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Abstract— In this paper we present a novel method for
robot path planning based on learning motion patterns.
A motion pattern is defined as the path that results from
applying a set of probabilistic constraints to a “raw” input
path. For example, a user can sketch an approximate path
for a robot without considered issues such as bounded radius
of curvature and our system would then elaborate it to
include such a constraint. In our approach, the constraints
that generate a path are learned by capturing the statistical
properties of a set of training examples using supervised
learning. Each training example consists of a pair of paths:
an unconstrained (raw) path and an associated preferred
path. Using a Hidden Markov Model in combination with
multi-scale methods, we compute a probability distribution
for successive path segments as a function of their context
within the path and the raw path that guides them. This
learned distribution is then used to synthesize a preferred
path from an arbitrary input path by choosing some mixture
of the training set biases that produce the maximum likeli-
hood estimate. We present our method and applications for
robot control and non-holonomic path planning.

I. I NTRODUCTION

Traditionally, motion constraints have been represented
by analytic methods that constrain the differential ge-
ometry of the set of admissible paths. Path planning
typically entails solving an optimization problem with
respect to these constraint equations. In contrast, this paper
presents a radically different approach to path planning.
Constraints (or preferences) are expressed in terms of a set
of examples that illustrate how the robot is permitted to
move. Further, these examples indicate how to elaborate
an input path from a user or high-level planner (which is
typically not acceptable in itself) into a suitable acceptable
output path. Informally, the examples say: “if a user asks
you to do something likethis than what you should
actually perform is a maneuver likethat”.

Traditional constraint equations for motion control are
complex relations that typically model the dynamics of a
mobile robot based on its mechanical design. Our method
can be used to simulate such constraints without having to
explicitly model them. The goal is to learn from examples
of constrained motions to properly generate novel paths.

Motion constraints are not only used for modeling a
robot’s mechanical configuration. In some applications,

equations are constructed to model task specific motion
requirements, such as a sweeping pattern for full floor
coverage or a suitable behavior to scan the environment
using a narrow-beam sensor. Specialized paths also occur
various specialized contexts; in the classic 1979 film “The
In-Laws” Peter Falk instructs Alan Arkin to run along
a “serpentine” path while going elsewhere – our system
could readily accommodate such a preference bias as well.
Additionally, in applications such as obstacle avoidance,
motions are not only related to the robot’s pose but are
also a function of the perceived environment. In all of
these examples, the underlying core problem consists of
finding a valid transformation between two components:
1) the idealized “raw” path that directs the robot to a
goal without taking into account certain preferences or
constraints, and 2) the refined path that attempts to reach
the goal while also satisfying the system constraints.

Whatever the constraints, expressing them in a suit-
able formal framework is often challenging. Further, the
processes of finding allowable solutions can be costly,
particularly since the solution techniques are often engi-
neered for a specific context. In our work, we develop a
method to implicitly learn motion constraints. Given a set
of samplemotion patterns, each with an associatedcontrol
path, the algorithm captures statistical properties over the
length of the path and configures a Hidden Markov Model.
Given a new input control path and the configured HMM,
the algorithm generates a new path that is statistically
consistent with the learned patterns, enforcing the desired
local constraints. As such, the algorithm can be applied
over a variety of training examples to generate a rich set
of paths without having to explicitly model the constraints.

II. RELATED WORK

Path planning has been extensively examined by many
authors. One of the key ideas in the area is the no-
tion of path planning under non-holonomic constraints,
specifically path planning using a bound on the radius
of curvature on the vehicle [1]. Notable work in the field
includes the landmark results of Dubins [2] and Reeds and
Shepp [3] on optimal trajectories. Much of this work deals
with the quest for an optimal path (or trajectory) under



a motion constraint which is expressed analytically (for
example a derivative constraint). Prevalent solution tech-
niques include analytic solutions (or expressions regarding
their bounds), search methods that seek to optimize a path,
and planners that start with a path of one form and seek
to refine it.

In particular, a classic approach to the application of
non-holonomic constraints is to find an (optimal) uncon-
strained solution and then apply recursive constrained path
refinement to the sub-regions to achieve an admissible
plan [1]. This is also typical of probabilistic motion plan-
ning methods [4], [5]. Similarly, jerky paths are sometimes
smoothed using energy minimization methods [6], [7].

This work shares that common spirit in that it takes
an initial path as input and produces a refined path
as its result. While traditional methods such as those
cited above typically accomplish path refinement based on
highly specialized constraints, typically in the domain of
differential geometry, our methods learns from examples
of acceptable paths. That is, the significant constraints
or preferences are indicated by showing the appropriate
refinements that should be applied in specific cases.

This idea of learning to generalize specific examples to
a broad ensemble of cases is, of course, the crux of classi-
cal machine learning [8]. Learning using Markov models
is a longstanding classic research area, although to our
knowledge it has never been applied to problems like this
one. Likewise, although there has been some prior work
on the relationship between learning and planning, most
of this has dealt with more traditional plan formulation
problems [9] or on learning suitable cues that control or
determine plan synthesis or execution [10], [11].

III. L EARNING MOTION PATTERNS

Our objective is to learn attributes from training ex-
amples in order to synthesize a constrained path given
an arbitrary unconstrained path. Figure 1 shows some
training examples that capture a non-holonomic constraint:
a bound on the maximum radius of curvature. The ex-
amples show smooth right angle turns, wide D-shaped
turns, narrow U-shaped turns and an example of a parallel-
parking type motion with a direction reversal (note that at
every path along these paths the orientation of the vehicle
is also represented but not always shown in the figure).
In each example, both the desired path and the associated
control path are displayed.

We present a method to represents those significant at-
tributes using a Hidden Markov Model. A Hidden Markov
Model encodes the dependencies of successive elements
of a set ofhiddenstates along with their relationship to
observablestates. It is typically used in cases where a set
of states, that exhibit the Markov property, are not directly
measurable but only their effect is visible through other
observable states. Formally, a Hidden Markov ModelΛ is

defined as follows:

Λ = {M,B,π} (1)

whereM is the transition matrix with transition probabil-
ities of the hidden states,p{hi(t) | h j(t − 1)}, B is the
confusion matrix containing the probability that a hidden
stateh j generates an observationoi , p{oi(t) | h j(t)}, and
π is the initial distribution of the hidden states.

There is an abundance of literature on Hidden Markov
Models and the domain is frequently decomposed into 3
critical sub-problems:
• Evaluation, where the likelihood of an HMM is

evaluated for a sequence of observations,p{o | Λ}.
• Decoding, where the maximum likelihood sequence

of hidden states is predicted for a given HMM and
an observation sequence, maxh p{h | o,Λ}.

• Learning, where the transition probabilities, the con-
fusion matrix and the initial distribution that best fit
an observed set of examples are estimated.

Given only the observations, learning is most commonly
performed by algorithms such as the Baum-Welch algo-
rithm or generalized Expectation-Maximization methods.
In our application, we have direct access to both the
hidden and observable states. They consist of sample
points from the desired motion patterns and the associated
control paths respectively, which are readily available.
Therefore, we can estimate an HMM by the the statistics
of the training data, calculating probabilities of successive
elements of the desired motions and their relationship to
the control paths.

Fig. 1. Samples of a training set simulating non-holonomic motions.
Paths on the left display the constrained motions while paths on the
right display the associated unconstrained control paths. Where specified,
arrows indicate additional constraints on the direction of motion to
account for the orientation of the robot. The full set consists of the
above at several orientations.

A. Hidden Paths

We represent a path by a curve over 2D space
parametrized by the arc-length. Letα represent a paramet-
ric curve(x(t),y(t)) wheret is the arc-length of the curve



from 0<= t <= T. Since we can, in principle, encode a
function using only its derivations, we assume our paths
are suitably normalized and encode them as a discreet
succession of tangent anglesθ(t).

Consider a stochastic process∆ as the source for a
family of paths. As such, each a path is considered to
be a random signal with characteristics described by the
probability density function of the process. Letα denote
the curve representing the constrained motion pattern
and θ(t) as the tangent angles of that path. We assume
that the sequence of samplesθ(t) from all constrained
motion patterns exhibit annth order Markov property, i.e.
a Markov Process:

p{θ(t +1) | θ(t),θ(t−1), . . . ,θ(t−n+1)} =

p{θ(t +1) | θ(t),θ(t−1), . . . ,θ(0)}

This locality condition states that information from
recent samples is sufficient to predict the next sample
point. Further, the dependency is considered to be
invariant, where relationships between successive points
arestationarywith respect to the arc-length.

Sample points of the motion patterns are represented by
hidden states in the HMM. Given an ensemble of training
examples, we estimate the transition probabilities by the
statistics of successive elements in the set and construct
the transition matrixM where:

P
θ
(t +1) = M P

θ
(t) (2)

The transition matrix propagates the information embed-
ded in the probability distributionP

θ
(t) to predict the next

distributionP
θ
(t +1). We assume a uniform initial proba-

bility distribution π = P
θ
(0), providing equal likelihoods

to all paths at time zero.

B. Observable Paths

Sample points of the control paths are represented by
observable states in the HMM, which characterizes the
relationship to the constrained motion patterns. Based
on this relationship, an input path can condition the
distribution in equation 2 and bias the synthesis according
to the prescribed characteristics. Because the input path
can be any arbitrary shape, we assume that samples of
the control paths are independent. For allt and k in the
domain:

p{θ(t) | θ(k)}= p{θ(t)}

That is, previous points generally do not provide
information on what the next point may be. This
assumption adheres to the HMM condition that the
observable state sequence is independent over time.

Let β denote the curve representing the associated
control path andφ(t) as the tangent angles of that path.
Then:

α = Ψ β (3)

where Ψ is some mapping that transforms the control
path to the constrained motion pattern. The mapping
in essence encodes the constraint relationship between
the coupled pair. Given a normalized ensemble of con-
strained/unconstrained curves, we estimate the probabili-
ties of the confusion matrixB from the statistics of asso-
ciated sample points(θ(t),φ(t)) and form the following
relation:

P
φ
(t) = B P

θ
(t) (4)

where the elements of the confusion matrix are the con-
ditional probabilitiesp(φi |θ j) for all statesi and j. This
is analogous to the inverse relation of the mappingΨ in
equation 3. However, using Bayes law, one can show that
solving the decoding problem for a HMM in a maximum
likelihood sense is analogous to solving for the desired
transformationΨ. (It is in-essence solving the inverse
problem in a maximum likelihood sense.)

IV. SYNTHESIS

Given a set of observations and an HMM trained with a
family of path patters, we generate a new path pattern by
solving for the maximum likelihood hidden state sequence

max
θi ...θn

p{θ(0),θ(1), . . . ,θ(T) | φ(0),φ(1), . . . ,φ(T),Λ}

or
max

α

p{α | β ,Λ}
(5)

Also known as the decoding problem, the above problem
can be solved iteratively. At each time interval, we propa-
gate the underlying probability distribution as in equation
2 and maintain states with maximum consistency across
successive elements. The resulting distribution is then con-
ditioned by the current observation as in equation 4. (This
method is analogous to theViterbi algorithm.) We iterate
up to time T to produce a sequence of probability dis-
tributions{P

θ
(0),P

θ
(1), . . . ,P

θ
(T)}. To instantiate a path,

we can select states with maximum probability from each
distribution. However, independently selecting states in a
greedy fashion can result to an inconsistent sequence, it
may break the continuity of valid links between successive
elements. Rather, we instantiate the state with maximum
probability at timeT and then backtrack by choosing the
previous most likely state that would generate the current
one. Backtracking is essential for generating a consistent
path as not only does it consider the links between
successive states, but also propagates future information
back to earlier points. Figure 7 shows an example path
manually drawn and the resulting generated path.



A. Multi-Dimensional State Space

Implementation of a first order Markov Model is gen-
erally achievable by storing the transition probabilities in
a memory array. However, preliminary empirical results
showed that for most training examples, a first order
Markov Model does not capture enough information to
properly generate the paths. Further, higher order Markov
Models increase the state space exponentially and storage
of a transition matrix is not practical. To address this issue,
we do not explicitly compute and store the transition ma-
trix, rather, we only maintain a list of candidate states with
strictly positive probabilities. The algorithm then performs
a search comparing the training set and candidate list.
When a match occurs, the probability of the proceeding
state is calculated and added to the list of candidates for
the next sample point.

Fig. 2. Each multi-dimensional state consists of points within a fixed
size window spanning the multi-scale curve model. When a match for
stateγ(t) is found, the next stateγ(t +1) is added to the list.

To store high-order information, each state is repre-
sented by a multi-dimensional elementγτ where each
dimension corresponds to a sample point further in his-
tory. Without exaggerating the dimensionality of the state
space, additional history can be attained by sampling over
a multi-scale representation of the curveγτ,s. A curve is
filtered several times to produce lower scale versions. A
single point on a lower scale curve represents a summary
for the region of the high scale curve (see figure 2).
Figure 3 shows an example where higher scale structures
are important to capture. It is easy to see how the first
order assumption does not capture enough information to
generate the pattern while a synthesis using higher order
states produces more consistent results.

Given the flexibility of the multi-dimensional model,
additional relevant attributes that are required to further
constrain the system can be easily incorporated. For exam-
ple, we include an additional dimension to provide control
over thedirection of motionof the robot. Normally, the
direction is implicitly defined in the input path, however,

Fig. 3. Generating a sweeping style path pattern. Training data consists
of the zig-zag patterns at several directions, each associated to straight
line segments. The top curve shows the input path. The middle curve
shows the synthesized path using a first order assumption. The bottom
curve shows the resulting path using higher order states.

there are cases where we may need to further constrain the
system in directions that are not necessarily along the path.
For example, this can be used to provide control to align
the robot axis orientation at particular points on the path.
The training data must also contain this additional param-
eter in order to define the preferred behavior given both
the path and the direction (see figure 1. Figure 4 shows
an example where we condition the synthesis over various
directions of motion in order to align the orientations of
the robot’s axis. At first, the initial direction of motion
points vertically while the path progresses horizontally.
The robot performs a D-shape turn for proper alignment.
Later along the curve, the robot performs several other
turns in order to align to the other specified directions.

Fig. 4. The above was generated using the training example for non-
holonomic constraints. The input path (top) is a hand-drawn path with
several desired directions of motion (shown by arrows). The resulting
path (bottom) consists of parts of a D-shape turn, a U-shape turn and
a parallel parking style motion in order to end up in the right motion
directions at the corresponding points.



B. State Blurring

The input path used for conditioning may not provide
exact matches to the training data. The path may be
generated by some noisy path planner or even manually
drawn by a human operator. Further, even with perfect
inputs, quantization errors are likely to occur in both
the hidden states and the observations. Such errors can
abruptly terminate the synthesis by conditioning or prop-
agating all probabilities to zero. Blurring the probability
matrices, or synonymously the probability vector, avoids
this issue. The probability distribution is modeled as
Gaussian mixture over the state space. The probability for
stateγi is given by:

p(γi) =
1
N ∑

j
p(γ j)e

−(γi−γ j )
2

ν
2 (6)

For the multi-scale representation, the goodness of the
match (γi− γ j ) is based on a weighted difference over the
scales. Such a blur may result in too many matches where
every combination of states will produce strictly positive
probabilities. This causes computational complexities and
high dimensional models may not be solved in practical
time. Therefore, we threshold over the tail of the Gaussian
and normalize.

C. Coherency Measures

Since a Stationary Markov Process is assumed, there
is no sense of progression or continuity of paths along
the arc-length. The search is performed irrespective of the
parametric position, choosing matches arbitrarily along the
path. Further, the synthesis may getstuckat a state or a
cycle through small set of states (know as absorbing states
or irreducible communication classes). In such a situation,
the propagated probabilities will model disjoint and self
contained distributions. Conditioning over the observables
and using a multi-scale model reduces the chance of this
occurrence over long intervals. However, due to the nature
of the training set, where there are many line segments
that have few distinct features, such situations still often
occurs. To address this issue, we define a measure for
coherency over arc-lengthas a measure of the number of
out-of-sequence states in a synthetic curve. To bias the
synthesis for more coherent paths, we enforce a penalty
on matches that are out-of-sequence. The probability is
penalized by a factor ofτ to help promote more coherent
path.

While some degree of divergence is necessary to fulfill
the desired motion pattern, we wish to avoid situations
where the generated curve diverges too much from the in-
put curve. Since the state space only represents the tangent
angles as a function of arc-length, there is no indication
of how close the generated curve is to the input curve.
Therefore, we define a measure forspatial coherency to

input as a measure of the average distance between the
input curve and the generated curve over Cartesian space.
To generate more spatially coherent paths, we include a
magnetic force that biases the distributions to prefer points
that are closer. At each sample pointt the probability is
updated by:

p(γi) =
p(γi)

N(1+kd2)
(7)

where d is the distance between the input sample point
and the resulting sample point generated by the maximum
likelihood path up to and including the candidate state, k
is the influence factor andN is a normalization constant.
Figure 5 shows an example comparing generated paths
with and without the coherency conditions. (One can also
formulate these measures as regularization terms in a
variational calculus problem minimizing entropy.)

Fig. 5. The above example was generated using the training example
for non-holonomic constraints. The input path (top) is a hand-drawn
curve. Below it (middle) shows the generated path without any coherence
factors and the bottom curve shows the generated path taking into
account both spatial and arc-length coherence.

V. RESULTS

Experiments were performed using path styles for
sweep patterns, curled patterns and bounded turning radius
patterns. The input paths are arbitrary paths hand drawn
by a user. When the direction of motion is not specified
by the input curve, it is taken along the tangent of that
path. All experiments were executed on a Linux PC with
a 1GHz Pentium IV processor and 1GB of RAM. The
results were generated in real time.

Figure 6 shows examples where a single input path
is used to generate several path styles. It can be seen
how the resulting paths form analogies to the input path
with respect to the learned path styles. Each resulting
pattern maintains the local consistency while following
the general direction of the input.

Figure 7 shows an example synthesis with non-
holonomic constraints. The generated path follows a



Fig. 6. The above example shows the input path (A) and the synthesized
paths (B,C,D) using various training styles. The three training sets consist
of a zig-zag patter for a sweep motion, a curl pattern for a narrow-beam
sensor scan and bounded radius of curvature pattern.

smooth curve outlining the overall shape of the noisy
input path. It can bee seen that the bottom right turn was
an extended loop about the corner rather than the typical
smoothed out turn. This was due to backtracking effects
where the proceeding segment consisted of second turn,
immediately after the first. The limited room for turning
forced the path to extend around the corner. Figure 8
shows another example with non-holonimic constraints.
The input curve restricts the initial direction of motion as
displayed by the arrow. This results in the motion pattern
with a direction reversal at point (B).

VI. FUTURE WORK

We plan on extending this work to take into account
obstacles. Conditioning the probabilities over some occu-
pancy grid can be a possible direction of work. Further,
we wish to investigate a method that would perform
synthesis computations using measurements over local
reference frames. This can help avoid the requirement
that training data must span all the desired orientations. In
addition, another direction for future work is to examine
applications of the method using related multiple curve
signals, such as control for multi-robot navigation or some
other correlated attributes.

VII. C ONCLUSION

We have presented an approach to path refinement: that
is, to producing accepting paths for a robot given input
curves that indicate roughly what kind of path is suitable.
The method consists of usinga-priori data to automati-
cally learn constraints and preferred patterns to configure

Fig. 7. The training examples are samples of motions with non-
holonomic constraints. The input path (top) is a hand drawn (noisy)
path. Below shows the generated path maintaining the bounded turning
radius constraint for non-holonomic motions.

Fig. 8. The figure above was generated using training examples for
non-holonomic constraints. The input path (top) is a hand drawn path
with a restriction on the initial direction of motion. Below shows the
generated path where point (B) marks a direction reversal.

a Hidden Markov Model. The learned probabilities are
used to synthesize a new path given an arbitrary normally
unconstrained path. Experimental results display how a
synthesized path exhibits the constraint properties of the



training data while following the overall shape of the input
curve.

In this discussion we have assumed that when a path is
generated, we knowa priori which family of statistical
biases we should apply. In practice, it may be that in
one part of a path we want one style of locomotion
and in another part we expect a different style. How to
incorporate two different types of bias in the system and,
further, how to make a transition between them remains a
topic we are still investigating.

Since our approach is based in local refinements to
an input curve, it is not readily able to apply large-
scale reconfigurations to a path (it a possible, but leads
to various technical problems). As such, this approach is
best suited to problems where at least the homotopy class
of the desired solution is clearly indicated. While this is
a restriction, it is not apparent that any other mode of
operation would be desirable.
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