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Abstract

In this paper a new and very efficient algorithm to compute the inverse kinematics of a general 6 R serial kinematic chain
is presented. The main idea is to make use of classical multidimensional geometry to structure the problem and to use the
geometric information before starting the elimination process. For the geometric pre-processing we utilize the Study model
of Euclidean displacements, sometimes called kinematic image, which identifies a displacement with a point on a six dimen-
sional quadric Sé in seven dimensional projective space P’. The 6R-chain is broken up in the middle to form two open 3R-
chains. The kinematic image of a 3R-chain turns out to be a Segre-manifold consisting of a one parameter set of 3-spaces.
The intersection of two Segre-manifolds and Sé yields 16 points which are the kinematic images representing the 16 solu-
tions of the inverse kinematics. Algebraically this procedure means that we have to solve a system of seven linear equations
and one resultant to arrive at the univariate 16 degree polynomial. From this step in the algorithm we get two out of the
six joint angles and the remaining four angles are obtained straight forward by solving the inverse kinematics of two
2 R-chains.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The inverse kinematics of general 6R linkages attracted many excellent researchers of the kinematics com-
munity in the end 1980s and beginning 1990s of the last century. At that time this problem was considered to
be the most difficult among all open problems in kinematics. In 1988 Lee and Liang [1] came up with a solu-
tion which was not very transparent, so that most the time Raghavan and Roth’s [2] solution from 1990 is
cited in the textbooks. There were many attempts to improve the algorithm. For example, Ghazvini [3]
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reduced the problem to the solution of a generalized eigenproblem. An explicit enumeration and recognition
of all developments would be to extensive. An overview on the development over the years can be found in [4].

To the authors surprise the geometric structure of the problem was never really revealed. We always had the
feeling that the manipulations with the non-linear algebraic equations, describing the problem were somehow
as luck would have it, although with great intuition. To our opinion the method of kinematic mapping com-
bined with classical results of multidimensional geometry bear the tools to give the necessary insight to the
problem.

The paper is organized as follows: in Section 2 we introduce the mathematical and geometrical tools. We
recall the notation to describe serial chains and discuss the Study model of Euclidean displacements. In Sec-
tion 3 we introduce the constraint manifold of a spatial 3 R-chain, which turns out to be the key to the solution
of the inverse kinematics. This constraint manifold is a well known construct in multidimensional geometry: a
so called Segre-manifold. Some of its properties are described in Section 4. In Section 5 we apply the results of
Sections 3 and 4 and give a new algorithm to solve the inverse kinematics of a general 6 R-chain. In Appendix
A a numerical example for this algorithm is given.

2. Mathematical framework
2.1. Design parameters

A serial 6 R manipulator is composed of a sequence of seven links connected by six revolute joints. The links
are numbered such that link zero constitutes the base of the robot and link six is the terminal link where the
end effector is located. Joint i connects link i and link i — 1 and the variable joint parameter (rotation angle) is
denoted by u;. In order to define the relationship between the location of links, we assign a coordinate frame X;
attached to link 7, such that the z;-axes coincide with the axes of joint i, the x;-axes are aligned with the com-
mon normal of link 7 and i + 1. The y;-axes lie such that these three axes form a right-hand coordinate frame.
Then the relative displacement of X¢ with respect to the fixed frame X, can be computed by linking all relative
displacements of X; with respect to X, ; and is therefore given by the matrix:'

D:Ml'G1'MZ'GZ'M3'G3'M4'G4'M5'G5'M(,'G6, (1)
1 0 0 0 1 0 0 0
0 cos(u;)) —sin(u;) 0 a 1 0 0
M; = . , Gi= .
0 sin(y;) cos(w;) O 0 0 cos(ey) —sin(oy)
0 0 0 1 d; 0 sin(e)  cos(oy)
fori=1,...,6, where o; is the twist angle between the z-axes of the links i — 1 and i, «; is the offset distance

between the same axes and d; is the translational distance of two common normals of the z-axes of link i with
the adjacent z-axes of links i — 1 and i+ 1. As usual the design parameters are called Denavit-Hartenberg
parameters (DH-parameters). Establishing the transformation matrices we have made use of the fact that
every serial chain can be brought to a position where all revolute axes are parallel to one plane. This config-
uration is used as home position of the chain. It is easy to see that this home position can be achieved by the
following algorithm: Choose the plane normal to the common perpendicular of the first two revolute axes and
fix the first one. Now the remaining manipulator axes are rotated about the second joint until the third axis is
parallel to the chosen plane. Now the first three axes are fixed and the next axis is rotated to a position parallel
to the chosen plane. This process is repeated until all axes are parallel to the plane. The result of this process is
shown in Fig. 1 in four different views. In this figure the yz-plane of X is chosen to be parallel to all axes. Note
that in the home position all Denavit-Hartenberg parameters can be seen in true shape: The common normals
of the rotation axes «; are parallel to the top view and the front view plane and the angles o; between the rota-
tion axes and the offsets d; are in true shape in the side view. (Because the picture is described by side not right
view.)

! Throughout the whole paper the European notation is used and the first coordinate is the homogenizing coordinate.
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Fig. 1. General 6R manipulator in home position, all axes parallel to yz-plane.

Furthermore this home pose shows that no serial manipulator is singularity free, because in this home posi-
tion all axes intersect the line at infinity of the chosen plane and belong therefore to a special linear complex.
The determinant of the Jacobian matrix of the manipulator vanishes in this position. It should be noted that
this home position — although being singular — does not at all restrict the generality of the following compu-
tations. It only reduces the complexity of the equations.

2.2. Study-model of SE(6)

Euclidean displacements & € SE(6) can be described by (see [5,6])
9 :x' = Ax + t, (2)

where x’ resp. x represent a point in the fixed resp. moving frame, A is a 3 X 3 proper orthogonal matrix and
t = [t1, 1, 13]" is the translation vector, connecting the origins of moving and fixed frame. Expanding the dual
quaternion representation [5, Section 3.3.2] and using an operator approach the matrix operator correspond-
ing to the normalized dual quaternion q = [xg, X1, X2, X3] + &[Vo, V1, V2, 3] is given by

1 0 0 0
M= 4 x% + x% — x% — x% —2x0x3 + 2x2X; 2x3x1 + 2x0%2 3)
' t 2xx1 + 2x0x3 xé + x% - xf - x% —2x0x1 + 2x3%;

2,2 2 2
3 —2xxs + 2x3x; 2x3x7 + 2x0x1 Xy + x5 — x5 — X
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where

t = 2x0p; — 2px1 — 2y,X3 + 2y3x,,
ty = 2x0y; — 2yp%2 — 2v3x1 + 2p,x3, 4)
t; = 2x0)3 — 299X3 — 2y,1%2 + 2p,x1.

The point [x,,z]" is transformed to [x’,y’,z']" according to
1,x,p,2" =M-[1,x,y,2]".
The entries [x;, ;] in the transformation matrix M have to fulfill the quadratic identity
XoYo + X1y + X290, +x3y3 =0 (5)

and at least one x; is different from 0. The lower right 3 x 3 sub-matrix of M is an element of the special
orthogonal group SO(3)" and the x; are the Euler parameters. This representation of Euclidean displacements
is sometimes called Study representation and the parameters x;, y; are called Study parameters. This allows the
following multidimensional geometric interpretation: Eq. (5) defines a six dimensional quadric hyper-surface
in a seven dimensional projective space P’. This quadric Sé is called Study quadric and serves as a point model
for Euclidean displacements. The quadric S is of hyperbolic type and has the following properties:

(1) The maximal linear spaces on Sé are three dimensional (generator spaces).

(2) Each tangent space cuts Sé in a five dimensional cone.

(3) The generator space xo=Xx; = X, =x3 =0 is one of the 3-spaces mentioned above but it does not
represent regular displacements, because in this space all Euler parameters are zero. Therefore this space
has to be cut out of S. A quadric with one generator space removed is called sliced.

A detailed treatment of more properties of S2 can be found in [7, Chapter 10].
The mapping
K:9 —PcP (6)
M(x;,y,) — [xo X1 i X2 :X3: ¥ 0 i yaivs] #[0:0:0:0:0:0:0:0]"
is called kinematic mapping and maps each Euclidean displacement & to a point P on Si C P’.

Given a displacement & as in Eq. (2) it is straightforward to compute the Study parameters x;, y;. One can
use one of the formulas (7) to compute the Euler parameters x; directly from the 3 x 3 lower right sub-matrix
A =(ay)i, j=1....3 of M:

Xo:xXpixp:x3=1+an+antanian—axpias—ayay—an
=ap—an:l+an —an—ay:antan:ay +as (7)
=ap —ay an+an:l—an+an—ax:an+ap
=ay —an:aytapsiantan:l—an—an+as.

These formulas are already due to Study [8]. If A is non-symmetric, we can always take the first formula of (7).
If A is symmetric, then it describes a rotation through an angle of = and the first formula fails. In this case we
can always resort to one of the three remaining formulas. The y; are given by

1 1
Vo = —5(txs +taxa +tix1), y; = — 5 (taxa — thxz — tixg),
2 2 )

1
VY, = —5(—1‘3)61 —+ tix3 — lzXo), Y3 = —E(—I3X0 + thx) — tl)Cz).

3. Kinematic image of a 3R serial chain

The most important step in the proposed algorithm for the inverse kinematics of an open 6 R-chain, devel-
oped in Section 5, is the decomposition of the 6 R-chain into two 3R-chains. Therefore, at first we will study the
kinematic image of the 3R-chain and derive some of its geometric properties.



70 M.L. Husty et al. | Mechanism and Machine Theory 42 (2007) 66-81

Given the design (the DH-parameters) of an arbitrary 3 R-chain we can compute the relative position of the
end-effector frame X with respect to a base frame X in dependence of three rotation angles u;, u,, u3. There-
fore, the constraint manifold of a 3 R-chain, representing all poses the frame X can attain is a 3-manifold in the
kinematic image space.

It is known (see [7]) that the constraint manifold representing a 2 R-chain in the kinematic image space is the
intersection of a 3-space 7" with the Study quadric Sé. This fact has been used in [9] to derive a new method for
the synthesis of Bennett mechanisms. The intersection of Sé and T is again a quadric surface.

If we fix one of the three revolute joints of the 3R-chain by fixing one parameter, say u3, we get a 2R-chain.
Its kinematic image lies in a 3-space 7. Hence, the constraint manifold of the 3 R-chain is the intersection of the
Study-quadric Sé with a one parameter set of 3-spaces 7(u3).

If we fix two of the three revolute joints of the 3R-chain by fixing the parameters #; and u,, we get a pure
rotation about the third revolute axis. This rotation maps to a line / on the Study quadric. The line / itself
depends on the two parameters u; and u,; therefore we write / = [(u;,u5). The points on / are parameterized
by u3. We have a closer look at this parametrization.

The parametric representation of the constraint manifold of the 3 R-chain in kinematic image space, as com-
puted via (7) and (8), reads p(u1, u», u3). We apply the half-tangent substitution v; = tan(u;/2), thus obtaining a
rational parametric representation p(vy, v, v3) of degree four. Fixing v; and v, yields a rational parametrization
p(v3) of the straight line /(vy, v,).

Lemma 1. For any vy, vy, the parametric representation p(v3) of l(vy,v,) is linear in vs.

Proof. After half-tangent substitution, kinematic mapping and multiplication with the least common multiple
of the denominator polynomials, the homogencous parametric representation p(v3) is polynomial and of
degree four — at least formally. Using a computer algebra system one finds that all eight coordinate polyno-
mials of p(v3) have a common divisor d(v3) of degree three. Hence, we can divide p(v3) by d(v3) without destroy-
ing its polynomial character. The resulting parametric representation is linear in v3. [

The 3-spaces T'(v3) can be generated in the following way: We choose four fixed straight lines /(v ;, v2),
parameterized by p;(v3) (i =1,...,4). Every 3-space T(v3) is spanned by p;(v3),...,p4(v3). On the other hand,
a straight line /(vy, v») is the span of two points p;(vi,v2) € T(vs;). The relation between the points p;(v;,v,) can
be extended to a unique projective transformation n : T(vs ;) — T(v32) such that n(p(vy, v2)) = pa(vy,v2) for all
vy, U5. Any straight line spanned by corresponding points x € T(v;;) and n(x) € T(vs ) intersects all 3-spaces
T(v;) and any four of these lines can be used to generate the 3-spaces 7(v3).

The one parameter set of 3-spaces T(v;) generated as above is known in geometry as a Segre manifold. A
Segre manifold is also defined as topological product of two linear spaces, i.e., the manifold of all ordered
pairs of points of both spaces [10, p. 569].

So far, we always fixed the rotation angle v; = tan(us/2) of the third revolute joint, thus obtaining a Segre
manifold that will be denoted by SM3. Of course we can also fix v; or v,. This yields two different one param-
eter sets of 3-spaces and two different Segre manifolds SMj;, SM3. This fact will be important for the inverse
kinematics algorithm in Section 5 (see Remark 9).

We summarize the above considerations in

Theorem 2. The constraint manifold of a 3 R-chain is the intersection of the Study quadric with a Segre manifold
SM; (SM2’3, SM?), generated by two projectively coupled 3-spaces Ty, T» C P’. The intersection of T; with the Study
quadric S¢ is the kinematic image of a 2R-chain obtained by fixing the rotation angles us (uy,uy) of the 3R-chain.

A symbolic sketch of SM3 is depicted in Fig. 2.

Corrollary 3. The constraint manifold of a 3R-chain is the intersection of any two of the Segre manifolds SM3,
SM;, SM5.

Proof. We consider the Segre manifolds SM} and SMj. They are swept by 3-spaces 7”(v;) and 7"(v,). The
intersection of 7"(v;) and T"(v,) is the straight line /(v,v,). The union of all straight lines /(v;, v,) is precisely
the intersection of SMj3 with the Study quadric Sé, i.e., the constraint manifold of the 3R-chain. [
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Fig. 2. Symbolic figure of SM;.

4. Different representations of the Segre manifold

In this section we describe different representations of the Segre manifold SM;. Having more than one rep-
resentation at hand is advantageous, since the representation can be chosen according to the specific problem.
We will present examples of this fact.

4.1. Parametric representation, span of points

We can view SM3 as generated by two projectively coupled 3-spaces or four projectively coupled straight
lines. This can be used to find a parametric representation of SM3.

Denote the four straight lines by /; and let p{v3) = T(v3) N /;. Because of Lemma 1 we may assume that p{vs)
is linear in v;. Now the points of SMj3 are described by

4
SM3I X = Z ;»l-pi(li3)7
i=1

where [y, 22, A3, /4]" is a homogeneous quartuple.

In this representation, the algebraic degree of SM3 is easily computed. It is defined as the number of inter-
section points of SM5 and a generic 3-space U C P’ [11]. Let U be the span of uy,. .., us. Uand T(v3) intersect if
and only if

det(pl (03)7 p2(1)3), p3(v3)7 p4(U3)a up, U, usz, ll4) =0. (9)

(9) is a polynomial of degree four in v3. Hence there exist four intersection points of SM3 and T: The algebraic
degree of SM; is four.

4.2. Algebraic equations

In order to find a set of algebraic equations of SM3 we fix two parameter values vs; and vs, and let p;; =

pi(v) fori=1,...,4 and j=1,2. In a projective coordinate frame with base points p; 1,...,P4 1, P12, - -,P42,
we use homogeneous coordinate vectors [Eg:...:E3:70:. . .:113]T. In this frame, the algebraic equations of SM3
read

detléi ”"]:o, ijefo,...,3) (10)
5]‘ n;
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(see [10, p. 569]). Note that only three of these quadratic equations are independent. Therefore, SM; is the
intersection of three hyper-quadrics. In order to find the equations of SM3 in the original coordinate frame
of P’, we have to apply the transformation y = Px where P is the matrix

P=[p,,... yPa1sProy - - ~aP4,2]
to the equations in (10). There exist symmetric eight by eight matrices A; such that Eq. (10) reads

[éOa"wé%nOa"'v’h]'Aij'[€0a"'35377’0a"'7’73]T:0-

The transformed equations are

[fo; ooy 83,y -7773] : (P71>TAijP71 : [an oo 83, ,’73}T =0. (11)

Remark 4. It is possible to compute symbolically the system of algebraic equations of SM3 without specifying
the DH-parameters of the 3R-robot. On current PCs with standard hard- and software this pre-processing can
be done in short time.

4.3. Intersection of hyper-planes

A 3-space in the seven dimensional projective kinematic image space is geometrically determined by inter-
secting four hyper-planes Hj,..., Hs. Algebraically this means it is given by four linear equations. We will
describe every 3-space 7(v3) in this way. The Segre manifold is then the intersection of four hyper-planes, each
depending on the parameter v;. This representation will be used in the proposed algorithm for the inverse kine-
matics of an open 6R-chain in Section 5.

For each of the four hyper-planes H;(v3) four points p;(v3) are given; but they do not determine H;(v3).
Because seven points span a hyper-plane in P’ we need three more points a1, 2,5, 2,3 € H;(v3) to compute

a linear equation of H;(vs). In principle, the points a;; can be taken anywhere in P but it makes sense to
choose them such that the resulting hyper-plane equations become as simple as possible. Without loss of
generality we take the three points such that a;; € SM; ﬁSé. We choose the points a;; independent of vs;
there exist fixed parameter values v such that a;; € T(v}).

The points p;(v3) and a;; have coordinate vectors

T ik ik T

p:(v3) = [P, Pl A =lag,....a7] .
Note that the coordinates of p; depend linearly on vs, although this does not reflect in our notation. The
equation of a hyper-plane H;(v3) is given by the Grassmannian determinant

Xo X1 X2 X3 Yo Vi V2 W3

P Pu Prn P13 Puu Pis Pis Pur

j(v3): det Pw P Pr Pz Pu Pas Pas Par| — 0. (12)
B T R R
a d o & d & o 4

VI - T < B R < B < B < B
a a @ ay ay a5 ag a |

We denote the coefficients of the hyper-plane equation (12) by ¢y, i.e.,
H;(vs): cjoxo + cpxt + cjpxa + ¢j3X3 + ¢ayy + ¢jsyy + cjeyy + ¢j7v3 = 0. (13)

The coefficients c; are polynomials of degree four in v3 and can be interpreted as homogeneous coordinates for
the hyper-plane H;. Because of the special choice of the points a;;, the polynomials ¢; have the common
divisor

g = (v — o) (vs — o) (vs — 0} (14)
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Dividing the polynomials c; by g yields hyper-plane coordinates for H;(v3;) that depend linearly on v3. We state
this as

Theorem S. The Segre manifold SM5 is the intersection of four one parameter pencils of hyper-planes H;(v3).
The hyper-plane coordinates of H;(v3) depend linearly on vs.

Remark 6. It is even possible to compute symbolically the hyper-plane coordinates of H;(v3) without speci-
fying the DH-parameters of the 3R-robot. Computed once the equations can be taken for every possible
design.

It is not necessary to compute the common divisor g of Eq. (14) by an appropriate choice of the points a;.
If we let uz = 7, i.e., v3 = 0o, the determinant (12) will be only of degree one in v3. This can be seen as follows:
We divide Eq. (13) by v5. In the limit v; — oo all but the leading coefficients of ¢; vanish. Hence, v; = oo
can be regarded as a common zero of multiplicity three of the coefficients of the hyper-plane coordinates of H;.

5. Discussion of the inverse kinematics of general 6R manipulators

In this section we show how the constraint manifolds of 3 R-chains can be used to solve the inverse kine-
matics of a general open 6R manipulator. Recall that in the inverse kinematic problem of a serial chain the
design and a pose of the end-effector of the manipulator is known. The rotation angles u; of the revolute joints
have to be computed. To apply the theory developed in the last sections we break up the link between the third
and the fourth revolute joint of the 6R and attach two copies of a coordinate frame X1 = Xy (the “left” and
the “right” frame) in the middle of the common normal of these two joints such, that the twist angle between
the z-axis of 23 and Xy = Xy is % (Fig. 3). Then we compute the direct kinematics for the first half of the 6R
manipulator, which is now a 3R-chain, with the end-effector frame X1. The pose of 2| with respect to X is
given by

10 0 0
510 0

T,=M,-G,-M; -Gy M -Gy, Gy = 0 0 cos(%) —sin(%) "
dy 0 sin(%) cos(%

Fig. 3. Cutting of the 6R into two 3R serial chains.
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When the end-effector of the 6 R manipulator is fixed we can do the same with the second part of the 6R but in
the opposite direction. This means that for this 3R manipulator Xy is the base and 2z is the end-effector frame.
Therefore, the pose of Xz with respect to X¢ is given by

10 0 0
-1 -1 (-1 -1 -l -1 -l 7 1 0 ’
To=A-G MGG MG MGy G = i) gin (@) [ "
2 2
0 0 sin(%) cos(%)

where A represents the coordinate transformation from X to Xy. In some discrete poses X1 and Xy have to
coincide. From literature it is well known that there will be up to 16 such real poses when the given 6 R-chain is
general. They are found as the intersection

82N SMj1 N SM;p,

where

e S¢ is the Study quadric.
e SM; is the kinematic image of the left 3R-chain and
e SM; r is the kinematic image of the right 3R-chain.

SM3 1 is a Segre manifold in P’. In Section 4.3 we saw that SM3 1 is the intersection of four one-parameter
sets of hyper-planes. The same is true for SM; z. Hence, we have to intersect eight one parameter sets of
hyper-planes with Sé. We summarize these results in

Theorem 7. Geometrically the inverse kinematics of a general 6R serial chain is equivalent to the intersection of
eight one parameter sets H;(v3), H;+4(vg) of hyper-planes with Sé (i=1,...,4).

An investigation of the algebraic structure of the nine equations reveals the non-linearity of the problem.
We have eight hyper-plane equations H;(v3) =0, Hi14(v6) =0, i = 1,...,4 and Eq. (5) of S3. The equations H;
are linear in x;, y; and bilinear in x;v3 and y;v; resp. x;vs and y;vs. The solution algorithm of this system is
straight forward.

At first we normalize the Study parameters by setting one suitable coordinate equal to one (at least one
Study parameter has to be non-zero!). The remaining seven Study parameters are solved linearly from seven
arbitrary H; equations, say Hy,..., H;. As result we obtain all Study parameters depending on the two param-
eters vy and vg, 1.€., X; = x;(v3,0¢), ¥; = y:(v3,06). Substituting x; and y; in the one remaining equation Hg and in
Eq. (5) we obtain two non-linear algebraic equations Ej(v3,vg) = 0, Ex(v3,v6) = 0.

Remark 8. The vanishing of E| is the condition for intersecting three-spaces 77 (v3) and Tr(ve) of the left and
the right Segre manifold. Hence, it can also be written as

det[pi, Pors Psrs Pavs Pirs Pors Pars Par] = 0,
where p;, = p;.(v3) and p;r = p;r(vs) are four points that span Ty (v3) and Tr(ve), respectively.

The resultant of E, and E, with respect to one unknown yields a univariate polynomial of degree 48 in the
remaining unknown. This polynomial factors into a univariate polynomial 2 of degree 16, in a polynomial
2, of degree 8 squared and in a polynomial (1 — v,.z)g, i =3 or i = 6 that comes from the half tangent substi-
tution. £, yields the solution of the system and #, comes from the determinant of the linear system that has
been solved before. 22, would lead to the trivial solution [0:0:0:0:0:0:0:0:0]" and therefore it has to be non-
Zero.

We solve 2, for the unknown and obtain 16 solutions over C. The solution of the other unknown we obtain
by back substitution in E; and E,. Solving both equations and comparing the solutions yields one common
solution of the system. Note that the solutions of the unknowns v; and vg are already the algebraic values
of the joint angles of joint three and six. Having the values of v3 and vg the poses of the middle coordinate
system X1 = Xy can be computed with the corresponding Study parameters.
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The remaining task is simple: We have to compute the joint angles of two 2R-chains, given the pose of the
end effector. We know the matrices T (u;, uy), u3 = const. and T, (us, us), ug = const. that describe the motion
of these chains. Therefore we have to compare the entries of the two motion matrices with the entries of the
matrix that describes the pose of the end effector of the 2R-chains. This leads to an over-constrained set of equa-
tions for the four unknown angles of the chains. It turns out that (in the general case) we get for every pair of
angles u3 and ug corresponding to the algebraic values v; and vg exactly one quadruple of angles uy, u,, uy and us.

The whole algorithm yields 16 sets of angles for the revolute joints of the general 6R serial chain and there-
fore solves the inverse kinematics problem.

Algorithm 1 (Inverse kinematics of a general 6 R-chain).

Input: 6R-chain by its DH-parameters, the pose of an end-effector.
Output: 16 sets of rotation angles that yield the given end-effector pose.

(1) According to Section 5, Egs. (15) and (16) compute the pose of X1 (the “left middle frame™) of the 6 R-
chain, with respect to X, (the “left” 3R-chain) and the pose of Xy (the “right middle frame”’) with respect
to X (the “right” 3 R-chain).

(2) Compute four parametric representations py(v3),. .., p4(v3) of straight lines in the kinematic image of the
left 3R-chain (see Section 3). Do the same for the right 3R-chain, obtaining four parametric representa-
tions q;(vg), - - -, qa(ve).

(3) Use the parametric representations p;(vs) and q;(ve) to compute algebraic equations for the hyper-planes
Hi(v3),...,Hy(v3) and Hs(vg), .. ., Hg(ve) according to Eq. (12).

(4) Intersect the hyper-planes H(v3),. .., Hs(vs) and Hs(ve), . . ., H7(vg). This yields a point r(vs,vs), depend-
ing on the two parameters v; and vg.

(5) Substitute r(vs, vg) in the equation of Hg(vg) and Eq. (5) of the Study quadric. This yields two algebraic
equations Ej, E, in v; and vg.

(6) Compute the resultant R of E; and E, with respect to vs3. The resultant is a polynomial that can be
written as

R=(1+1))* 2 (vs) - Pa(vs).

In this equation, %,(vs) and 2,(vs) are polynomials of respective degree eight and 16. The roots
U6.15- - ->Us16 Of P1(vs) are the possible solutions for vs and lead directly to the 16 joint angles via
Ug,; = 2arctanvg ;.

(7) Insert ve; into E, and E, and compute the unique common solution vs; of the resulting algebraic
equations in vs.

(8) Let r; =r(vs;06,). The points r; are the kinematic images of those poses where X = 2g.

(9) Solving the inverse kinematics of the remaining ‘“‘left” and “right” 2R-chain yields all missing joint
angles.

Remark 9. It is possible that the Segre manifold SM3 is not suited for the algorithm. If, for example, the first
and second revolute axes are parallel or intersecting, the two parameter motion obtained by fixing u; of the
“left” 3R-chain is planar or spherical. As a consequence, SMj3 is completely contained in Sé. In this case
we have to replace SM; by one of the Segre manifolds SM or SM3, obtained by fixing the first or the second
revolute angle.”

Remark 10. If all three revolute axes of a 3R-chain are intersecting (wrist partitioned manipulator) or paral-
lel, the Segre manifold SM3 degenerates to a single 3-space on the Study quadric Sé. In this case our algorithm
is even simpler: we just have to intersect four one parameter sets of hyper-planes with a fixed 3-space.

2 Note that some of the well known industrial manipulators have this feature. We emphasize that nevertheless the algorithm works. We
just have to take another Segre manifold.
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6. Conclusion

A new algorithm to compute the inverse kinematics of general 6 R-chains was presented. Using multidimen-
sional geometry and classical theory of Segre manifolds for the first time the geometric nature of the problem
was revealed. The efficiency of the developed theory is demonstrated in a numerical example in Appendix A. It
is believed that this algorithm can be successfully applied to all different 6 R-chains and that it can be
completely automatized. This step is subject to further research.

Appendix A. Numerical example
In this appendix we illustrate our algorithm at hand of a numerical example.
A.1. Parameters of the given manipulator

The design of the 6R robot is given by the Denavit Hartenberg parameters:
T T T T T T

87 013:§, 0‘4:*6, 055:*6, “6:1,511

a, =100, a3 =150, a4 =20, as=35, as=20,

di =100, dy =50, d;=50, dy=-50, ds=-20, ds=10.

o = —

=10,

To verify the algorithm above we compute one pose of the end effector with a set of “‘nice” parameters of the
revolute joints. We set

uy = — Uy = Uus = —, Ug — — (Al)

T
6

N

T T
9 u3:_§7 M4:§,

N

T
67

and obtain the matrix A describing the pose of the end effector:

1 0 0 0
3305 4 7005V3  _ 59V3 41l V2(114V/34433)  v/2(66v/3—115)
128 64 512 256 1024 1024
= | 4155v3 4 5455 S7V3 4+ V2(39V3+122) V2(21V/3-650)
128 64 256 512 1024 1024
1845V3 _ 695 15v3 + 17 _ V2(55V3-246)  v/2(59v/3+90)
64 32 128 256 512 512

A.2. Constraint manifold of the first 3R

In the first step of the algorithm the constraint manifold of the first 3R is computed. The matrix T; (Eq.
(15)) describes the relative position of X7 with respect to X, and depends on the first three joint parameters
uy, ur and us. According to the algorithm above one 3-space of the constraint manifold of this 3R-chain is
spanned by four points, corresponding to the kinematic images of four poses of the end effector of this chain.
We assign values for u; and u,, perform half tangent substitution to get rid of the trigonometric functions and
obtain four one parameter sets of kinematic image points:

p,(0,0,03) = [—4 — 2v/3, =2, 203, —4v3 — 203V/3, —185 — 40005 — 20003V/3, 370 + 185/3 — 10003, 200
+50v/3 — 7003 — 35033, 350 + 200v/3 + 3503]",
Py (og : 03) = [—4vs — 2033 + 4V/3 + 6,203 + 2V/3,203V/3 + 2V/3 + 2, 403V/3 + 2/3 + 2 + 6v3, 58503

+ 300 + 385v/3 + 400v3v/3, —30v; — 455 — 270v/3 + 85031/3, 10505 — 315 — 365V/3
+ 12003V/3, 165033 — 185v/3 — 435 + 35005,
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Ps (g,o, 03) = [—dvs — 203V/3 + 4+ 2V/3, 203 + 2,2 + 203, 4 + dvs + 2V/3 + 203\/3, 43505 + 535

+200V/3 + 20003V/3, 3005 — 170 — 135v/3 — 35031/3, 17003 — 570 — 235V/3
+ 3503V/3, 36505 — 165 — 200v/3 4 20005V/3]",

Ps (— T 03) = [2— (8 +4V3)vs, —2/3, 4vs + 4 + 2v/3,4V/3 + 6,700; + 670 + 235v/3,95 + 130/3
— 100v3v/3, (140 + 70v/3)v3 — 635 — 300V/3, (400v/3 + 700)v5 + 165v/3 + 300]".

For a constant parameter value v; these points span one 3-space 7(v3) in the kinematic image space. To
describe this 3-space we intersect four hyper-planes which are on this 3-space. To obtain one of these
hyper-planes we add three arbitrary points a;;, a;» and a;3, outside of the 3-space and compute the
Grassmann determinant to get the equation H;(vs). The coefficients of H;(v;) are polynomials of degree four
in v3. In order to get a simpler equation of H;(vs) we choose the points a;, a;, and a; 5 in the fixed 3-space
T(c0). Points in 7T{oco) are found by substituting arbitrary values of u; and u, and uz = n in T; (because
v3 — oo corresponds to u; — 7w in the half tangent substitution). Then the Grassmann determinant immedi-
ately yields equations H;(v3) that are linear in vs.

a, = p(o,g,n) = [~4—2V/3,2,2V/3,6 + 4V/3,585 + 400v/3, —30 + 85V/3, 105 + 120v/3,350 + 165V/3]",
=0, n) =[-8 —4V/3,—4,4,4V/3 + 8,870 + 400v/3, 60 — 70v/3,340 + 70v/3, 730 + 400v/3]",

,77:) = [—16 —81/3,0,8,0, 140, —200+/3,280 + 140+/3, 1400 + 800+/3]",

—355—210V/3,40 — 110v/3, —160 + 40v/3,110 + 75v/3]",

a5, :p(g,—g,n) —[-2,-2+2V3,2-2V3,-2V/3 -4,
— 305 —260v/3,60 — 90v/3,90 — 110v/3, 160 + 25V/3]",

a3 :p(—g,—g,n> =[-8 —4V3,-2+2V3,-2 - 2V3,-8 — 43,

— 730 — 450V/3,—165 — 115v/3,75 — 105v/3,820 + 400V/3]".
a5, :p(—g,—n,n) = [-12-6V/3,6,-2V/3,4V3 + 6,

555 +350V/3, 60 — 45v/3,45 + 180v/3,1050 + 615v/3]",
a3, :p(g,n,n) = [~14—8V3,4+2V3,2, -2V3 4,

—215v/3 —380,—105 — 110+/3,120 + 85v/3, 1285 + 750]",

a1 :p(—g,—g,n> =[-8 —4V3,-2+2V3,-2-2V/3,-8 — 43,

— 730 — 450v/3,—165 — 115V/3,75 — 105V/3,820 4 400v/3]",
A = p(—g, O,n) —[-2V3-4,-2,-2V3,-6— 43,
— 565 —400V/3,—70 — 135V/3,—5 — 70+/3,400 + 235V/3]",
[—2v/3—-4,2,-2V/3,—6 — 4V/3,
— 615 —400v/3,-30 — 115v/3, —105 — 20V/3, 350 + 235V/3]",
[—2,—4 +2V/3,-2,-2V/3 — 4, —330 — 235V/3, — 135,130 — 135+/3,235]".

a4, :p(O,—g,n)

a3 :p(—g,o,n)
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H,(v3) = x0(8798200001/305 + 7997831335v/3 + 18615630775 — 245844623005)
+x1(155576654851/3 — 10289261725 + (882841230 — 1504944900+/3)v5)
x2(v/3(87653245300; — 10282046735) — 1086400714005 — 15539094485)

8166535205 — 21097838v/3 — 178631836V/3v5 4 28205302)
21097838 — 192562844+/3v; + 14893816805 — 18119382+/3)

(
xa(
3(\f (14265570715 + 1708664813003) — 20362019865 + 94824544005)
+ vo(—
+ (=
+ 1,(163785002v/3 — 248011590 + 412817240,)

+ 3 (—42195676v5 + 193478670 4 5042960+/3v; 4 137114098+v/3) = 0,
H(v3) = xo(V3(—=111014692455 — 369088590903) — 163990921360 — 54091774350v5)

+x1 (1173107846005 — 952551340v/3 — 4349708810+/3v; — 27897733735)

+ x,(V3(—11716981360u; + 84696082225) — 4068520367005 + 140549969160)

x3(V/3(—834717363500; + 25596865180) — 1531297656500; + 11397817355)

+7,(148507876+/305 — 381217586+/3 + 72771344005 — 245876200)

+ 1,(3645485320; — 507999094 — 483183521/3)

+ 1,(—8050148461/3 — 397886640v/3v;5 — 49175240003 — 1600381936) = 0,
Hi(v3) = x0(4214917835V/3 + 8425162415v/3v; — 17698709765 — 3644110880v3)

(
X3
+ y0(824350144\/_ vy — 245876200V/3 — 414555694 + 146152181605)
(
(

+x1(—397122781505 — 22588758935v/3 4 3496621050V/3v5 + 26010131165)
+ x2(V3(=1996275031505 — 9461671465) + 3306174422005 + 18084770365)
+ x3(V/3(—201437343500; — 34859357735) 4 2674052468505 + 48621553935)
+ 75(306339240V/30; — 53519738V/3 + 230723422 — 46042741803)
+ y,(373401382V/30; + 11013742v/3 — 62521016403 — 53519738)
+ 1,(988410980; + 790315782 — 465774702+/3)
+ 1,(43513018V/3 + 120868582+/3v5 — 10703947605 — 146903778) = 0,
H(v3) = x0(227005 4 1000v/303 + 3600v/3 + 7125)
+x1(1950 — 270v/30; — 4005 + 75V/3)
+ x2(75V/303 — 6940 — 3220v/3 + 195003)
+ x3(1220 4 3600V/3v5 4 712505 — 1000V/3)
+ o(—36v303 — 7203 + 10v/3 + 20)
(

+1(10 = 3603) +¥,(36 + 1003) + »3(36V3 + 72 + 10V/303 4 2003) = 0.

The intersection of these four pencils of hyper-planes with the Study quadric is the constraint manifold SM3 of
the first half of the 6R serial chain.
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A.3. Constraint manifold of the second 3R
To get the constraint manifold for the second half of the 6 R-chain we have to perform the same procedure
with matrix T, instead of T;. Because of limit of space we do not display all the long equations:
q,(0,0,v6) = [7372606 + 147452 + 60738v/3 — 6112v/3v,
7716405 — 125678 + 129880v/3 + 39346v/ 30,
1210940 — 22156 — 41638v/3 — 93208+/304,
— 28268u6 + 29414 + 56536v/3 — 138666/ 30,
— 692948005 + 28673875 — 13788290v/3 + 1991175V/3vs,
759511505 — 7617080 — 8194855v/3 + 6728930v/3vs,
— 2492168005 — 9480285+v/306 + 65895 + 4944990+/3,
1572598506 + 3220260 + 6158795v/3 + 51570v/3vg)",

@ =(0.50) =" 4= (5.000) =[], a(5.5.00) =[]
The other points that span the hyper-planes are
q, = q(g,n, n> _ [4328 4 1700/3, 1100 + 808V/3, —1712 — 92/3,
— 1316 — 256V/3,112765 — 137375V/3, 7505 — 1433653,
—325905 — 163005v/3, 54195v/3 — 5335r7

T T

qu:(I(—gaga”)a (I1,3:¢1<—§7§,7T),

qzlfq(*gaga”)a Q2,2:q(ga*§7n)a qzszq(*gv*§7ﬂ)7
q3,l:q(_ga_gan)v q3,2:q(ganvﬂ)a q3,3:‘l(_ga_§an>»
q4,1=q(—§,0,n)7 q4,z=q(0,—g,n), q4,3=q(—g,0,n)7

Hs(vs) = —1366845x,v/3 — 16788y, + 1592995x,v/3 — 14046y, + 48y,V/3
—9992y,V/3 — 698135x, + 2328655x, 4 14046y,v/3 + 28092y,v6 — 309121 5x, 06
— 1110595x0v/3 — 169985x0v6V/3 — 458955x,v5V/3 — 176101 5x,05V/3 + 455305x,
+ 12230y, 4 20044y, — 986y,v/3 — 1036125x,v6 + 1632925x; + 630255x31/3
— T74385x006 — 846606 + 4636y,06 + 4966y, 16 + 15018y,v/306 + 340695x306

— 381055x3v/305 — 8370y,V/ 305 — 6608y,V/3v6 = 0,
Hé(Ué):"':07 H7(U6):"':0, Hg(U6):"':O.

A.4. Pose of X1 = Xp

Now, eight one parametric pencils of hyper-planes (H(v3), Hx(v3), H3(v3), H4(v3) and Hs(vs), He(ve), H7(vs),
Hg(ve)) are given and we have to intersect these eight pencils with Sé to get the poses where X and X coin-
cide. Intersecting seven of the hyper-planes means solving seven linear equations in x;, y;, i = 0,...,3. Remem-
ber, x;, y; are homogeneous, so one of the Study parameters can be normalized to one. Substituting the
solutions in the remaining eighth hyper-plane and in Sé yields two non-linear equations E1(vs,vs) and
FE5(v3,06) which are of bi-degree four resp. six.
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Equation E| has a geometric meaning. It gives us the parameter values, for which the two Segre manifolds
(or the eight hyper-planes) intersect. So it can also be generated by the determinant of the matrix:

Ey =det[p, (u3), ..., pa(u3), qy (utg), - - . , 44 ()] = 127961043861390176+/3

+ 695430062705310720v/30; — 8693479023780147200;03 — |...45 terms...] =0,
E; = —4657420632199707137196534224053779960003
— 811672683480228781253171750461 169420121}?\@02 —[..95 terms...] = 0.

The resultant of these two equations, by eliminating vs, yields a univariate polynomial in ve of degree 48
which can be factored into a polynomial 2, of degree 16, a polynomial ?/’% of degree eight squared and in
(1+ Ué)g. Because of the “nice” values for the example 2, factors in a polynomial of degree one, yielding
the solution for the joint parameter of the sixth joint of the set of joint angles we started with and a polynomial
of degree 15. The 16 roots of £, are

vs € {—0.2679491920, —0.1651548583, —0.1310929573 + 0.8370455908i, —0.05048057402
+ 1.0506574501,0.02205333535 £ 1.0548149621,0.02709648159 £ 0.93364718161,0.1015095637
+ 1.0855059971,0.1313072143 £+ 0.20753188171,0.2310214712 + 0.2195257104i}.

Back substituting one value for vg in the equations E; and E,, solving for v; and taking the common solution
every value of vg yields exactly one value for v3. The 16 solutions for v; are

v; € {—0.5773502693, —0.5513075395, —0.7426315981 + 0.8394355258i, —0.4728081593
+ 0.082589005211,0.2116842781 + 0.80238966171,0.3899070234 + 4.1243983571,0.3980795285
+0.22133037751,0.5648941737 + 2.233721302i,0.6413657826 + 0.1234273129i}.

We can see here, that the first values (—0.2679491920, —0.5773502693) in the two lists are exactly the values for
—tan{5 and —tan§, corresponding to the given angles us = — % and u3 = —5 (compare Eq. (A.1)).

We show the back substitution for this set of solutions. Substituting these two angles in the 3 R-chains we
have two 2R-chains for which we know the coinciding poses of the end-effectors. We also know the matrices
that describe the motions of these two chains. These are exactly the same matrices as for the two 3R-chains
with the exception that the angles u3 and ug are now fixed. We substitute the value of u3 in T; and the
corresponding value of ug in T, to describe the motion of the 2R-chains.

[} (u,ua) -+ £, (ur,u2) ]
Ty (u1,u)) = : : :

Ltag (unya) o gy, un) |

[, (uayus) - 64(uayus) ]
Tz(umus) =

3 (uayus) - 3y (ua, us) |

The pose of the end-effector of the two 2R-chains (X = X1 = XR) is obtained by back substituting the solutions
of v; and ve in the solutions of the linear system of equations to determine the Study parameters of this pose.
We obtain the matrix:

1 0 0 0
153.7703938  0.7577722258  0.3788861134  0.5312499911
83.83813443 —0.1874999986 0.9062500197 —0.3788861144
83.92626995 —0.6249999998 0.1875000013  0.7577722258

T=(1;) =
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Table A.1
Sixteen solutions of the inverse kinematics

Uup U us Uy Us Ug
Solution 1 —0.524 1.570 —1.047 1.570 0.524 —0.524
Solution 2 —0.624 1.640 —1.008 1.707 0.272 —0.327
Solution 3 —0.873 + 1.357i 0.477 — 1.7151 1.150 + 0.175i 0.710 — 1.2201 0.555 + 1.963i —0.749 — 2.175i
Solution 4 —0.873 — 1.3571 0.477 + 1.7151 1.150 — 0.1751 0.710 + 1.2201 0.555 — 1.963i —0.749 + 2.1751
Solution 5 1.360 — 0.7661 1.010 + 1.942i —1.742 — 0.9601 0.093 + 3.057i 2.977 + 0.004i —2.383 — 3.3561
Solution 6 1.360 + 0.7661 1.010 — 1.942i —1.742 + 0.9601 0.093 — 3.0571 2.977 — 0.004i —2.383 + 3.3561
Solution 7 —0.813 + 1.377i 3.041 — 3.846i 3.093 + 0.490i 1.969 +4.311i 2.872 — 0.0951 2.770 — 3.549i
Solution 8 —0.813 — 1.3771 3.041 + 3.8461 3.093 — 0.4901 1.969 — 4.3111 2.872 + 0.0951 2.770 + 3.549i
Solution 9 2417 — 14771 2.394 + 4.353i 2.885 — 0.883i —2.709 — 4.845i 0.204 + 2.443i 0.402 — 3.295i
Solution 10 2417+ 1477 2.394 — 4.353i 2.885 + 0.883i —2.709 + 4.8451 0.204 — 2.443i 0.402 + 3.2951
Solution 11 —1.390 + 1.849i 2.467 — 2.308i1 0.937 + 1.835i 2.699 — 2.228i —0.268 + 2.647i 2.319 — 2.756i
Solution 12 —1.390 — 1.849i 2.467 + 2.308i 0.937 — 1.8351 2.699 + 2.228i —0.268 — 2.6471 2.319 + 2.756i
Solution 13 —1.289 — 0.467i 2.211 + 0.523i —0.888 — 0.1351 1.929 — 0.612i —0.145 + 1.032i 0.273 — 0.414i
Solution 14 —1.289 + 0.4671 2.211 — 0.523i —0.888 + 0.1351 1.929 + 0.612i —0.145 — 1.032i 0.273 + 0.414i
Solution 15 —0.885 — 1.418i 0.873 + 1.3591 0.788 + 0.384i 1.993 — 1.438i —0.563 + 2.088i 0.475 — 0.422i
Solution 16 —0.885 + 1.418i 0.873 — 1.359i 0.788 — 0.384i 1.993 + 1.438i —0.563 — 2.088i 0.475 + 0.422i

Now we compare entries of the matrices T, and T, with the entries of the matrix T. This gives 12 equations for
the angles u; and u,, resp. u4 and us and the common solutions of all equations yield, for every pair of values of
v3 and vg, exactly one value for each angle uy,u,,u4 and us. The equations

r
ZL24 = by,

1
123 = b,

1
122 = In,

1
t3] =13

have the solution u; = —0.5235988065(~ —Z), u, = 1.570796143(~ %) in common. The equations

2
t44 = t4_’4,

2
t43 = t4,37

2
t34 = t3.,47

2
B33 =183

2

have the solution uy = 1.570796143(~ %), us = 0.5235988065(~ ) in common. The complete set of all 16

2

6

solutions is listed in Table A.1. The angles are given in radians and only three digits are displayed.

References

[1] H. Lee, C. Liang, Displacement analysis of the general 7-link 7RR mechanism, Mechanism and Machine Theory 23 (3) (1988) 219—
226.

[2] M. Raghavan, B. Roth, Inverse kinematics of the general 6R manipulator and related linkages, Transactions of the ASME, Journal of
Mechanical Design 115 (1990) 228-235.

[3] M. Ghazvini, Reducing the inverse kinematics of manipulators to the solution of a generalized eigenproblem, in: J. Angeles, G.

Hommel, Kovacs (Eds.), Computational Kinematics, Solid Mechanics and its Applications, vol. 28, Kluwer Academic Publishers,

1993, pp. 15-26.

J. Angeles, Fundamentals of Robotic Mechanical Systems. Theory, Methods and Algorithms, Springer, New York, 1997.

M. Husty, A. Karger, H. Sachs, W. Steinhilper, Kinematik und Robotik, Springer-Verlag, Berlin, Heidelberg, New York, 1997.

J. McCarthy, Geometric Design of Linkages, Interdisciplinary Applied Mathematics, vol. 320, Springer-Verlag, New York, 2000.

J.M. Selig, Geometric Fundamentals of Robotics, Monographs in Computer Science, Springer, New York, 2005.

E. Study, Geometrie der Dynamen, B.G. Teubner, Leipzig, 1903.

K. Brunnthaler, H.-P. Schrocker, M.L. Husty, A new method for the synthesis of Bennet mechanisms, in: Proceedings of CK 2005,

Cassino, Italy, 2005.

[10] J. Naas, H. Schmid, Mathematisches Worterbuch, vol. Band 11, Akademie-Verlag, Berlin, 1974.

[11] J. Harris, Algebraic Geometry: A First Course, Graduate Texts in Mathematics, vol. 133, Springer, 1995.

4
[5
[6
[7
8
9



	A new and efficient algorithm for the inverse kinematics of a general serial 6R manipulator
	Introduction
	Mathematical framework
	Design parameters
	Study-model of SE(6)

	Kinematic image of a 3R serial chain
	Different representations of the Segre manifold
	Parametric representation, span of points
	Algebraic equations
	Intersection of hyper-planes

	Discussion of the inverse kinematics of general 6R manipulators
	Conclusion
	Numerical example
	Parameters of the given manipulator
	Constraint manifold of the first 3R
	Constraint manifold of the second 3R
	Pose of  Sigma L= Sigma R

	References


