
tion may be written as ¢; = A¢ = é,. + ¢,/,r, where
r and 7' are any two orthogonal directions. Let ' be
the direction of V. If we specialize to the case of the
signed distance function as ¢, near the shape’s boundary,
|¢,:] = 1. Consequently, ¢, is zero near the bound-
ary. Now recall that curvature deformation satisfies (5),
¢: = k|V4|. Here ¢ is any continuous surface, including
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but not limited to the signed distance function, whose
level sets evolve by mean curvature. Since x = ]%—';[,

we have ¢; = ¢,.. Therefore, the approaches of curva-
ture deformation and region blur converge when ¢ is the
signed distance function.

6 Connection to Anisotropic Diffusion

A number of linear scale spaces have been introduced
to combat noise as well as to hierarchically structure fea-
tures. Perona and Malik [46] observe a shift in the true
location of edges in scale, chiefly due to the homogeneity
assumption in standard linear scale spaces. They pro-
pose a piecewise smoothing method which aims to lo-
calize edges as indicated by the gradient of the image,
leading to the anisotropic diffusion equation

é¢ = div(e(r,y,t)Ve) = c(z,y,t)Ad + Ve - Vg, (12)

where ¢ denotes brightness intensity. Smoothing at
boundaries is turned off by a measure of edge strength:
c(z,y,t) = g(|]V4(z,y,1)|). As a consequence, regions of
ow brightness gradients are blurred, while regions of high
gradient values are not.

Catté et al. [10] point out two limitations of the
Perona-Malik scheme. First, “noise introduces very
large, in theory unbounded, oscillations of the gradi-
ent”, leading to the enhancement of noise edges, which
will then be kept. These edges are in practice filtered
by a first stage smoothing, which in turn introduces
an additional parameter. The second problem relates
to the existence and uniqueness of solutions; pictures
close in norm can yield drastically different edge maps.
They propose a slight modification where the gradient
in g(|V¢(z,y,1)|) is replaced with a Gaussian smoothed
estimate | DG, * ¢(z, y,t)|, leading to

¢t = div(g(| DG, * é(z,y,1)) V). (13)

In other words, the initial smoothing of Perona and Ma-
lik is now integrated into the scheme. A similar idea is
proposed by Whitaker and Pizer [49], where the extent
of the Gaussian is itself a decreasing function of time.

Alvarez et al. [1] study a class of nonlinear parabolic
differential equations specified by

b = 9(1G * V)|V g|divigs;
¢('L', Y, 0) = 050(1‘, y)a

where G is a smoothing kernel, say the Gaussian, and
9(€) is a nonincreasing real function which tends to zero
as £ — 0. They then show the existence and unique-
ness of the viscosity solution of this equation. Our cur-
vature deformation is related to (14) in that g(.) = 1
(9(€) does not tend to zero as £ — 0). However, the
theory of viscosity solutions of the curvature deforma-
tion, known as the “mean curvature flow”, was addressed
previously [16, 14, 15, 11], and was numerically demon-
strated by Osher and Sethian [45].

To see how curvature deformation preserves edges
while smoothing, recall that under this process, ¢; = ¢,
where r is the direction perpendicular to the image in-
tensity gradient V¢. In contrast to the heat equation,

t = A = ¢pr + @i, where » and ' are any two
orthogonal directions, we observe that curvature defor-
mation ignores the diffusion term ¢, in the direction
7' of the brightness gradient, and as such does not allow
diffusion across edges [1]. Edge location and sharpness

(14)



are left intact since, in effect, the component of diffusion
along the gradient has been subtracted off. This is sim-
ilar to Perona and Malik’s approach in that the edges
are preserved. However, “noise edges” are not amplified
because curvature deformation does not enhance edges.
This is the anisotropic diffusion connection.

7 Examples

In this section we discuss implementation issues and
illustrate the scheme with several examples. Since cur-
vature deformation smoothes singularities and no new
singularities can form, a central difference scheme is suf-
ficient to robustly simulate the process. The numerical
scheme for curvature deformation requires no parameters.
The magnitude of 8; is absorbed in the time parameter
t and only affects the speed of smoothing. The original
shape/image is evolved over time, producing a sequence
of fine to coarse smoothed shapes/images.

Figure 4 depicts the original shapes and images. Fig-
ure 5 compares the curvature deformation of a shape with
Gaussian blurring of its region and its boundary, respec-
tively. Figure 6 demonstrates that each iso-intensity level
set evolves independently of the original image. The nu-
merical simulation confirms the theoretical results, The-
orem 7. Figure 7 illustrates the extension from shapes
to images of a combination of constant and curvature
deformation, leading to an entropy scale space [29} for
images; a spectrum of smoothing processes ranging from
the “breaking off” of chunks to the “melting” of less sig-
nificant features. Figure 8 depicts an application to the
medical domain; curvature deformation smoothing facil-
itates the measurement of the width of the ocular domi-
nance bands by removing the blood vessels that congest
them. Figure 9 compares curvature deformation with
Perona and Malik’s anisotropic diffusion [46] for an aerial
image taken from the ARPA RADIUS program.
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Figure 4: The original shapes and images used for the exam-
ples: CAT, DOLL, LENA, FRUITS, BANDS and ROADS.
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Figure 5: Curvature deformation (LEFT COLUMNS), region
blurring (MIDDLE +:01UMNS) and boundary blurring (RIGHT
COLUMNS). Boundary blurring can place too much emphasis
on clongated features, e.g., the tail of the CAT shape; region
blurring can lead to topological splits, €.g., the hands and feet
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responding to smaller structures are removed.
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