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Abstract— We present a probabilistic method for path planning
that considers trajectories constrained by both the environment
and an ensemble of restrictions or preferences on preferred
motions for a moving robot. Our system learns constraints and
preference biases on a robot’s motion from examples, and then
synthesizes behaviors that satisfy these constraints. This behavior
can encompass motions that satisfy diverse requirements such
as a sweep pattern for floor coverage, or, in particular in
our experiments, satisfy restrictions on the robot’s physical
capabilities such as restrictions on its turning radius. Given an
approximate path that may not satisfy the required conditions,
our system computes a refined path that satisfies the constraints
and also avoids obstacles. Our approach is based on a Bayesian
framework for combining a prior probability distribution on the
trajectory with environmental constraints. The prior distribution
is generated by decoding a Hidden Markov Model, which is
itself is trained over a particular set of preferred motions.
Environmental constraints are modeled using a potential field
over the configuration space.

This paper poses the requisite theoretical framework and
demonstrates its effectiveness with several examples.

I. I NTRODUCTION

In motion planning (e.g. for a robot), we typically need
to consider two types of constraints on the paths that can be
taken: constraints imposed by the environment, and constraints
imposed by the physical characteristics of the vehicle itself.
In particular, non-holonomicconstraints refer to limitations
on the allowed derivatives of the path, and planning in the
presence of such constraints in often difficult (an automobile
is a commonplace example of a vehicle which such constraints,
as it is unable to move perpendicular to the direction in
which it is facing). Motion planning is typically complicated
not only by the need to generate paths that satisfy various
constraints, but also by the need to initially model whatever
constraints may be imposed by a particular vehicle or task.
Finding valid trajectories that satisfy both the mechanically
imposed constraints and environmental constraints can be a
difficult task. In this work, we present a method for “analogical
path planning” wherein paths are generated by analogy with
previous observed acceptable paths, and without an analytic
model.

Our approach is based on accepting an input path (which
may not satisfy the required constraints) and transforming it
into an allowed path. The input path may be produced either
by a person (e.g. as a sketch) or by an automated system;
this request input path is referred to as a “goal path”. The
analogies that drive the system are learned from examples,

where each example is composed of a pair of paths, an input
and an output path fragment. These fragments depict a path
fragment that might be requested, and the restricted (allowed)
path that should be produced when such a request is made.
Further, the constraints on the generated paths can be either
hard constraints or probabilistic, and they may derive either
from kinematic or dynamic constraints on the vehicle motion,
or from other types of bias (for example, we might like to
generate circuitous paths for our vehicle to determine if we
are being followed by enemy spies).

Because our system learns from examples, it can be applied
in a variety of domains. We avoid having to extract and
analytically model constraints for each desired motion pattern
or mechanical configuration that we may wish to control. Our
object is that we should be able to demonstrate how a robot
can move and subsequently the system would automatically
produce new paths based on these motions. One area of
application is tele-operated robots. A human can guide the
robot to areas by simply sketching a coarse path. The system
would then refine that path based on the learned specification
of the robot and generate a new valid path analogous to
the goal. Another application would be to complement high
level planners to relieve them of the burden of non-holonomic
(complex) path planning. Our system can take in as input such
path generated by such planners and augment them to avoid
objects while maintaining a particular behavior during motion.

Our approach consists of training a Hidden Markov Model
for a set of examples that encode the analogies between
pairs of motion patterns(output curve fragments) andgoal
trajectories (input curve fragments); each of these curve
fragments is represented as a succession of tangent angles.
The Hidden Markov Model learns local constraints on the
sequence of tangents in the motion patterns in conjunction
with their correlation to sample points in the goal trajecto-
ries. When producing new paths, these learned constraints
are then combined with environmental constraints that bias
the distribution of a Markovian Chain. At each step in the
trajectory, we compute the posterior probability distribution of
states in the configuration space by combining a prior based
on the learned fragments with a likelihood based on the input
curve and the environmental constraints. Once the probability
distribution over the entire input trajectory, the candidate path
with maximum likelihood is chosen.

The paper is organized as follows. First we briefly review
previous work. Then, we describe our approach to learning



motion constraints. Then we present our method to generate
novel motions from the learned constraints. We describe a
general framework in combining the learned constraints with
arbitrary biases and show cases using environmental and other
constraints. Finally we present results and conclude.

II. RELATED WORK

There is a wide array of works by many authors that
examine methods for path planning. One approach, similar
in spirit to our work, is to provide stochastic models for
maintaining and updating a distribution on predefined states
[1], [2]. These distributions generally reflect the likelihoods
of a robot’s pose or sensory information. Based on these
likelihoods, a robot can make decisions on where to go next
given a particular goal.

Another key ideas in the area is the notion of path planning
under non-holonomic constraints. A classic approach to the ap-
plication of non-holonomic constraints is to find an (optimal)
unconstrained solution and then apply recursive constrained
path refinement to the sub-regions to achieve an admissible
plan [3]. Dubins [4] and Reeds and Shepp [5] on optimal
trajectories. Much of this work deals with the quest for an
optimal path (or trajectory) under a motion constraint which
is expressed analytically (for example a derivative constraint).
Prevalent solution techniques include analytic solutions (or
expressions regarding their bounds), search methods that seek
to optimize a path, and planners that start with a path of one
form and seek to refine it. Similarly, jerky paths are sometimes
smoothed using energy minimization methods [6], [7].

This work shares that common spirit in that it takes an
initial path as input and produces a refined path as its result.
While traditional methods such as those cited above typically
accomplish path refinement based on highly specialized con-
straints, typically in the domain of differential geometry, our
methods learns from examples of acceptable paths. That is, the
significant constraints or preferences are indicated by showing
the appropriate refinements that should be applied in specific
cases. This idea of learning to generalize specific examples to
a broad ensemble of cases is, of course, the crux of classical
machine learning [8]. There has also been some prior work on
the relationship between learning and planning, most of this
has dealt with more traditional plan formulation problems [9]
or on learning suitable cues that control or determine plan
synthesis or execution [10].

III. L EARNING MOTION BEHAVIOR

Motion behaviors are learned from examples that show the
way a path should behave given an goal (input) trajectory.
Figure 1 shows a training set used to learn non-holonomic
constraints corresponding to motion with a bounded turning
angle (or radius of curvature). Each example in this set consists
of an acceptable trajectory which is coupled to a goal trajectory
(which is unacceptable on its own). For example, when our
goal is to make a sharp right turn, the resulting path should
be the smooth kinematically correct path. When our goal is

to go straight while the robot is facing perpendicular, then the
preferred path is a d-turn motion.

Given such a set, we train a two layer model. In one
layer, local motion constraints are learned by examining the
sequence of sample points in the acceptable paths. Then, in
the other layer, the control function (the function describing
a subset of valid trajectories given a goal) is learned by
examining the correlation of the path sequence over valid
trajectories with that of the goal trajectory. In general, we
consider the training set as a set of examples that encompass
a class of candidate trajectories for specific goals.

Fig. 1. Samples of a training set simulating non-holonomic motions. Paths
on the left display the constrained motions while paths on the right display
the associated unconstrained goal path. Where specified, arrows indicate
additional constraints on the direction of motion to account for the orientation
of the robot. The full set consists of the above set at several rectilinear
orientation.

Each example trajectory is represented by a parametric
function f(t, a) where t is the arc-length of the path and
a is a path attribute. We use two attributes in out system;
the shape of the path, as a sequence of the curve’s tangent
anglesθ(t), and the facing direction of the robot axisφ(t).
The shapeθ(t) is represented over multiple scales using a
wavelet decompositionθ(t, s) over the scales. This allows us
to efficiently capture large scale constraints on the paths, where
one sample point in the higher scale represents a summary of
several points in the low scales. Our examples are suitably
normalized and sampled uniformly.

While other work [11] has exploited a Hidden Markov
Model (HMM) for path synthesis, the present paper is the
first to consider environmental landmarks as well as constraints
learned from examples. A HMM is a two layer linear dynamic
model. It models two primary components: 1) the transition
probabilities of an underlying evolving system that is not
directly observable and 2) the probabilistic effect that this
underlying system has on observations. A HMMΛ is defined
as follows:

Λ = {M,B, π} (1)

whereM is the transition matrix with transition probabilities
on the hidden states,p{hi(t) | hj(t− 1)}, B is the confusion
matrix containing the probability that a hidden statehj would



give rise to an observationoi, p{oi(t) | hj(t)}, andπ is the
initial distribution of the hidden states.

In our approach, the hidden states represent sample points
from the preferred paths while the observations represent
sample points from the goal paths. As such, the leaned
transitions in the hidden layer impose local constraints on
the succession of tangent angles and robot facing direction
of a valid trajectory. Further, the learned relationship between
the hidden layer and the observation layer identify what
constraints should be applied given the current goal path
(i.e. the conditional probability of the hidden states given the
observation).

A HMM is trained from the statistics of the training set.
The transition probabilities inM are computed by counting
the number of matches of successive sample points in the
preferred paths. Similarly, the confusion probabilities inB are
computed by counting the number of matches of associated
sample points from the preferred path and the goal path. The
initial distribution π is assumed uniform suggesting that at
t = 0 all motions have equal likelihood. These constitute the
learned priors of our system that are later used to produce
valid motions over the configuration space and a goal.

The dimensionality of our state space is augmented in order
to capture the multi-dimensional functionf(t, a). Thus, each
statehi andoi is considered a multi-dimensional element. This
allows us to capture multiple path attributes at various scales
using only a single state (simulating a higher order Markov
assumption).

IV. GENERATING MOTIONS FROMLEARNED

CONSTRAINTS

Given the unconstrained goal trajectory, we wish to generate
a new path that is consistent with the constraints of our
trained HMM Λ. That is, the resulting motion should be
consistent with the local constraints and input coupling seen
in the examples. Decoding a HMM solves for the maximum
likelihood hidden state sequence (our constrained motion)
which best describes the given observation sequence (our goal
trajectory). Letα = {h(0), h(1), ..., h(T )} denote the output
path and letβ = {o(0), o(1), ..., o(T )} denote the coarse input
path, we wish to solve the following:

max p{α | β,Λ}
or

max
hi,...hn

p{h(0), h(1), ..., h(T ) | o(0), o(1), ..., o(T ),Λ}
(2)

One approach in solving for this (analogous to Variational
Calculus techniques) is to evaluate a cost functional by accu-
mulating local costs over the entire sample point sequence of
a candidate solution. Then iterate over the solution space to
minimize this total cost. This approach can become very ineffi-
cient in time and is subject to convergence pitfalls. Rather, our
method consists of a dynamic programming technique which
is more efficient in time,O(n2T ) for n states andT sample
points, and is guaranteed to converge. Although it is more
memory intensive.

Our approach is based on theViterbi algorithm for decoding
a HMM. For each sample point in the sequence, we compute
the distribution overall the hidden states (i.e. all paths). This
is accomplished by first using the likelihoods of the confusion
matrix to condition over the current observation. Then, we
propagate that distribution to the next sequence point using
the transition matrix likelihoods. For each state at sample point
t+ 1, we compute its posterior likelihoodψ as follows:

ψ{hi(t)} = p{o(t) | hi(t)}ψ{hi(t)}

ψ{hi(t+ 1)} = max
j

[p{hi(t+ 1) | hj(t)}ψ{hj(t)}]
(3)

The propagation phase is similar to the transition method used
to generate a Markov Chain. However because our eventual
goal is to uniquely specify each successive point, we do
not sum over all possible transitions but rather only keep
the maximum. Additionally, for each state, we store a back-
pointer to the state in the previous iteration that put forward
this maximum likelihood transition. Once we have iterated
over the entire sequence of observations, we chose the state
with maximum likelihood at timeT and then backtrack the
sequence using the back-pointers. Backtracking is crucial for
a consistent sequence. Rather than dealing with each sequence
point independently, it considers the maximum likelihood
transitions over the entire sequence.

Once we find the most likely sequence of tangent angles,
we realize the path by computing the(x, y) points using the
uniform sampling rate and corresponding arc-length segments
from training. Figure 2 and 3 show examples of goal trajec-
tories and their resulting synthesized paths. Due to memory
limitations in practice, we can not explicitly store the entire
distribution over all possible satesHi. Thus, we only keep
the top candidate states and threshold candidates with low
probability. Similarly, we cannot store all the prior likelihoods
in a matrix but rather we must compute them on the fly by
searching our training set and counting the number of matches.

A. Likelihood Blurring

Rather than computing the likelihoods (of Equation 3) by
searching for exact matches, we compute them based on the
goodness of the matches. This is performed for both the
transition and confusion likelihoods and is key in avoiding
issues with quantization errors or observation mismatches.
(Expecting the observations to match exactly with those in
training is overly restrictive, in general, the input curve can be
a noisy curve.)

For the transition likelihoods, we assume a Gaussian noise
model with the variance empirically set. This variance provides
a control on themixing tendency of examples. The larger the
variance, the more likely we are to accept transitions from one
tangent angle to another, even if those tangent angles do not
necessarily appear in sequence. We typically keep the variance
very low (in the order of a half of a degree) to strongly enforce
our motion constraints while avoiding issues with quantization
errors.



For the confusion likelihoods, we use a Sigmoid distance
metric. Using the Sigmoid function, we can suggest that for a
given error range, the likelihood of matching is very similar
but beyond that range, the likelihood decays exponentially.
The Sigmoid shift parameter determines the amount of bias
the input curve has over the distribution. A large value suggest
that any input will match any state, reducing the impact of the
input, while a small value will enforce the strength of the input
conditional. The Sigmoid parameters are set empirically.

Fig. 2. The left shows a coarse input path while the right shows the refined
motion consistent with the learned non-holonomic constraints.

Fig. 3. The top shows an example path with the desired robot axis facing
directions (shown by arrows) and the bottom shows the resulting output path.

V. BAYESIAN PATH RECONSTRUCTION

Our goal is to reconstruct avalid path given a coarse goal
trajectory. In our framework, there are several components that
contribute to what we constitute a valid path. First, we must
take into account the HMM such that the output is consistent
with the training examples as described is section IV. Second,
we require that the generated curve should stay near the input
trajectory. (The HMM alone only constrains the tangent angles
of the curve, it does not guarantee that the resulting path
would stay near the input, Figure 4). Finally, the output curve
should not go through or approach too close to obstacles in
the environment. This combination of constraints can result in
complex paths that would otherwise be difficult to determine
using traditional analytical models.

We formalize this problem in a Bayesian framework such
that it will become transparent to combine these (or other)
constraints within the system. Our method is analogous to
regularization techniques which are commonly used to recon-
struct objects from partial data. The main idea in regularization
methods is to minimize a cost functional that measures the
distance between the data and the model in question and

includes some additional constraints (such as smoothness)
that bias the solution. It can be show that a probabilistic
approach to regularization consists of maximizing the posterior
likelihoods of a Bayesian model [12], [13]:

max
fεM

P{f | D} ∝ max
fεM

p{D | f}p{f | M} (4)

wheref is an object in classM andD is the coarse data.
Typically thedata model termP{D | f} assumes a Gaussian
noise model and theregularization termP{f | M} is a prior
that adds a bias toward smoother models.

Rather than having a fixed noise model or prior constraint,
we learn these from examples and encode them in our HMM.
It is easy to see that in a HMM, the confusion matrix represent
an arbitrarydata model(p{oi(t) | hj(t)}) and the transition
matrix representpriors that biases solutions that are locally
consistent with our training set. Thus, our HMM is analogous
to a cost functional that generalizes to learned constraints.

Using the Bayesian framework, we can embed additional
constraints over our HMM. In particular, we wish to include a
bias for output curves that are closer to the goal trajectory and
avoid obstacles. In general, we can regularize at each sample
point using the desired biases as follows:

E{hi(t)} = −log{ψ(hi(t))}+
∑

k

λkRk(t, hi) (5)

whereRk(t) is the energy of a regularization constraint andλk

is the associated weight. This embeds the additional constraints
within our model such that they are taken into account in
the decoding phase. As such, the decoding algorithm can be
thought of as an energy minimization algorithm.

A. Magnetic Attraction

We include a bias that increases the likelihood of solutions
that are closer to the goal trajectory. This simulates a magnetic
attraction between the input path and the generated one. While
this is an important additions to the system, we need to be
careful in the amount of influence it exerts. In order to achieve
the desired motion behavior learned in our HMM, it is still
necessary for the output path to stray away at some distance.
The amount of divergence allowed can be controlled by the
weight of this energy term. (One may suggest ways to setλmag

based on the maximum divergence seen in the examples.) We
can also relax this bias at the interior region of the path while
enforcing it at the endpoints (for closure). We compute the
regularization energy for magnetic bias as follows:

Rmag(t, hi) = e|1−
2t
T | d2 (6)

where t is the current sample point position,T is the total
sample points andd is the distance between the goal and the
candidate statehi. At the endpoint of the path the relative
weight of the energy term is higher than at regions within the
path. As such, the bias term will have more influence at the
endpoints and less at interior points.

At any given point in the sequence, we need to compute
the distanced between each candidate state and the associated
point on the input curve. Thus, we augment the of the states to



include auxiliary information that identifies the Cartesian co-
ordinate. These dimensions are not used during the propaga-
tion or conditioning steps but are simply supplementary terms
that store the required information. Att = 0 the auxiliary
values are bootstrapped to the position of the input curve.
Then, the co-ordinates of the states at the next iteration are
computed by extrapolating their tangent from the co-ordinates
of the previous state (identified by the back-pointer) using a
suitable arc-length (based on the training sampling). Figure 4
shows example paths generated with and without the magnetic
term. It can be seen how the output curve without the magnetic
term diverges from the input while adding the magnetic term
biases the result to stay closer to the input.

Fig. 4. Example of magnetic attraction. The left path shows the goal
trajectory, the middle shows the resulting output without the magnetic energy
term and the right path shows the output with magnetic energy.

B. Obstacle Avoidance

We compute a regularization constraints over the configu-
ration space of the robot by applying a distance transform on
obstacles in the environment. Akin to potential field methods,
the transform generates an energy field over the environment.
A suitable function would generate high energies at regions
near the obstacles and low energies at regions far form
obstacles. We compute the energy for a state as follows:

Robs(t, hi) = max
obs

1
di

(7)

wheredi is the distance between the current candidate state
and theith obstacle. We choose the obstacle that produces
the maximum energy over all the others. At position close to
or on the obstacles, the energy goes to infinity while at areas
further the energy decays to zero. The weightλobs controls
the amount of influence the obstacles have on the solution.
Large value will coerce the robot to stay far from the obstacles
while small values will allow the robot to reach closer to the
obstacles, traveling through narrower regions.

We prepossess the environment and generate the field over
a grid. To evaluate the energy for a state, we simply use its
auxiliary parameter that identify the Cartesian co-ordinates and
access the girds value. Figure 5 shows and field generated for
a sample environment.

VI. RESULTS

Figure 6 and 7 shows two example environments with the
goal path (left) and the generated path (right). The goal path,
sketched by a human operator, directs the robot too close to or

Fig. 5. Example energy field. The left image shows the scene and the right
image is a logarithmic plot of the energy field.

Fig. 8. Example path synthesis going through a narrow region. Left shows
the input. The middle figure shows the output using a large value forλobs

and right shows the output with a small value forλobs

through obstacles. It can be seen how the generated path avoids
the obstacles while also maintaining the learned constraints.

Figure 8 shows an example of two generated paths from a
goal path that goes through objects. The middle figure shows
the result using a large value for the environment constraint
weight while the left shows a small value. It can be seen
that with a large value, the path stays further away from the
obstacles while a small value allows the path so go through
narrow regions. One noticeable issue here is that when the
trajectory of the output path is much longer that the input path,
the result does not reach the goal. This is due to the fact that
we have not enough sample points in the goal trajectory. One
approach to overcome this issue is to dynamically sample the
goal path. This can be based on the projection of the resulting
path onto the goal path.

VII. C ONCLUSION AND FUTURE WORK

We presented a method for analogical path planning. That is
a method to generate paths that are analogical to both an input
trajectory and a set of examples. The generated (analogical)
paths maintain the local constraints expressing a desired mo-
tion preference. By formulating our Hidden Markov model
in Bayesian terms, we were able to embed supplementary
constraints such as proximity to input and obstacle avoidance.

One open problem that remains to be addressed is that
of finding good values for the parameters that control the



Fig. 6. Example path synthesis. Left shows the input and right shows the output.

Fig. 7. Example path synthesis. Left shows the input and right shows the output.

process. While this is performed empirically, we are currently
examining how to set these values based on some initial
conditions, such as a maximum divergence form the input
or a minimum distance to the obstacles. In addition, another
direction for future work is to examine applications of the
method using related multiple curve signals, such as control
for multi-robot navigation or some other correlated attributes.
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