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ABSTRACT

Designing a four-bar mechanism that guides a coupler system through five given poses is an old
and well known problem named after L. Burmester. In this paper we show that with kinematic
mapping a much neater, more comprehensive solution is obtained. It produces a univariate
quartic that can be solved explicitly. Furthermore, solutions that yield ordinary four-bars, slider-
cranks or elliptical trammels are identified, a-priori.

SYNTHESE DE MECANISMES PLAN A QUATRE BARRES.

RESUME

La conception d'un mécanisme 2 quatre barres dirigeant un systéme de couplage a travers les
cing poses données souléve inévitablement le probléme de Burmester. Dans notre contribution,
nous démontrons que I’application cinématique permet d'obtenir une définition & la fois plus
précise et plus compléte. Elle géngre un quartique & une variable qui peut étre résolu de fagon
explicite. A priori, elle permettrait également l'identification de résolutions qui donnent & voir
des mécanismes & quatre barres ordinaires, des mécanismes & manivelle et tiroir ou des doubles
tiroirs,
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1 INTRODUCTION

A planar four-bar mechanism is a closed kinematic chain, which consists of four bars, linked
by four revolute joints. One link, called the base, is located in the fixed system Lo, It is
connected with two links to the coupler, the moving system ¥.. Given five finitely separated

Figure 1. Five given poses

poses (position and orientation) %,,... %, of X (Fig.1) one can always find a finite set of
planar four-bar mechanisms, guiding the coordinate system attached to the coupler through
them. Note that not all poses necessarily have to lie in the same assembly branch of the
four-bar. An algorithm to detect a branch defect only from the given poses (i.e. before
synthesizing the mechanism) was presented recently in {15]. The problem of finding the
design parameters of the four-bar when the five poses are given is called the five position
Burmester problem, see Burmester [3). This synthesis problem can be solved exactly due to
the fact, that the five poses provide a number of equations equal to the number of variables.
There exist a number of different ways to solve this problems, most of them use kinematic
properties of the motion itself.

Bottema and Roth {2], McCarthy [13], Lichtenheld [12] and Hunt [9] solved the problem
by intersecting the two center point curves to obtain the centers of the revolute joints in
the fixed system. The centers of the revolute joints in the moving system are found by
intersecting the two circle point curves. These points represent the points moving on circles
in the synthesized four-bar motion. Bottema and Roth [2] also report on a solution of this
problem in a 6-dimensional projective design parameter space by solving a system of two
quadratic and four linear equations.

In this paper the problem is solved in closed form using the 3-dimensional projective
kinematic image space of planar Euclidean displacements. Kinematic mapping was intro-
duced independently by Blaschke [1] and Griinwald [5] in 1911. The first attempt to solve
the Burmester problem using this method is published by Hayes and Zsombor-Murray [7].
Further developments are reported in Hayes et al.[8] and in the master theses of G. Qiao
[14] and J. Nie [11]. Unfortunately in these papers only numerical solutions of the derived
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set of algebraic equations is given. Furthermore the authors do not discuss the design of
special four-bars like slider cranks and double sliders. To the best of the authors’ knowledge
the paper at hand presents for the first time a complete and closed form solution of the
Burmester problem using kinematic mapping, including a discussion of all special cases.

In kinematic mapping every displacement of the Euclidean plane is mapped to a point
of a 3-dimensional kinematic image space. A one parameter motion is mapped to a curve,
a two parameter motion is represented by a surface. As shown in Bottema and Roth {2},
the constraint of a point bound to move on a circle with fixed center and radius maps to a
hyperboloid of one sheet in the kinematic image space. If the circle degenerates to a line,
the hyperboloid degenerates to a hyperbolic paraboloid as shown in Hayes and Husty [6].
In Bottema and Roth this hyperbolic paraboloid is called a special hyperboloid. Therefore
the motion of the coupler, constrained by two points moving on circles, degenerate or not,
is represented by the intersection of two hyperboloids of one sheet, of a hyperboloid of one
sheet and a hyperbolic paraboloid or of two hyperbolic paraboloids in the kinematic image
space. For the algebraic setup of the problem we follow Husty {10}, who used the approach
of Bottema and Roth [2].

The paper is organized as follows: In Section 2 we give a brief introduction to kinematic
mapping of planar displacements. Section 3 deals with mechanism analysis. Section 4
establishes the constraint equations for the synthesis problem and presents conditions to
distinguish, if among the synthesized mechanisms there exist special four-bars that pass
through the five given poses. Furthermore in this section the solution of the synthesis
problem in closed form is obtained. Section 5 gives an overview of the synthesis algorithm
and Section 6 illustrates the algorithm with numerical examples.

2 PLANAR KINEMATIC MAPPING

Every Euclidean displacement d of a plane ¥ can be written as pg = A - p, where pis a
vector whose entries are the homogeneous coordinates of the moving point, expressed in X,
Po represents the same point in the fixed system ¥y. The matrix A is given by

1 0 0
A=1{ a cos¢ —sing |, (1)
b sind cos¢

where (a,b) are the components of the translation vector connecting the origins of & and
Yo and ¢ is the rotation angle of X relative to Ly. In 1911 W. Blaschke and J. Griin-
wald simultaneously introduced kinematic mapping as a mapping & of the planar Euclidean
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Figure 2: All possible four-bar mechanisms: a general one, a slider crank and a double slider
mechanism

displacements {d € SE,) into a projective 3-space by

K:SE;— P
d— r{d) = (Qcosg : Qsin%2 : asin% —bcosgi : a,cosi;2 + bsin -g-) =(Xp: X;: X5 X3).

(2)

Every point in the kinematic image space, except those, where Xy = X; = 0, corresponds to
a unique displacement of the plane. Given a point in the image space the entries of A can
be computed with help of the following relations:

o Xy 20X Xs + XoXg) 22X X5 — XoXs)

LS S b= .
g =%y @ X+ X2 XZ+ X2 )

Using the expressions in Eq.3 po = A -p can be written with A in terms of the homogeneous
image space coordinates:

VA X2+ X? 0 0 z
X | = | 20X+ XoXa) X2—X2 -2X,X, z ]. (4)
Y 2(X1X3 - XQXQ) 2XQX1 Xg - X? U

In the following we will assume, that all points of interest in the moving system (coupler)
are finite. Therefore we set 2 =1 in Eq. 4.
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3 MECHANISM ANALYSIS

In this section the constraint equations representing the constraint of one point moving on
a circle are derived. A circle in the fixed system Zg is given by the equation:

Co(X2+Y?) — 20, X Z - 20,Y Z + (C} + C5 — RYHYZ% =10 (5)

where (Z : X : Y) are the coordinates of the moving point on the circle, expressed in Zo;
(Cy, C) are the coordinates of the center and R is the radius of the circle. The coeflicient
C, acts as a switch: if the circle degenerates to a line, Co = 0, else Cp = 1. Substituting
the values of Z,X,Y from Eq.4 into Eq.5 yields the equation of a surface representing the
constraint in the kinematic image space (Bottema and Roth {2]):

(R? — C2 — C2 - Cp(z® +¢) + 2Ciz + 2C59) X3
+(R2 - Cg - Cg - 09(332 + y2) - 201.’13 - QC‘zy}Xf (6)
+{{4Cyz — 4C1) X1 + (4C0y — 4C) Xy + (—4Cox + 4C1) X3 Xo
+[{4Cy + 4Coz)Xa + (4Coy + 4C9) Xa) Xy — 4Ce X3 — 4Cp X3 = 0.
Given the constants Cy, Cp, R, z,y and Cp = 1, this quadric surface is & hyperboloid of one

sheet, if Cy = 0 the zero set of Eq.6 represents a hyperbolic paraboloid in the kinematic
image space.

4 MECHANISM SYNTHESIS

In the Burmester synthesis problem five poses of a moving system 2 are given. Without
loss of generality we can assume that the fixed system X coincides with one of these poses’.
Thus, the image space point, which represents the identity

(Xo:X1:Xo: Xq)=1(1:0:0:0) (M

has to be on the constraint quadric Eq.6. Substituting condition (7) into Eq.6 yields an
equation for the radius R:
R C?— (2 - Co(a® + %) +2C1z + 2Coy = 0. (8)

Solving Eq.8 for R and substituting into Eq.6 we obtain the simplified circle constrained
equation which will be crucial for the following discussion:

(—XoXam + XoXoy + X1 Xoz + X3 Xay — X3 — X3)Co — XoXaCla + X X530, ©)
“{“X(}X]}ECQ - X?ZC]_ -+ X}X201 - XQX;?}C; - X%QCQ -+ X1X302 =0

For further simplification we can use the fact that Co acts like a switch as mentioned in
Section 3. Therefore we can make the following distinction of cases:

10therwise the application of a unique Euclidean transformation, which does not change the design of
the mechanism, will produce this situation.
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4,1 Case A: At Least One Point Moves on a Line
Due to the fact that in this case Cy = 0 holds, the constraint equation Eq.9 simplifies to
"‘"‘XQXQC’2+X{)X3GI+XO ’13302‘“X?$01+X1X201""XQXfyCi“X?ng'f‘X;XaOQ = {. (10)

Substituting the image space coordinates of the remaining four poses into this equation yields
a system of four bilinear equations in the unknowns Cy, Co,z, 7 : *

[('—'Cgm -+ C;y)X;,; — ClX;g;‘ -+ Cng{]X();‘ -+ (Cp,y -+ Clw)Xf, -+ (—C2X3,' bt 01]{2,')){1,; =0
i=1,...,4.
(11)

Geometrically interpreted, these equations represent four quadrics in the design parameter
space. If the five given poses can be reached by a slider crank or a double slider mechanism,
this system has to have at least one non-trivial solution for the unknowns Cy, Cs, z and Y.
Note, that {Cy, Cy) is the normal vector of the line { on which the point with the coordinates
(z,y) is constrained to move. Therefore only the ratio of C; and Cj is relevant. This
implicates that the system is overconstrained. |

4.1.1 Subcase A;: [ Is Parallel to the X-Axis of I

In this case we have C; = 0 and without loss of generality we can assume C, = 1. The
constraint equations further simplify to:

- X],‘Xg,‘I + Xlggy + ng'Xoi - Xﬂini == {}, i = 1, PN ,4. (12)

Geometrically these equations represent four lines in L. The system (12) is overconstrained
and an easy consideration shows that it has solutions iff the four lines intersect in a point.
Therefore a planar four-bar mechanism with at least one P-joint, having the axis paralle] to
the X-axis of ¥ and guiding a rigid body through the given poses can only exist, when the
four lines in the set of equations (12) are in a pencil of lines. Solving any two equations of
this system for z,y and back substituting the solutions into the other two equations yields
two compatibility conditions F; and Ej:

) _ Xaa(—XF XezXoa+Xot X1 X i~ X 11 X51 X+ X3, X12.X32)
By ( X1 Xip{Xor X1z —X 11 Xo2) + X2s | Xos

(X131 X31 Xo2 X1 Xo1 X13: X132 X32~ K01 Xo1 Xoa X124 Xea Xy Xep Xa2) X3, —
K1aX11{Xo1 X12— X1 Xez) Xi3Xag =0, (13)

) X14{=X3) Xoa Xoa+Xos Xos XFo =X 11 Xaa XTo + X7, X12 X30)
By ( X1 X12{Xo1 Xi2—X11 Xo3) + 'XM o4

{13 X3y X2 X32— KXoy X13 X1 X530~ Kot Xo1 Xoa X0+ Xoa X1 Xoa Xoa) X3, — 14
Xz X11{Xp1 g — X711 Xoz) X34 X1a =0 . ( )

%In Eq.11 the image space coordinates of the ith pose were denoted by (X1, 1 Xa; : Xai 1 Xa).
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4.1.2 Subcase Ag: | Is Not Parallel to the X-Axis of

In this case we can set C; = 1. This yields four constraint equations of the form:

[(-*CQ:L' -+ y)Xh- - X + Cngi}Xm; + (ng -+ ZE)X% + (—Cngi — X2i)X;i =

ie1...4 19

Solving any two equations of the set linearly for = and y and substituting the solutions into
one of the remaining equations one ends up with an equation of degree three in C», which
can be factored. Two solutions of this equation are always complex (Cy = =T}, and do not
correspond to real mechanisms. The other factor of the equation can be solved linearly for
C,. Substituting the solutions for z,y and C; into the remaining fourth equation yields a
compatibility condition Fs, which is displayed in the Appendix.

Remark 1. Geometrically subcases A; and A, are of course identical. They only have to be
distinguished because of the choice of the fixed coordinate system. (see figures in Sections
6.2.1 and 6.2.2)

4.2 Case B: At Least One Point Moves on a Circle

This is the general case and due to the fact, that in this case we can set Cy = 1, the constraint
equation simplifies to

((—=Cyy + Coz) Xy + (y = Co)Xa + (C1 — 2) X3) Xo + (—Cay — Ciz) X}

+{{z + C)Xe + (y + Co)X3) X1 — X5 ~ X =0, (16)

Following Gfrerrer {4] we apply a coordinate transformation for further simplification of the
equations and set:

'-.'17'-'01:251 y—-C'2=2b3
—y — Cy = 2by —z -+ Cy = 2b4. (17)

Applying this linear coordinate transformation, the circle constraint equation rewrites to

{(21’163 + ngbd)xl + 2b3. X5 + 254X3IX0 + (—bg - b% + b% + bﬁ)X?

(b1 Xy — 2 Xe) Xy — X3 = XE =0, (18)

Eq.18 is the most simplified version of the circle constrained equation and will be used to
derive a closed form solution of the general synthesis problem. Substituting the image space
coordinates (Xi; @ Xo; : Xai 1 Xy of the ith pose into this equation yields the following
system of constraint equations:

[{(2b1bg + 2b9b4) X1s + 203 X0 + 2y X 3:) Xoi + (—b] — b + b2 + b3 X%
*{-(—"251}(2;' - 2b2X3i)X1i - X%t - Xg; =0 (19)
i=1,...,4.
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The quadratic terms of the unknowns in the constraint equations (19) can be eliminated by
simple manipulations (multiplication of equations with constant factors and subtractions of
different ones). This yields three bilinear equations in the unknowns by, by, b, by. Performing
the same process once more, one can get rid of the bilinear terms and two equations linear
in the unknowns remain. Solving these equations for two of the unknowns, e.g. by, bs, gives
these two as functions of the other unknowns. Taking one of the bilinear equations and one
out of the system (19) (now dependent just on by, by} and calculating the resultant yields
an equation of degree four in e.g. by, which is too long to be displayed here. This equation
can be solved in closed form (see L. Ferrari (1522-1565)). It has 0, 2 or 4 real roots for
bs. Substituting one of this values in the two equations used for the resultant yields two
quadratic equations in b;. Because of the fact, that these two equations are now redundant,
we can eliminate b3 to produce one linear equation in by and solve for this unknown. We can
use the same procedure to obtain one value of by for each real root of by. As b; and b, are
linear functions of by and by they can be calculated easily.

With the inverse coordinate transformation to Eq.17 we obtain for each solution by, . . ., b4
the coordinates of the center (Cy, C,), which is one of the Burmester points, and the coordi-
nates of the point (z,y) constrained to move on the circle.

5 SYNTHESIS ALGORITHM

Initially, five poses of the moving system L are given as points in the kinematic image
space with homogeneous coordinates (Xp; : X3 : Xy : Xg;) for i = 1,...,5. To obtain the
situation, that one of the given points is the origin, one has to apply a fixed coordinate
transformation to all of the given points. Note that such a fixed coordinate transformation
does not change the kinematic situation. In the following we assume that this transformation
has been performed and we refer just to the remaining four given points in the kinematic
image space {Xo; : Xy : Xoi : X3;) fori = 1,...,4. But one always has to keep in mind, that
the identity is then the remaining fifth Burmester position.

To determine if all positions of a resulting mechanism lie in a commeon assembly mode,
one applies the branching defect detection algorithm of Schrécker, Husty and McCarthy [15].

Afterwards we have to test if among the Burmester points we are searching for there are
points at infinity. This means, that the corresponding point {z,y} of the coupler moves on
a degenerated circle, a line and the synthesized RR chain is a slider. Therefore we have to
substitute the values of the four given image space points into the equations £, (Eq.13), E»
(Eq.14) and E3 (Eq.9 in the Appendix). The different possible cases are dealt with in the
subsections below.

In a next step it is necessary to plug the input data into the general case Equation (19)
to obtain the finite solutions.
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5.1 FE,, E; and E3; Are Satisfied

If all three conditions are satisfied we know that at least two Burmester points are at infinity.
One of them is the point at infinity of the Y-Axis of the fixed frame Xo. Such a motion,
realized by a double slider, is a so called cardan motion (elliptical trammel). It also can

Figure 3: Double slider and replacement of lines

be modelled by rolling a circle ¢ in another circle C having double radius. The center of C
is then the point of intersection 7' of the two given lines Iy, 15, representing the axes of the
sliders. cis on T and on the two moving points @, @z It is well known that the path of
every point of ¢ in the rolling motion is a line passing through 7. One can replace the two
given lines ({1,1;) with any two other lines (l3,1s) having the same point of intersection T,
as long as the moving points {Q1, () and (@3, @) lie on the same circle ¢ (Fig.3). This
verifies, that one can always find a pair of axes for the P-joints with one line parallel to the
X-axes of 5. It is easy to see that the center of ¢ moves on a circle with the same radius
centered in T. Therefore, as shown in Wunderlich {16, a cardan motion can also be realized
by & slider crank, combining one of the possible sliders with this mentioned circle. Note that
C and c are the fixed and moving axodes of both motions. In this case one obtains infinitely
many double sliders and slider cranks, realizing always the same motion.

5.2 Only E; and E; Are Satisfied

If this is the case only one Burmester point is a point at infinity. The axis of the corresponding
slider is parallel to the X-axes of ¥5. Due to the fact that this is only one out of four
Burmester points we additionally have to do the computations described in Subsection (4.2),
which yield four circles, but one of them has infinite radius and corresponds to the axis of
the slider. Assuming that all solutions are real we obtain in this case three general four-bars
and three slider cranks passing through the five given poses.
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5.3 Only F;3 Is Satisfied

In this case the synthesis results in one slider with an axis not parallel to the X-axes of ¥;.
The other Burmester points can be found in the same way as in the subsection before. The
geometric interpretation is analogous to the subsection before: assuming that all solutions
are real we obtain in this case three general four-bars and three slider cranks passing through
the five given poses.

5.4 None of the Conditions E, Es, E5 Is Satisfied

Neither F1, E; nor Ej is satisfied. This means that the synthesis will yield only finite Bur-
mester points. In this case we obtain 4 RR-dyads, which can be combined to 6 mechanisms.

Note that in all cases listed above either 0,1 or 6 mechanisms can be real (0,2 or 4
roots of £q.19 are real). This concludes the discussion of all possible different cases. In the
following a flowchart of the synthesis algorithm is given.

Algorithm 1.
1. Initially five poses of a moving system % are given.

2. Apply a coordinate transformation to all given poses such that one of the poses coin-
cides with the fixed coordinate frame.

3. Now only four arbitrary poses of a moving system remain, given by their coordinates
(Xoi : Xui: Xog : X)) for i = 1,...,4 in the kinematic image space (see Section 2).

‘4. To determine if all poses lie in the same assembly mode see Schricker, Husty and
MecCarthy [15].

5. Substitute the coordinates of the poses in the Equations E1 (Eq.13), E2 (Eq.14) and
E3 (sce Appendix) to determine if some of the four Burmester points we are searching
for are at infinity.

o Ey, By and B are satisfied: at least two Bourmester points are at infinity and
one of them is the point at infinity of the Y-axis of the fixed frame.

e Only £ and F, are satisfied: only one Burmester point is a point at infinity. This
point is the point at infinity of the X-axes of the fixed frame.

» Only Ej is satisfied: only one Burmester point is a point at infinity. This point
is not the point at infinity of the X-axes of the fixed frame.

o None of the conditions £y, £, and Fj; is satisfied: none of the Burmester points
is at infinity.

6. Substitute the input data into the general case equation Eq.(19) to obtain the finite
solutions.
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6 NUMERICAL EXAMPLES

To verify the established theory we have designed several mechanisms and used them to
obtain five input poses.® The design parameters are listed in Tables 1, 4,7 and 10. Then the
given poses were taken as input to the algorithm described above to synthesize four-bars.
Note that in any case the algorithm has to return the input mechanisms and other RR-chains
or degenerate RR-chains. The results are presented in tables, which show the synthesized
mechanisms, the five chosen poses, the two points moving on circles or lines. In the figures
we show several resulting mechanisms with the paths of three points of the moving system
during the coupler motion. We mention that the depicted coordinate frames have to be
thought rigidly attached to the coupler. For sake of clearness of the figures this connection
has been omitted.

6.1 General Four-Bar Mechanism

Co 1 1
Ci 2 [
Ca 2 1

z | 7.3821 | 9.1605
y { 42434 | 1.1670

Table 1: Design parameters of mechanism 1

pose 1 pose 2 pose J pose 4
o | -0.245005 | -0.914683 | -2.056744 | ~3.064058
b ] 0623260 | 1,2d0571 | 2.235073 | 3.170009
¢ | 0101061 | 0.1168316 | 0.072202 } -0.013746

Table 2: Given relative poses

solution 1 | solution 2 | solution 3 | solution 4
Co 1 1 1 1
Cy | -34.640483 1.995996 6.000008 | -4,402381
Ca 1 -29.947423 2.060000 0.5999956 | 16.136008

x 18.091483 7.382006 9.160473 | -3.697626
] 17.844191 4.243444 1106873 | 13.877304
=~ R | 71.166896 5.830056 3.162275 2.366097

Table 3: Obtained results

The solutions 2 and 3 are the parameters of the input mechanism. Note that the given
poses yield four real solutions. Therefore one can synthesize out of the four RR-dyads six
real four-bar mechanisms that guide the coupler system through the given five poses.

8Note that in all examples one pose is the identity and therefore will not be listed in the tables.

Transactions of the CSME/de ta SCGM Vol. 30, No.2, 2006 307



Figure 4: Two out of the six real general four-bar mechanisms that guide ¥ through the

given poses

6.2 Slider Cranks
6.2.1 1 of the Input Mechanism Is Parallel to the X-Axis of ¥,

Ca { i
[#]) oi 10
[ 1 [i]
z 0§10
¥ | 10 4

Table 4: Design parameters of mechanism 2

As one can see in Table 6: solutions 2 and 4 yield the given input slider crank mechanism.
There are again four real solutions, only one solution corresponds to a slider. The other

pose 1 | pose 2 pose 3 pose 4
1.250980 | 2.246787 | 3.002000 ;| 3.411072
D.002722 | 0.048305 | 0.386680 1.631868

-0,023335 | -0.008330 | -0.278897 | ~0.5709360

Table 5: Given relative poses

solution 1 solution 3 | solution 4

[ 1 ] 1 1
Cy | 0.655364 [i] 8.398954 | 10.000008 |

2 | -B7.118819 1 0.158311 | -0.D00004

T 0.850203 [ 8.425612 | 10.000007

y | 11310480 Hij 5.257908 3.589990

| = R | 68426175 [ 5.098667 2.999504

Table 6: Obtained results
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solutions are cranks. Therefore one can design three slider cranks and three general four-
bars that guide the coupler through the given five poses.

Figure 5: A slider crank and a general four-bar mechanism that guide I through the given
poses

6.2.2 | of the Starting Mechanism Is Not Parallel to the X-Axis of ¥,

Co 011
Cy 111 __pose 1 pose 2 pose 3 pose 4
ot 113 — 3570030 | 6.140158 | 7.847402 | 9.480527
z 10| 1 5T 0146368 | -0.300970 | -0.460844 | -0.719100
71 318 % 0.021168 | 0.456081 | 0.580363 | 0.712381
Table 7: Design parameters of mechanism 3 Table 8; Given relative poses

solution 1 | golution 2 | solution 3 solution 4

Ca [3) 1 1 1
[+ 1 1.860952 1.153186 53.908851
[&7 -1 3.000680 3117102 | -17.427364

z 9.95999 1.000438 1.071432 9.746250
¥ 2.99959 7.998951 7.993320 7.184278
= R s 4.999271 4,881911 50,657574

Table 9: Obtained results

Apart of the fact, that the axis of the slider is not parallel to the X-axis of Lo, the results
of this case are analogous to the results of the previous case.
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Figure 6: One of the three slider cranks

6.3 Double Slider Mechanism

In this case we obtain three solutions (Tab.12): solutions 1 and 2 correspond to the input
sliders. Solution number three is a crank. As expected, the center of the third solution is
the point of intersection of the lines of the input mechanism, the moving point is the center

of ¢
ColD1}1 0
v {1146 pose 1 pose 2 pose 3 pose 4 |
T |01 o | 2.855481 | 5.609623 | B.169182 | O.R0T454
PR ERN b | -2.508287 | -4.364129 | -5.950480 [ -B.513084
TRIENE & | 0.341855 | 0.680246 | B.008793 | 1.207196
Table 10: Design parameters of mechanism 4 Table 11: Given relative poses
sotution 1 | solution 2 | solution 3
Ch 1} 1] i
i 0 1 | 2000984
o T 167568 | 0.000000
P 8 888721 | 5.400007
¥ 3 6.51333 | % 500004
= co 00 3.535545

Table 12: Obtained results
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Figure 7: A double slider and a slider crank mechanism that guide ¥ through the given poses

7 CONCLUSION

In this paper a complete and closed form solution of the five position Burmester problem
using kinematic mapping was presented. As a new result we have found three equations
that will determine if there are sliders among the RR-chains to be synthesized. In detail all
possible combinations of sliders, elliptical trammels and general four-bars were classified and
discussed. The theoretical results were illustrated by a number of numerical examples. The
investigation of the geometrical structure of the design parameter space and the meaning of
equations By, £y and Ey is subject of further research.
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9 APPENDIX

B3 (meutxmxoaxalea-’fn - X34 X1aXeaX13 X X X1y - Xaaxmxfaxuxmxczxzn - Xa«:«’fmxmxnx?zxasxm
+ X34 X04X03X2a X 11 X5 X01 + XaaXoe XTaX 11 X01 X12Xaz + Xaa XoaX 9 XeaX12X01 X2 — XasXogXoaX1aXTa KXo Xay
+ X34 X04X13X], X12 X33 X2 — X34X04X03X:3X?;Xm-’€an + X34 X0a X03X13X )y Xaa Xaz — X3¢XpsXozX13X ] X1aXaa
— X34 Xpa X33 X0a X1 X11 X1 + XaeXos Xos X1aX Fa X 11 Xan ~ X X11 X2 X223 Xa1 Xag X13 ~ X33 X11X12 X0z X91 X13X22
+ X3, X131 X1 X33 X0s X21 X1a — X1aXos Xo1 Koz Xaa X2 X ]y + X1aXoaXo1 XPu XiaXaa K21 + X14Xpe Xon X By X 13 Xy Xaa
— X14Xae X0y Xy Xa1 Xos ¥as + XpaXoaXoa X Xos X33 Xay — X1eXoaXo1 X1aXa: X Xaa — X5 X0s Xo1 X 13 Xq1 Xaa X Ty
- memxglxezxzzxzaxza =~ X14X04X}) XoaXazX0aXag — NpsXos X Ty Koz XaaXsaX1a + X1aX0aXT) X0z X3y Xga Xaz
- X4 X04 X3, X1aXoa Xaa X1a + XraXos X§) X123 X2 XoaXaa + X1aXoa X5 X2 Xaa Xa3 Xas + X1aX0a X X1 X23 Xga X a2
+ Xuxoaxuxozxmxi'axm + XstszxXo:Xa:XazX?; + Xu?‘-'NXnX?gXlaXasXm - X:a-’foaxnxfgxxaxasxzs
- X14X04X 11 X35 Xa1 Xa3 Xoa ~ X1aXos X 11 X T2 Xa1 Xoa Xaa + X14X04 X 11 X 12 X1 X5 Koz = X1a Xaa X121 X123 X33 X1 X35
- X24X14 X33 X11X01 Xea Xaz - XaaX1aX13 X110 X XaaXox + XzaX1aX03X2aX 13 X (e Xon + X2 X 14X ] X1 Xo1 X12 X3z
+ X2aX18X 3 X0a X 12 X01 %21 ~ X2e X 16 X0a X1a X T Xar Xa1 + X24 X16 X13X T, X12 X33 Xo2 — X:aaxmxoaa’fzax?;xga-’t’oa
+ X2aX15X03X13 X3, Xoa X2z — X2e X1 X03 X 13Xy X12Xaz = K24 X1a Xy XoaX1a X 11 X1 + X2a X1aXoaX1a X X1 X
w X3aX1aXTaXuXo1 XeaXaz + XaeX1aX1aX 11 X FaX23X01 + X3e X14 XoaXaa X1 X g Xos = Xga X34 X X113 X1 Xpa Xag
+ XagX1aXT5 Xoa X9 Xa: Xor — Xas X1aXoa X 13 X Ta Xar Xo1 — X3aX1aX2aXF, Xaa Xas Xoa ~ X34 X124 Xoa X33 X3 X142 Xpa
+ Xos X14X03X13 X1 X0a X33 + XasX1aXoa X10 X1y K12 X23 + XaaX1a XT3 Xoa X12X21 X11 + X24 Xos Xo3X15X]3 Xa1 Xpa
+ X:axmxfaxuxmxmxsn + X:-:anxfaxuxmxmxn - XaaeXoa Xy Xaa X 12 X2y Xy — X4 Xog X g X02X12X21 %11
+ X34 XpaXos Xsa X ¥y X1 X0z — XaaXaeXoa X1a X5 X0 X33 + Xaa XoaXaaX1a X3 Xa1 Xo1 — XaaXoaXoaX1a X X 12Xz
— X324 XosX03 X3 X11XTaXar + X34 Xga X1a Xy X12Xz3 X0z ~ Xa4 XoaX1a X113 XTa Xa3 X1 + X33 Xo1X11 X2 Xoa Xas Xas
+ XFy Xo1 X1 Xoa Xaa Xo Xaa + X34 X01 X113 X0 XaaXas X1a = X§y Xo: X 15 Xoa Xaz XoaXas + X% Xo1 X11 X12X02 X33 X138
— X33 X01 X112 X13X2aXas Xzg ~ Xi X1 X1 XroXaaXaa X1y — Xie X1 X11X12 X33 X0a Xaz — X3, Xp1 X2 X12X13X31 X33
- X{4Xo1 Xoa X1 X 1021 Xaz ~ X Py Xor Xoa Xso X1 Xas Xaa + X34 Xo: X0z X1 X351 Xaa Xea — XFs Xo1 X0z XaaXa1 X13 X2
+ X34 X0, Xoa X33 Xos X1 X13 + X3y X0 X12X03 Xa1 X13 X0z + X T4 X1 X123 Xaz Xoa X1 X1a ~ X e X1 Xo2 X12 Xpa Xaa X2y
+ X4 X1 Xoa X312 X13 X351 Xag + X3, X1 1 Nog X1 X531 Xaa Xoa + XTe X 11 Xoa X1z Xa) Xoa Xaz ~ X} X XoaXgy XpaX1aXeg) =8
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