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Abstract: Several articles have been published about the SNU
3-UPU parallel robot, since the prototype built at the Seoul Na-
tional University (SNU) showed a rather unexpected behavior,
being completely mobile, although none of the prismatic joints
was actuated.

The main goal of this paper is to describe all possible poses of
the robot by a system of algebraic equations using Study parame-
ters such that theoretical questions can be answered on the basis
of the solutions of this system. We study the number of possible
assembly modes for fixed limb lengths particularly with regard
to the case when all lengths are equal. For the first time a com-
plete analysis of the forward kinematics is given showing that the
manipulator has theoretically up to 78 assembly modes, most of
them being complex. Investigating the Jacobian of the system of
equations we show that the manipulator has some highly singular
poses. Imposing slight perturbations to the system,introducing
very small rotations about the limb axes has significant effect on
the endeffector poses. This explains the very low stiffness of the
system. Furthermore we discuss possible operation modes of the
manipulator when the prismatic joints are actuated. To obtain
these modes methods from algebraic geometry proved to be very
useful. Moreover it is examined for which fixed design param-
eters (including limb lengths) the mechanism allows self-motion
and it is shown that there are only two such mobile robots. Both
of them have no similarity to the pathologically mobile prototype.

1 Introduction

In 2001 during the Computational Kinematics workshop F. Park
showed a highly accurate machined model of a 3-UPU parallel
manipulator the had an unexpected mobility although the pris-
matic joints were locked. From theoretical point of view this ma-
nipulator should have been rigid in this circumstance. After the
workshop there were many attempts to elucidate this unexpected
behavior. In all following papers the authors tried to explain the
mobility using different approaches, see e.g. (Bonev, Zlatanov,
2001), (Han et al., 2002), (Wolf, Shoham, Park, 2002) and (Liu,
Lou, Li, 2003). More general discussions of this and related
mechanisms regarding DOFs and possible translational motion
were published by e.g. (Tsai, 1996) and (Di Gregorio, Parenti-
Castelli, 1998). Furthermore the publication by (Zlatanov, Bonev,
Gosselin, 2002) should be mentioned where the DYMO 3-URU
parallel robot is discussed which is very similar to the SNU 3-
UPU robot.

In the following we present a complete discussion of the SNU
3-UPU parallel robot regarding assembly modes and possible
self-motion when the limb lengths are considered to be design
parameters i.e. fixed. In addition to that we give an algebraic
description of the manipulator’s operation modes which can oc-
cur when the prismatic joints are actuated. The main goal was to
explore the robot’s theoretical properties using Study parameters
and a set of equations, where each solution of the system corre-
sponds to an allowed pose of the platform. As we expected the
set of solutions is finite for arbitrary design parameters, and even
if the limbs have equal length there is no self-motion. The num-

1



ber of solutions is 78 resp. 72 in the special case. It is remarkable
that the position where the prototype was extremely mobile cor-
responds to a solution of multiplicity four. The Jacobian of the
system has a rank defect of two at this point. To solve the system
of eight equations methods from algebraic geometry were used,
especially primary decompositions of ideals were extremely use-
ful to split the system into ten smaller systems.

On the basis of this decomposition it could be shown that each
of these smaller systems corresponds to a special operation mode
of the manipulator, as described in (Zlatanov, Bonev, Gosselin,
2002), e.g. a translational mode or a rotational mode.

Another question we tried to answer was for which design
parameters the mechanism allows self-motion. Special impor-
tance was attached to non-degenerate mobile mechanisms where
the solutions are real. By adding additional equations to the sys-
tem we could deduce conditions for the design parameters of the
manipulator that lead to real self motion. Further inspection of
these conditions showed that there are only two essentially dif-
ferent sets of conditions. One of these self-mobile mechanisms
allows 1-DOF motion, with the other one even 2-DOF motion is
possible.

This paper is organized as follows. In Section 2 the design of
the SNU 3-UPU parallel robot is described. Section 3 shows how
the constraint equations are deduced. When the system is solved
in Section 4 to get all possible assembly modes two cases are dis-
cussed, in Subsection 4.1 the design parameters are arbitrary, in
Subsection 4.2 however the limbs are considered to be of equal
length. In Subsection 4.3 we describe the manipulator’s opera-
tion modes and finally the two mechanisms with self-motion are
presented in Section 5.

2 Design of the robot

In the base we have three points A1, A2 and A3 which form
an equilateral triangle with circumradius h1. The frame Σ0 is
fixed in the base such that its origin lies in the circumcenter of
the triangle, its yz-plane coincides with the plane formed by the
triangle and its z-axis goes through A3. The same situation is
established in the platform. There we have an equilateral triangle
with vertices B1, B2, B3 and circumradius h2. The parameters
h1 and h2 are the two first design parameters.

Now each pair of points Ai, Bi is connected by a limb of
length di with U-joints at each end. The second and the third
axis of this link-combination are parallel to each other and per-
pendicular to the axis of the limb. The first and the fourth axis
are embedded in the base resp. platform such that each of them
points to the corresponding circumcenter (see Figure 1). This is
the main difference to the so called translational 3-UPU parallel
robot which was discussed by Tsai in (Tsai, 1996). That robot
has almost the same design except that the roles of the first and
the second axis resp. the third and fourth axis are swapped. Tsai
showed that if the prismatic joints are actuated the platform per-
forms a pure translational motion. This is a property the SNU
3-UPU robot also possesses as we will see in Section 4 when
we solve the system of equations. A practical application of that
translational motion is rather doubtful.

All in all we need five design parameters to describe the 3-
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Figure 1: The numbers at the first limb describe the order of the
rotational axes of the U-joints.

UPU mechanism: d1, d2, d3, h1 and h2. We assume that they are
always strictly positive. This assumption is important in Section
5 where we want to exclude mobile mechanisms with e.g. a plat-
form where A1, A2 and A3 coincide or mechanisms with limbs
of length zero.

3 Constraint equations

To derive equations which describe the possible poses of Σ1 i.e.
the platform, we use an ansatz with Study parameters. First of all
we need the coordinates of all vertices wrt. to the corresponding
frame. In the following we write coordinates wrt. to Σ0 with
capital letters and coordinates wrt. to Σ1 with lower case letters.

A1 = (1, 0,
√

3 h1/2,−h1/2)

A2 = (1, 0,−
√

3 h1/2,−h1/2)
A3 = (1, 0, 0, h1)

b1 = (1, 0,
√

3 h2/2,−h2/2)

b2 = (1, 0,−
√

3 h2/2,−h2/2)
b3 = (1, 0, 0, h2)

To get the coordinates of B1, B2, B3 wrt. to Σ0 a transformation
has to be applied. Here we use Study’s well known transforma-
tion matrix M with which a general spatial transformation can be
parametrized (see (Pfurner, 2006) for further informations about
this parametrization).

M =
(

x2
0 + x2

1 + x2
2 + x2

3 0
MT MR

)
The translational part MT and the rotational part MR of M are
as follows:

MT =

2 (−x0 y1 + x1 y0 − x2 y3 + x3 y2)
2 (−x0 y2 + x1 y3 + x2 y0 − x3 y1)
2 (−x0 y3 − x1 y2 + x2 y1 + x3 y0)
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MR =

0
@

x2
0 + x2

1 − x2
2 − x2

3 2 (x1 x2 − x0 x3) 2 (x1 x3 + x0 x2)
2 (x1 x2 + x0 x3) x2

0 − x2
1 + x2

2 − x2
3 2 (x2 x3 − x0 x1)

2 (x1 x3 − x0 x2) 2 (x2 x3 + x0 x1) x2
0 − x2

1 − x2
2 + x2

3

1
A

The eight parameters x0, x1, x2, x3 and y0, y1, y2, y3 appearing
in the matrix M are the Study parameters and each projective
point [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3] on the 6-
dimensional Study-quadric S ∈ P7 corresponds to exactly one
spatial transformation and vice versa. The Study-quadric S is a
semi-algebraic set described by

x0y0 + x1y1 + x2y2 + x3y3 = 0
x2

0 + x2
1 + x2

2 + x2
3 6= 0.

These two conditions will be used in the following computations
to simplify expressions. Using M we can compute the coordi-
nates of B1, B2, B3 wrt. to Σ0 by

Bi = M · bi, i = 1, . . . , 3.

Now we have the vertices of the platform given in terms of the
transformation’s parameters. To deduce the constraint equations
we will firstly exploit the fact that the distance between Ai and
Bi has to remain constant, namely di. The computation of the
squared Euclidean distance can easily be done. After removal of
the denominator (x2

0 + x2
1 + x2

2 + x2
3)

2 which comes from the
normalization of Bi we have an equation in the Study parameters
of degree four. To get a lower degree we use a trick M. Husty used
for his equations of the Stewart-Gough-platform. After adding
4 (x0y0+x1y1+x2y2+x3y3)2 the result can be factorized and the
smaller factor (x2

0 +x2
1 +x2

2 +x2
3) can be removed. So we get for

each limb a quadratic equation which guarantees that the distance
of Ai and Bi remains constant. Applying this procedure to all the
limbs we obtain the first three equations which are denoted by g1,
g2 and g3.

g1 : (h1 − h2)2 x2
0 + (h1 + h2)2 x2

1 +

+ (h2
1 + h2

2 − h1 h2) x2
2 + (h2

1 + h2
2 + h1 h2) x2

3−
− 2 (h1 − h2) x0 y3 − 2 (h1 + h2)x1 y2 +
+ 2 (h1 + h2) x2 y1 + 2 (h1 − h2)x3 y0 +

+ 2
√

3 (h1 − h2) x0 y2 − 2
√

3 (h1 + h2) x1 y3−

− 2
√

3 (h1 − h2) x2 y0 + 2
√

3 (h1 + h2) x3 y1 +

+ 2
√

3 h1 h2 x2 x3 + 4 (y2
0 + y2

1 + y2
2 + y2

3)− d2
1 = 0 (1)

g2 : (h1 − h2)2 x2
0 + (h1 + h2)2 x2

1 +

+ (h2
1 + h2

2 − h1 h2) x2
2 + (h2

1 + h2
2 + h1 h2) x2

3−
− 2 (h1 − h2) x0 y3 − 2 (h1 + h2) x1 y2 +
+ 2 (h1 + h2) x2 y1 + 2 (h1 − h2) x3 y0−

− 2
√

3 (h1 − h2) x0 y2 + 2
√

3 (h1 + h2) x1 y3 +

+ 2
√

3 (h1 − h2) x2 y0 − 2
√

3 (h1 + h2) x3 y1−

− 2
√

3 h1 h2 x2 x3 + 4 (y2
0 + y2

1 + y2
2 + y2

3)− d2
2 = 0 (2)

g3 : (h1 − h2)2 x2
0 + (h1 + h2)2 x2

1 +

+ (h1 + h2)2 x2
2 + (h1 − h2)2 x2

3 +
+ 4 (h1 − h2) x0 y3 + 4 (h1 + h2) x1 y2−
− 4 (h1 + h2) x2 y1 − 4 (h1 − h2) x3 y0 +

+ 4 (y2
0 + y2

1 + y2
2 + y2

3)− d2
3 = 0 (3)

It can easily be seen that each of our link-combinations reduces
the degrees of freedom of the platform by two. The first restric-
tion was the condition of constant distance, we already have han-
dled. The second restriction is induced by the two U-joints: the
platform cannot be rotated about the axis of the limb. From this
fact follows that the vertices Ai, Bi and the circumcentres of base
and platform have to form a planar quadrangle. But such a con-
dition can easily be translated to an equation, because it is only
fulfilled iff the determinant of the 4x4-matrix built by these four
points vanishes. This argumentation was also used in (Bonev,
Zlatanov, 2001).

So for each limb we take the coordinates of Ai, Bi, the origin
of Σ0 and the origin of Σ1 wrt. to Σ0, build the 4x4-matrix and
compute its determinant. Here it is not necessary to normalize
the coordinates. Then these determinants are reduced with the
polynomial x0y0 + x1y1 + x2y2 + x3y3 wrt. to the total degree
order x0 � x1 � x2 � x3 � y0 � y1 � y2 � y3 which has
the effect that the result can be again factorized and the smaller
factor −(x2

0 + x2
1 + x2

2 + x2
3) can be removed. Such a reduction

can be seen as a division with remainder where one is interested
only in the remainder. See (Cox, Little, O’Shea, 2005) for infor-
mation about this very useful technique. We obtain the following
equations which are again quadratic and completely independent
from all design parameters.

g4 : 4x1 y1 + x2 y2 +
√

3 x2 y3 +
√

3 x3 y2 + 3x3 y3 = 0 (4)

g5 : 4x1 y1 + x2 y2 −
√

3 x2 y3 −
√

3 x3 y2 + 3x3 y3 = 0 (5)

g6 : x1 y1 + x2 y2 = 0 (6)

The Study-quadric equation

g7 : x0y0 + x1y1 + x2y2 + x3y3 = 0, (7)

which was already used to simplify the first six equations com-
pletes the system. This system of algebraic equations describes
the mechanism and we could ask now for all projective points in
P7 which fulfill all these seven equations, under the condition that
x2

0 + x2
1 + x2

2 + x2
3 6= 0, to get all possible poses of the platform.

This would be the solution of the direct kinematics of this manip-
ulator. But because it is more convenient to do all computations
in affine space we add the following equation for normalization:

g8 : x2
0 + x2

1 + x2
2 + x2

3 − 1 = 0 (8)

Furthermore with (8) it is guaranteed that no solution of the sys-
tem lies in the forbidden subspace x0 = x1 = x2 = x3 = 0. The
downside of the normalization is that for each projective solution
point we get two affine representatives as solutions for (1)-(8).
This has to be taken in account when we count different solu-
tions.
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4 Solving the system

Now we have to study the system of equations (1)-(8). In the fol-
lowing this system of equations is always written as a polynomial
ideal (see (Cox, Little, O’Shea, 2005)). Therefore, the ideal we
have to deal with is

I = 〈g1, g2, g3, g4, g5, g6, g7, g8〉

where each gi here stands for the polynomial on the left hand side
of the corresponding equation. First of all we will inspect the
following ideal which is independent of the design parameters.

J = 〈g4, g5, g6, g7〉,

Computation of the primary decomposition of J shows that it
can be written in a very simple way.

J =
10⋂

i=1

Ji

with

J1 = 〈y0, y1, y2, y3〉
J2 = 〈x0, y1, y2, y3〉
J3 = 〈y0, x1, y2, y3〉
J4 = 〈x0, x1, y2, y3〉
J5 = 〈y0, y1, x2, x3〉
J6 = 〈x0, y1, x2, x3〉
J7 = 〈y0, x1, x2, x3〉
J8 = 〈x2 − i x3, y2 + i y3, x0 y0 + x3 y3, x1 y1 + x3 y3〉
J9 = 〈x2 + i x3, y2 − i y3, x0 y0 + x3 y3, x1 y1 + x3 y3〉
J10 = 〈x0, x1, x2, x3〉

It has to be noted that an ideal has to be very special to allow such
a decomposition in so many small components. For the zero set
or vanishing set V(J ) of J it follows that

V(J ) =
10⋃

i=1

V(Ji).

By writing Ki := Ji ∪ 〈g1, g2, g3, g8〉 the vanishing set of I can
be written as

V(I) = V(J ∪ 〈g1, g2, g3, g8〉)
= V(J ) ∩ V(〈g1, g2, g3, g8〉)

=

(
10⋃

i=1

V(Ji)

)
∩ V(〈g1, g2, g3, g8〉)

=
10⋃

i=1

(V(Ji) ∩ V(〈g1, g2, g3, g8〉))

=
10⋃

i=1

V(Ji ∪ 〈g1, g2, g3, g8〉)

=
10⋃

i=1

V(Ki).

So, instead of studying the system as a whole, we can look for
solutions of the smaller systems Ki. Then the solution of system
I is the union of the solutions of the sub-systems.

It can easily be seen that V(K10) = {x0, x1, x2, x3, x
2
0+x2

1+
x2

2 + x2
3 − 1} is empty because K10 contains equations which

cannot vanish simultaneously. So it is only necessary to study
systems K1, . . . ,K9.

4.1 Solutions for arbitrary design parameters

Here all computations are made under the assumption that the
five design parameters are arbitrary i.e. generic. To find out the
Hilbert dimension of each ideal Ki the necessary Groebner bases
are not computed for general parameters. Instead of that ran-
domly chosen parameters are substituted first. This approach is
quite reasonable because computations are much faster and the
probability to choose a parameter set where the dimension is not
the one from the generic case, is evanescent small. So, for arbi-
trary design parameters it can be shown that

dim(Ki) = 0, i = 1, . . . , 9

which means that all sub-systems have finitely many solutions.
Reusing the computed bases from above the number of solutions
can be determined for each systemKi. Due to the fact that always
two solutions of a system describe the same position of the plat-
form, each number has to be halved (see paragraph below (8)).
In the following we will always only talk about these essentially
different solutions. The following table shows the results for all
systems.

K1 K2 K3 K4 K5 K6 K7 K8 K9

8 8 8 6 4 2 2 20 20

So all together we have 78 essentially different solutions, i.e. 78
possible poses of the platform, theoretically. It is clear that for ar-
bitrarily chosen parameters all these solutions are complex. Me-
chanically this means that the manipulator cannot be assembled
because of e.g. too different limb lengths. But, on the other hand
it can be shown that systems K8 and K9 always lead to complex
solutions, unless all limb lengths are equal. For the remaining 38
solutions it is not clear how many of them can be real although at
least some of the systems can be solved in closed form. The re-
sulting expressions are simply too large. We tried some examples
with reasonably chosen parameters and the number of real solu-
tions never exceeded 16. A strict proof for this number to be an
upper bound for real solutions is missing. Furthermore the system
became numerically instable for nearly equal limb lengths. This
was also the case for only slightly different circumradii. These
two facts already indicate the a special mechanical behavior.

Concerning singular solutions it can be shown that the Jaco-
bian of system I does not vanish at the solutions if the parameters
are arbitrary, even when two limbs have equal length.

4.2 Solutions for equal limb lengths

Here we assume that all limbs are of equal length.

d1 := d d2 := d d3 := d

4



Now we can perform the same computations we have done in the
previous subsection to get the Hilbert dimension of each ideal.
Due to the fact that we have less parameters the Groebner bases
can be computed without specifying parameters. We get the same
dimensions

dim(Ki) = 0, i = 1, . . . , 9.

When the number of solutions is computed for each system and
halved afterwards the following results are obtained.

K1 K2 K3 K4 K5 K6 K7 K8 K9

8 8 8 6 2 2 2 18 18

Here we have theoretically 72 solutions for the platform’s posi-
tion. For reasonably chosen parameters the number of real solu-
tions never exceeded 16 in our examples as in the previous case.

All together this means that the mechanism, at least theoreti-
cally, should be rigid. We have seen in machined models that this
is not the case. An important difference to the previous case is
that lots of singular solutions appear. When all these 72 solutions
are pooled and then each of them is counted with multiplicity we
get 30 solutions with multiplicity 1, exactly four solutions with
multiplicity 4 and even two solutions with multiplicity 13. These
two highly singular solutions correspond to planar mechanisms
where both circumcentres coincide.

The solution which is most interesting regarding the unex-
pected mobility is the so called “home position”, described by

x0 = 1, x1 = 0, x2 = 0, x3 = 0

y0 = 0, y1 =
√

d2 − (h1 − h2)2/2, y2 = 0, y3 = 0.

It has multiplicity 4 and the Jacobian has rank six at this point,
instead of eight. Therefore it is quite natural that the robot is at
least shaky in this position. To simulate that shakiness we made
just a few experiments where we added in each limb a very small
rotation around the limb’s axis so that equations (4), (5) and (6)
are slightly perturbed i.e. the points Ai, Bi and the circumcentres
are only almost coplanar. The angle of rotation ranged between
-1 and 1 degrees. Then the solutions of this modified system
I ′ were computed numerically and we obtained positions of the
platform which were far away from the home position. This result
corroborates the statement that bearing clearances leading to a
small rotability about the limb’s axis have great influence on the
position of the platform and it might be seen as a verification of
the results discussed in (Han et al., 2002).

4.3 The manipulator’s operation modes

Until now d1, d2 and d3 were treated as fixed design parame-
ters. In this subsection they will be seen as parameters which
are allowed to change, i.e. we will study the behavior of this
mechanism when the prismatic joints are actuated. Computation
of the Hilbert dimension of each ideal Ki with d1, d2, d3 used as
unknowns shows that

dim(Ki) = 3, i = 1, . . . , 9.

where dim denotes the dimension over C[h1, h2], in contrast to
dim which denotes the dimension over C[h1, h2, d1, d2, d3] as in

the previous subsections. It follows that in general the 3-UPU
manipulator has 3 DOFs.

In (Zlatanov, Bonev, Gosselin, 2002) the DYMO 3-URU par-
allel robot is discussed which is very similar to the SNU 3-UPU
robot. This mechanism can be obtained by replacing each P-joint
by an R-joint, where its axis is parallel to the second and third
axis of the U-joint-combination. Both mechanisms can reach the
same positions of the platform, the only difference is that the dis-
tance between Ai and Bi is adjusted in different ways. As stud-
ied in this article the DYMO 3-URU robot has some essentially
different operation modes which can be changed only at special
positions of the platform, e.g. a purely translational mode and a
purely rotational mode. In the following we will show that the
SNU 3-UPU has the same operation modes by analyzing each
system Ki regarding the special type of motion its solutions de-
scribe.

We solve each system Ji, substitute the solution into the
matrix M and denote the result by Mi from which we can
deduce statements about the solutions of the sub-system Ki

and with it about the pose of the platform. It is absolutely not
necessary to use equations (1)-(3) for this inspection, because
they describe only the limb lengths which are now treated as
free. Equation (8) will be used to simplify Mi, if possible.

System K1: {y0 = 0, y1 = 0, y2 = 0, y3 = 0}

M1 =

0
BB@

1 0 0 0
0 x2

0 + x2
1 − x2

2 − x2
3 2 (x1 x2 − x0 x3) 2 (x1 x3 + x0 x2)

0 2 (x1 x2 + x0 x3) x2
0 − x2

1 + x2
2 − x2

3 2 (x2 x3 − x0 x1)
0 2 (x1 x3 − x0 x2) 2 (x2 x3 + x0 x1) x2

0 − x2
1 − x2

2 + x2
3

1
CCA

As we can see each solution of K1 describes a pure spatial
rotation of the platform. To parameterize this operation mode
one could choose x1, x2, x3 as parameters (x0 can then be
obtained using (8)).

System K2: {x0 = 0, y1 = 0, y2 = 0, y3 = 0}

M2 =

0
BB@

1 0 0 0
2 x1 y0 x2

1 − x2
2 − x2

3 2 x1 x2 2 x1 x3

2 x2 y0 2 x1 x2 −x2
1 + x2

2 − x2
3 2 x2 x3

2 x3 y0 2 x1 x3 2 x2 x3 −x2
1 − x2

2 + x2
3

1
CCA

Each solution of the system K2 corresponds to a rotation of
the platform about the axis (x1, x2, x3) by 180 degrees and
subsequent translation along this axis, given by 2 y0. This can
easily be seen by computing the eigenspace of the rotational part
of M2 and the angle of rotation. For a parametrization x2, x3, y0

could be chosen as parameters. This operation mode corresponds
to the second part of the mixed mode discussed in (Zlatanov,
Bonev, Gosselin, 2002).

System K3: {x1 = 0, y0 = 0, y2 = 0, y3 = 0}

M3 =

0
BB@

1 0 0 0
−2 x0 y1 x2

0 − x2
2 − x2

3 −2 x0 x3 2 x0 x2

−2 x3 y1 2 x0 x3 x2
0 + x2

2 − x2
3 2 x2 x3

2 x2 y1 −2 x0 x2 2 x2 x3 x2
0 − x2

2 + x2
3

1
CCA

Here every solution corresponds to a rotation of the platform
about its normal axis by 180 degrees, then a rotation about the
axis (−x0,−x3, x2) by 180 degrees and subsequent translation
along that axis, given by 2 y1. This can again be seen by com-
puting the eigenspace of the rotational part of M3 and its rotation
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angle. For a parametrization x2, x3, y1 could be chosen as pa-
rameters. This operation mode corresponds to the first part of the
mixed mode mentioned in the article by Zlatanov et al.

All together systems K2 and K3 describe similar operation
modes, basically the platform is rotated about an axis by a fixed
angle and translated along the same axis. The only difference is
that in the second case the platform is rotated about its normal
axis by 180 degrees before the essential transformation.

System K4: {x0 = 0, x1 = 0, y2 = 0, y3 = 0}

M4 =

0
BB@

1 0 0 0
0 −1 0 0

2 (x2 y0 − x3 y1) 0 x2
2 − x2

3 2 x2 x3

2 (x2 y1 + x3 y0) 0 2 x2 x3 −x2
2 + x2

3

1
CCA

Solutions of K4 correspond to positions of the platform where it
is turned upside down and coplanar to the base. To parametrize
this planar operation mode one could use x3, y0, y1, where x3 is
responsible for the rotation of the platform about its normal axis
and y0, y1 for the translation in the base-plane.

System K5: {x2 = 0, x3 = 0, y0 = 0, y1 = 0}

M5 =

0
BB@

1 0 0 0
0 1 0 0

2 (−x0 y2 + x1 y3) 0 x2
0 − x2

1 −2 x0 x1

2 (−x0 y3 − x1 y2) 0 2 x0 x1 x2
0 − x2

1

1
CCA

The operation mode which is described here is basically the
same as the previous planar mode, except that the platform is not
turned upside down. For a parametrization x1, y2, y3 could be
used as parameters.

System K6: {x0 = 0, x2 = 0, x3 = 0, y1 = 0}

M6 =

0
BB@

1 0 0 0
2 y0 1 0 0
2 y3 0 −1 0
−2 y2 0 0 −1

1
CCA

Here x1 = 1 was used to simplify M6. Each solution of system
K6 corresponds to a rotation of the platform about its normal
axis by 180 degrees and a subsequent translation. It follows that
the described operation mode is basically a pure translation. To
parameterize it we have to use y0, y2, y3 as parameters.

System K7: {x1 = 0, x2 = 0, x3 = 0, y0 = 0}

M7 =

0
BB@

1 0 0 0
−2 y1 1 0 0
−2 y2 0 1 0
−2 y3 0 0 1

1
CCA

Here we have the other purely translational operation mode dis-
cussed in (Zlatanov, Bonev, Gosselin, 2002) without any rotation
of the platform. The transformation matrix was simplified by
substituting x0 = 1. It can be parameterized using y1, y2, y3.

Systems K8 and K9:
It can be shown that these systems only lead to real solutions

when d3 = d1 and d2 = d1. Inspection of J8 resp. J9 shows
that for all solutions the unknowns x2, x3, y2, y3 have to be 0. We
get the following transformation matrix:

M8 = M9 =

0
BB@

1 0 0 0
2 (−x0 y1 + x1 y0) 1 0 0

0 0 x2
0 − x2

1 −2 x0 x1

0 0 2 x0 x1 x2
0 − x2

1

1
CCA

Using the remaining equations {x0 y0 = 0, x1 y1 = 0} of J8

resp. J9 it can be shown that the only operation modes the sys-
tems K8 and K9 allow are three different 1-DOF motions which
are: pure translation along the platform’s normal axis with plat-
form in normal position resp. turned upside down and pure rota-
tion about the normal axis. These modes can be seen as special
cases of the purely translational resp. rotational mode.
All together we get exactly all seven different operation modes
which are studied in (Zlatanov, Bonev, Gosselin, 2002). We al-
ready mentioned that there exist positions where the mechanism
can change from one mode to another mode. One of them is e.g.
the “home position” given in the previous subsection. To reach
this position it is necessary that all limbs have equal length. The
operation modes described by the following four sub-systems can
pass trough this position:

K3,K7,K8,K9

It might be no coincidence that in Subsection 4.2 the multiplicity
of this solution was four. Another interesting point is the position
where the corresponding transformation matrix is the identity-
matrix, described by

x0 = 1, x1 = 0, x2 = 0, x3 = 0

y0 = 0, y1 = 0, y2 = 0, y3 = 0.

Again this position can only be reached when all limbs have equal
length, and the following sub-systems lead to motion processes
passing through this position:

K1,K3,K5,K7,K8,K9

If we rotate now the platform about its normal axis by 180 de-
grees we have a position which can be reached by the modes
from

K1,K2,K5,K6,K8,K9.

Turning the platform upside down instead, by rotation about its
z-axis, gives a position the modes of the following sub-systems
can pass through:

K1,K2,K3,K4,K8,K9.

We conclude that all operation modes can change via these four
special positions.

All in all we have seen that the decomposition of the original
system into ten smaller sub-systems led us to a decomposition
of the manipulator’s workspace, which can be covered now with
seven essentially different operation modes.
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5 Mobile mechanisms

Finally we want to find all sets of design parameters
h1, h2, d1, d2, d3 where the SNU 3-UPU robot allows self-
motion. Until now the dimension of each ideal Ki was 0. The
question is if there are design parameters where the dimension
of at least one ideal is greater than 0. It is reasonable to claim
that all design parameters are strictly positive and that the mobile
mechanism allows real assembly.

To find such parameters each sub-system Ki is examined sep-
arately where the modus operandi is always the same. At first for
the system of eight equations in eight unknowns the Jacobian and
its determinant Ji can be computed. It is clear that if V(Ki) con-
tains a component of higher dimension, the determinant Ji must
vanish on that component as well. To get other equations with the
same property all combinations of Ji with seven equations from
Ki are formed. And for each of these eight sets of equations again
the Jacobian determinant is computed where four of them are al-
ready 0. The ideal of the remaining four equations is denoted
by J ′

i . This step is repeated once more by generating all combi-
nations of eight equations from the generators of Ki ∪ 〈Ji〉 ∪ J ′

i .
We obtain 1278 determinants after removing combinations we al-
ready processed. Actually only about 120 of these determinants
are non-zero, depending on the used system Ki. For reasons of
convenience we denote the ideal generated by them by J ′′

i .
Now we have have a system with lots and lots of equations,

namely
Mi = Ki ∪ 〈Ji〉 ∪ J ′

i ∪ J ′′
i . (9)

Normally one would take Ki and only equation Ji, eliminate
x0, x1, x2, x3, y0, y1, y2, y3 from the generated ideal to get the
conditions on the parameters h1, h2, d1, d2, d3 for singular solu-
tions. The fundamental disadvantage doing it this way is that the
resulting conditions are not enough to guarantee a higher dimen-
sion of Ki, they only lead to singular solutions, isolated singular-
ities included. Now we use the additional equations we generated
above to get rid of at least some of these isolated equations. It is
clear that all of them have to vanish on possible higher dimen-
sional components. Before we start from all present equations
all factors are removed which cannot vanish, especially sums of
design parameters.

We start with M7 where all unknowns can be eliminated
and from the result the primary decomposition can be com-
puted. After removal of components with forbidden equations
like d1 + d3 = 0 exactly one set of conditions remains, which is

{h1 = h2, d2 = d1, d3 = d1}. (10)

Computation of the dimension of K7 using (10) shows that it has
dimension 2 and the corresponding motion is a pure translation
where the distance of the circumcentres remains constant. Sys-
tem M6 can be processed in the same way but in the end all
possible sets of conditions contain forbidden relations.

For all other systems Mi the procedure is more complicated
and we give just a short description how to proceed. Each of
the systems is treated in the following way: We take the shortest
equations of J ′

i and J ′′
i , compute a Groebner basis and remove

all forbidden factors. Furthermore we remove factors whose van-
ishing would mean that we are working with a special case of an-
other system we already discussed. After that a basis is computed
and factors are deleted again. This step is repeated several times
until no forbidden factors appear anymore. Then we add the next
equation and do the same procedure. This is repeated until com-
putations of the bases become too hard. By factoring the shortest
equations in the last basis the system is split into many small
systems and then each of these systems is treated in the same
way. At some point the systems are small enough that the com-
putation of the elimination ideal wrt. x0, x1, x2, x3, y0, y1, y2, y3

is possible. For nearly all systems Mi the resulting ideals in
C[h1, h2, d1, d2, d3] can be rejected because they contain poly-
nomials which are sums of powers of the design parameters. The
only ideal where feasible conditions remain is ideal M2.
We get the following conditions.

{h1 = 2h2 d1 = 3 h2 d2 = d3} (11)
{h1 = 2h2 d2 = 3 h2 d1 = d3} (12)
{h1 = 2h2 d3 = 3 h2 d1 = d2} (13)
{h2 = 2h1 d1 = 3 h1 d2 = d3} (14)
{h2 = 2h1 d2 = 3 h1 d1 = d3} (15)
{h2 = 2h1 d3 = 3 h1 d1 = d2} (16)

Substantially these six sets of conditions describe the same type
of motion for reasons of symmetry and they can be summarized
by saying that one circumradius has to be twice the other one, one
limb length has to be three times the shorter circumradius and the
remaining two limb lengths have to be equal. It is remarkable
that when all lengths are equal there exists a position where the
motion processes corresponding to (11)-(13) resp. (14)-(16) can
pass into each other.

All in all there are only two essentially different types of the
SNU 3-UPU parallel robot which are “legally” mobile without
actuation of a prismatic joint.

6 Conclusion

Using methods from algebraic geometry a complete analysis of
the kinematic behavior of the SNU 3-UPU parallel manipulator
was given. The main tool was primary decomposition of the ideal
of the polynomials describing the manipulator. It turned out that
from theoretical kinematic point of view the manipulator having
generic design parameters should be stiff. Especially the direct
kinematics yields 78 solutions. Most of the solutions are com-
plex. The biggest number of real solutions found was 16. Nev-
ertheless it was shown that slight perturbations of the system of
equations introducing small rotations about the limb axes has a
large effect on the output pose of the manipulator. On the other
hand we have shown that two special sets of design parameters
lead to two and one parametric self-motions. Furthermore we
have shown that the primary decomposition of the set of alge-
braic equations has an interesting kinematic interpretation: the
workspace of the manipulator decomposes into different parts,
each of them corresponds to one of the sub-ideals of the ideal
describing the manipulator.
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