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Abstract. This paper presents a novel, automated method to remove
partial occlusion from a single image. In particular, we are concerned
with occlusions resulting from objects that fall on or near the lens during
exposure. For each such foreground object, we segment the completely
occluded region using a geometric flow. We then look outward from the
region of complete occlusion at the segmentation boundary to estimate
the width of the partially occluded region. Once the area of complete
occlusion and width of the partially occluded region are known, the con-
tribution of the foreground object can be removed. We present experi-
mental results which demonstrate the ability of this method to remove
partial occlusion with minimal user interaction. The result is an image
with improved visibility in partially occluded regions, which may convey
important information or simply improve the image’s aesthetics.

1 Introduction

Partial occlusions arise in natural images when an occluding object falls nearer
to the lens than the plane of focus. The occluding object will be blurred in pro-
portion to its distance from the plane of focus, and contributes to the exposure
of pixels that also record background objects. This sort of situation can arise, for
example, when taking a photo through a small opening such as a cracked door,
fence, or keyhole. If the opening is smaller than the lens aperture, some part
of the door/fence will fall within the field of view, partially occluding the back-
ground. This may also arise when a nearby object (such as the photographer’s
finger, or a camera strap) accidentally falls within the lens’ field of view.

Whatever its cause, the width of the partially-occluded region depends on the
scene geometry and the camera settings. Primarily, the width increases with in-
creasing aperture size (decreasing f -number), making partial occlusion a greater
concern in low lighting situations that necessitate a larger aperture.

Fig. 1 (left) shows an image with partial occlusion, which has three distinct
regions: complete occlusion (outside the red contour), partial occlusion (between
the green and red contours), and no occlusion (inside the green contour). As is
the case in this example, the completely occluded region often has little high-
frequency structure because of the severe blurring of objects far from the focal
plane. In addition, the region of complete occlusion can be severely underexposed
when the camera’s settings are chosen to properly expose the background.

In [7], it was shown that it is possible to remove the partial occlusion when the
location and width of the partially occluded region are found by a user. Because
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Fig. 1. (Left) Example image taken through a keyhole. Of the pixels that see through
the opening, more then 98% are partially occluded. (Right) The output of our method,
with improved visibility in the partially-occluded region.

of the low contrast and arbitrary shape of the boundary between regions of
complete and partial occlusion, this task can be challenging, time consuming,
and prone to user error. In the current paper we present an automated solution to
this vision task for severely blurred occluding objects and in doing so significantly
extend the applicability of the method in [7]. Given the input image of Fig. 1
(left), the algorithm presented in this paper produces the image shown in Fig. 1
(right). The user must only click on a point within each completely-occluded
region in the image, from which we find the boundary of the region of complete
occlusion. Next, we find the width of the partially occluded band based on a
model of image formation under partial occlusion. We then process the image
to remove the partial occlusion, producing an output with improved visibility in
that region. Each of these steps is detailed in Sec. 4.

2 Previous Work

The most comparable work to date was presented by Favaro and Soatto [3],
who describe an algorithm which reconstructs the geometry and radiance of a
scene, including partially-occluded regions. While this restores the background,
it requires several registered input images taken at different focal positions.

Tamaki and Suzuki [12] presented a method for the detection of completely
occluded regions in a single image. Unlike our method, they assume that the
occluding region has high contrast with the background, and that there is no
adjacent region of partial occlusion.

A more distantly related technique is presented by Levoy et al. in [5], where
synthetic aperture imaging is used to see around occluding objects. Though this
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ability is one of the key features of their system, no effort is made to identify or
remove partial occlusion in the images.

Partial occlusion also occurs in matte recovery which, while designed to ex-
tract the foreground object from a natural scene, can also recover the background
in areas of partial occlusion. Unlike our method, matte recovery methods require
either additional views of the same scene [8,9] or substantial user intervention
[1,11]. In the latter category, users must supply a trimap, a segmentation of the
image into regions that are either definitely foreground, definitely background,
or unknown/mixed. Our method is related to matte recovery, and can be viewed
as a way of automatically generating, from a single image, a trimap for images
with partial occlusion due to blurred foreground objects.

3 Background and Notation

In [7], it was shown that the well-known matting equation,

Rinput(x, y) = α(x, y)Rf + (1 − α(x, y))Rb(x, y), (1)

describes how the lens aperture combines the radiance Rb of the background
object with the radiance Rf of the foreground object. The blending parameter
α describes the proportion in which the two quantities combine and Rinput is
the observed radiance. Notionally, the quantity α is the fraction of the pixel’s
viewing frustum that is subtended by the foreground object. Since that object
is far from the plane of focus, the frustum is a cone and α is the fraction of that
cone subtended by the occluding object.

In order to remove the contribution of the occluding object, the values of α
and Rf must be found at each pixel. Given the location of the boundary between
regions of complete and partial occlusion, the distance d between each pixel and
the nearest point on the boundary can be found. From d and the width w of the
partially occluded region, the value of α is well-approximated [7] by

α =
1
2

− l
√

1 − l2 + arcsin(l)
π

, where l = min

(
2,

2d

w

)
− 1. (2)

This can be done if the user supplies both w and the boundary between regions
complete and partial occlusion, as in [7]. Unfortunately, this task is time con-
suming, difficult, and prone to user error. In this paper, we present an automated
solution to this vision problem, from which we compute the values α and Rf .

4 Method

To state the vision problem more clearly, we refer to the example1 in Fig. 2. In
this example, the partial occlusion is due to the handle of a fork directly in front
1 The authors of [7] have made this image available to the public at http://www.cim.

mcgill.ca/∼scott/research.html
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Fig. 2. To remove partial occlusion from a foreground object, the vision problem is to
determine the boundary of the completely occluded region (green curve) and the width
of the partially-occluded region (the length of the red arrow)

of the lens. In order to remove the contribution of the occluding object, we must
automatically find the region of complete occlusion (outlined in green) and the
width of the partially occluded band (the length of the red arrow).

In order to find the region of complete occlusion within the image, we assume
that the foreground image appears as a region of nearly constant intensity. Note
that this does not require that the object itself have constant radiance. Because
the object is far from the plane of focus, high-frequency radiance variations will
be lost due to blurring in the image. Moreover, when objects are placed against
the lens they are often severely under-lit, as they fall in the shadow of the camera
or photographer. As such, many occluding objects with texture may appear to
have constant intensity in the image.

A brief overview of the method is as follows. Given the location of a point
p that is completely occluded (provided by the user), we use a geometric flow
(Sec. 4.2) to produce a segmentation with a smooth contour such as the one
outlined in Fig. 2, along which we find normals facing outward from the region of
complete occlusion. The image is then re-sampled (Sec. 4.3) to uniformly-spaced
points on these normals, reducing an arbitrarily-shaped occluding contour to a
linear contour. Low variation rows in the resulting image are averaged to produce
a profile from which the blur width is estimated (Sec. 4.4). Once the blur width
is estimated, the method of [7] is used to remove the partial occlusion (Sec. 4.5).

4.1 Preprocessing

Two pre-processing steps are applied before attempting segmentation:

1. Because our model of image formation assumes that the camera’s response
is linear, we use the method of [2] to undo the effects of its tone mapping
function, transforming camera image Iinput to a radiance image Rinput.

2. Before beginning the segmentation, we force the completely occluded region
to be the darkest part of the image by subtracting Rp, the radiance of the
user-selected point, and taking the absolute value. This gives a new image

R = ‖Rinput − Rp‖, (3)
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which is nearly zero at points in the region of complete occlusion, and higher
elsewhere. As a result of this step, points on the boundary between the
regions of partial and complete occlusion will have gradients ∇R that point
out of the region of complete occlusion. This property will be used to find
the boundary between the regions of complete and partial occlusion.

4.2 Foreground Segmentation

While the region of complete occlusion is assumed to have nearly constant in-
tensity, segmenting this region is nontrivial due to the extremely low contrast at
the boundary between complete and partial occlusion. In order to produce good
segmentations in spite of this difficulty, we use two cues. The first cue is that pix-
els on the boundary of the region of complete occlusion have gradients of R that
point into the region of partial occlusion. This is assured by the pre-processing of
Eq. 3, which causes the foreground object to have the lowest radiance in R. The
second cue is that points outside of the completely occluded region will generally
have intensities that differ from the foreground intensity.

To exploit these two cues, we employ the flux maximizing geometric flow of
[13], which evolves a 2D curve to increase the outward flux of a static vector
field through its boundary. Our cues are embodied in the vector field

−→V = φ
∇R

|∇R| , where φ = (1 + R)−2. (4)

The vector field ∇R
|∇R| embodies the first cue, representing the direction of the

gradient, which is expected to align with the desired boundary as well as be
orthogonal to it2. The scalar field φ, which embodies the second cue, is near 1 in
the completely-occluded region and smaller elsewhere. As noted in [6], an expo-
nential form for φ can be used to produce a monotonically-decreasing function
of R, giving similar results. The curve evolution equation works out to be

Ct = div(−→V )−→N =
[〈

∇φ,
∇R

|∇R|

〉
+ φκR

]
−→N , (5)

where κR is the Euclidean mean curvature of the iso-intensity level set of the
image. The flow cannot leak outside the completely occluded region since by
construction both φ and ∇φ are nearly zero there.

This curve evolution, which starts from a small circular region containing the
user-selected point, may produce a boundary that is not smooth in the presence
of noise. In order to obtain a smooth curve, from which outward normals can be
robustly estimated, we apply a few iterations of the euclidean curve-shortening
flow [4]. While it is possible to include a curvature term in the flux-maximizing
flow to evolve a smooth contour, we separate the terms into different flows which
are computed in sequence. Both flows are implemented using level set methods
[10]; details are given in the Appendix.
2 It is important to normalize the gradient of the image so that its magnitude does

not dominate the measure outside of the occluded region.



276 S. McCloskey, M. Langer, and K. Siddiqi

Fig. 3. (Left) Original image with segmentation boundary (green) and outward-facing
normals (blue) along which the image will be re-sampled. (Right) The re-sampled image
(scaled), which is used to estimate the blur width.

Once the curve-shortening flow has terminated, we can recover the radiance
Rf of the foreground (occluding) object by simply taking the mean radiance
value within the segmented (completely occluded) region. Note that we use this
instead of Rp, the radiance of the user-selected point, as there may be some
low-frequency intensity variation within the region of complete occlusion.

4.3 Boundary Rectification and Profile Generation

One of the difficulties in measuring the blur width is that the boundary of the
completely occluded region can have an arbitrary shape. In order to handle this,
we re-sample the image R along outward-facing normals to the segmentation
boundary, reducing the shape of the occluding contour to a line along the left
edge of a re-sampled image Rl. The number of rows in Rl is determined by the
number of points on the segmentation boundary, and pixels in the same row
of Rl come from points on the same outward-facing normal. Pixels in the same
column come from points the same distance from the segmentation boundary on
different normals and thus, recalling Eq. 2, have the same α value. The number of
columns in the image depends on the distance from the segmentation boundary
to the edge of the input image. We choose this quantity to be the largest value
such that 80% of the normals remain within the image frame and do not re-enter
the completely-occluded region (this exact quantity is arbitrary and the method
is not sensitive to variations in this choice). Fig. 3 shows outward-facing surface
normals from the contour in Fig. 2, along with the re-sampled image.

The task of measuring the width of the partially occluded region is also com-
plicated by the generality of the background intensity. In the worst case, it
is impossible (for human observers or our algorithm) to estimate the width if
the background has an intensity gradient in the opposite direction of the in-
tensity gradient due to partial occlusion. The measurement is straightforward
if the background object had constant intensity, though this assumption is too
strong. Given that the blurred region is a horizontal feature in the re-sampled
image, we average rows of Rl in order to smooth out high-frequency background
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Fig. 4. [Left] Profile generated from the re-sampled image in Fig. 3 (black curve). Model
profile P 50

m with relatively high error (red curve). Model profile P 141
m with minimum

error (green curve). [Right] Fitting error as a function of w′.

texture. While we do not assume a uniform background, we have found it useful
to eliminate rows with relatively more high-frequency structure before averaging.
In particular, for each row of Rl we compute the sum of its absolute horizontal
derivatives ∑

x

‖Rl(x + 1, y) − Rl(x − 1, y)‖. (6)

Rows with an activity measure in the top 70% are discarded, and the remaining
rows are averaged to generate the one dimensional blur profile P .

4.4 Blur Width Estimation

Given a 1D blur profile P , like the one shown in Fig. 4 (black curve), we must
estimate the width w of the partially occluded region. We do this by first express-
ing P in terms of α. Recalling Eq. 3 and the fact that Rf ≈ Rp, we rearrange
Eq. 1 to get

Rl(x, y) = (1 − α(x, y))‖Rl
b(x, y) − Rf‖, (7)

where Rl
b is the radiance of the background object defined on the same lattice

as the re-sampled image. The profile P (x) is the average of many radiances from
pixels with the same α value, so

P (x) = (1 − α(x))‖Rl
b(x) − Rf‖, (8)

where Rl
b(x) is the average radiance of background points a fixed distance from

the segmentation boundary (which fall in a column of the re-sampled image).
As we have removed rows with significant high-frequency structure and averaged
the rows of the re-sampled image, we assume that the values Rl

b(x) are relatively
constant over the partially-occluded band, and thus

P (x) = (1 − α(x))‖Rl
b − Rf‖. (9)

Based on this, the blur width w is taken to be the value that minimizes the
average fitting error between the measured profile P and model profiles. The
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model profile Pw′

m for a given width w′ is constructed by first generating a linear
ramp l and then transforming these values into α values by Eq. 2.

An example is shown in Fig. 4, where the green curve shows the model profile
for which the error is minimized with respect to the measured profile (black
curve), and the red curve shows another model profile which has higher error.
A plot of the error as a function of w′ is shown in figure 4. We see that it has a
well-defined global minimum, which is at w = 141 pixels.

4.5 Blur Removal

Once the segmentation boundary and the width w of the partially-occluded
region have been determined, the value of α can be found using Eq. 2. In order
to compute α at each pixel, we must find its distance to the nearest point on
the segmentation boundary. We employ the fast marching method of [10].

Recall that the radiance Rf of the foreground object was found previously, so
we can recover the radiance of the background at pixel (x, y) according to

Rb(x, y) =
Rinput(x, y) − α(x, y)Rf

1 − α(x, y)
. (10)

Finally, the processed image Rb is tone-mapped to produce the output image.
This tone-mapping is simply the inverse of what was done in section 4.1.

5 Experimental Results

Fig. 5 shows the processed result from the example image in Fig. 2. The user-
selected point was near the center of the completely occluded region though, in
our experience, the segmentation is insensitive to the location of the initial point.
We also show enlargements of a region near the occluding contour to illustrate
the details that become clearer after processing. Near the contour, as α → 1,
noise becomes an issue. This is because we are amplifying a small part of the
input signal, namely the part that was contributed by the background.

Fig. 5. (Left) Result for the image shown in Fig. 2. (Center) Enlargement of processed
result. (Right) Enlargement of the corresponding region in the input image.
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Fig. 6. Example scene through a small opening. (Left) Input wide-aperture image.
(Middle) Output wide-aperture image. (Right) Reference small-aperture image. Notice
that more of the background is visible in our processed wide-aperture image.

Fig. 6 shows an additional input and output image pair, along with a refer-
ence image taken through a smaller aperture. The photos were taken through a
slightly opened door. It is important to note that processing the wide aperture
photo reveals background detail in parts of the scene where a small aperture is
completely occluded. Namely, all pixels where α > .5 are occluded in a pinhole
aperture image, though many of them can be recovered by processing a wide
aperture image. In this scene, there are two disjoint regions of complete occlu-
sion, each of which has an adjacent region of partial occlusion. This was handled
by having the user select two starting points from which the segmentation flow
was initialized, though the method could also have been applied separately to
each occluded region.

The method described in this paper can also be extended to video process-
ing. In the event that the location of the camera and the occluding object are
fixed relative to one another, we need only perform the segmentation and blur
estimation on a single frame of the video. The recovered value of α at each
pixel (the matte) can be used to process each frame of the video separately. A
movie, keyholevideo.mpg, is included in the supplemental material with this
submission, and shows the raw and processed frames side-by-side (as in Fig. 1).

6 Conclusion

The examples in the previous section demonstrate how our method automati-
cally measures the blur parameters and removes partial occlusion due to nearby
objects. Fig. 6 shows that pictures taken through small openings (such as a fence,
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keyhole, or slightly opened door) can be processed to improve visibility. In this
and the case of the text image shown in Fig. 5, this method reveals important
image information that was previously difficult to see.

The automated nature of this method makes the recovery of partially-occluded
scene content accessible to the average computer user. Users need only specify a
single point in each completely occluded region, and the execution time of 10-20
seconds is likely acceptable. Given such a tool, users could significantly improve
the quality of images with partial occlusions.

In order to automate the recovery of the necessary parameters, we have as-
sumed that the combination of blurring and under-exposure produces a fore-
ground region with nearly constant intensity. Methods that allow us to relax
this assumption are the focus of ongoing future work, and must address signifi-
cant additional complexity in each of the segmentation, blur width estimation,
and blur removal steps.
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Appendix: Implementation Details

For the experiments shown here, we down-sample the original 6MP images to
334 by 502 pixels for segmentation and blur width estimation. Blur removal is
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performed on the original 6MP images. Based on this, blur estimation and image
processing takes approximately 10 seconds (on a 3 GHz Pentium IV) to produce
the output in Fig. 5. Other images take more or less time, depending on the size
of the completely-occluded region. Readers should note that some of the code
used in this implementation was written in Matlab, implying that the execution
time could be further reduced in future versions.

As outlined in section 4.2, we initially use a flux-maximizing flow to perform
the segmentation, followed by a euclidean curve-shortening flow to produce a
smooth contour. For the flux-maximizing flow, we evolve the level function with
speed Δt = 0.1. This parameter was chosen to ensure stability for our 6MP
images; in general it depends on image size. The evolution’s running time de-
pends on the size of the foreground region. The curve evolution is terminated
if it fails to increase the segmented area by 0.01% over 10 iterations. As the
flux-maximizing flow uses an image-based speed term, we use a narrow-band
implementation [10] with a bandwidth of 10 pixels.
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