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ABSTRACT- Designing a movable spatial four-bar mechanism that guides a coupler system through three given
poses is an old and well known problem. The resulting mechanism has to be overconstrained and is called Bennett
mechanism. We give a completely new solution of this problem using kinematic mapping and multidimensional
geometry. This approach provides a new insight in the problem. First of all it shows that the synthesis problem is
linear. Furthermore it allows to give a simple proof for the uniqueness of the synthesized mechanism and shows
that the corresponding Bennett motion is represented by a conic in the kinematic image space.
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1 INTRODUCTION

A spatial four-bar mechanism is a closed kinematic chain, which consists of four bodies, linked by four revolute
pairs. It is well known that a spatial four-bar is only mobile when it is a Bennett mechanism. To avoid the
trivial cases of planar and spherical four-bar mechanisms we assume, that the revolute axes are neither parallel nor
incident with the same point. One of the four bodies is called the base and is located in the fixed systemΣ0, which
is connected with two links to the coupler, constituting the moving systemΣ.
According to the formula of Gr̈ubler-Kutzbach-Tschebyscheff a closed kinematic chain consisting of four bodies
linked by four revolute joints having skew axesa1, . . . ,a4 is rigid. Its theoretical degree of freedom is−2. Bennett
has shown that the system becomes overconstrained when additional conditions are satisfied. Using the notation
defined in Fig. 1 these conditions are:

Figure 1: Bennett mechanism

1. Opposite links have the same lengthsa andb, respectively.

2. With φi := ∠(ai ,ai+1) for i = 1, . . . ,4 anda5 := a1 we haveφ1 = φ3 =: α andφ2 = φ4 =: β .
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3.
a

sin(α)
=

b
sin(β )

.

From the conditions above follows that the common normals of such a mechanism form a skew quadrilateral.
The mechanism and its basic properties were described in Bennett (1903, 1913–1914). The Bennett linkage is of
special interest not only because of itself but also because it forms a fundamental part of several other mechanisms
like Goldberg’s linkage, Waldron’s linkage, Wohlhart’s linkage. Therefore the analysis of the Bennett linkage has
obtained considerable amount of attention. An overview on the results can be found e.g. in Hunt (1978). One
result of the analysis is of special interest within the scope of this paper: Krames (1937) showed that the motion
generated by the coupler system of the Bennett mechanism is linesymmetric. This means, the motion can be
generated by reflecting a base coordinate systemΣ0 in the generators of a ruled surface, called the base surface.
He showed that in the case of the Bennett motion the base surface is a regulus of a one sheet hyperboloid.
In this paper we are concerned with mechanism synthesis. Several poses (position and orientation) of the moving
system – sometimes called precision points – are available (see Fig. 2) and we are looking for the design parameters
(Denavit-Hartenberg-parameters) of the spatial mechanism that guides a rigid body through them.

Figure 2: Synthesis of theRR-chain

The first who dealt with the synthesis problem of a Bennett mechanism was Veldkamp (1967). He showed that
three instantaneous poses can be reached by twoRR-chains which form one mobile 4R-mechanism as solution.
Suh and Radcliffe (1978) found the same result for the discrete type of this problem: Given three finitely separated
posesΣ1,Σ2,Σ3 of Σ (Fig. 3) one can always find a unique Bennett mechanism, guiding a coordinate system
attached to the coupler through them. Tsai and Roth (1973) showed that the system of synthesis equations can be
reduced to a polynomial of degree three which has to be solved.

Figure 3: Three poses ofΣ and a base coordinate system
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Perez and McCarthy (2000) also report on solving the synthesis problem of a Bennett linkage: They use the
result of Huang (1996), who found out that the axes of finite displacement screws of a Bennett mechanism form
a cylindroid. All constraints lead to 10 equations in 10 unknowns; Perez and McCarthy formulate them in the
principal axes frame and reduce them to four equations in four unknowns, which can be solved. The elimination
yields a univariate polynomial of degree three in one of the unknowns. The unique positive root of the polynomial
leads to a unique Bennett mechanism.
In this paper the Bennett mechanism synthesis is solved in closed form using methods of multidimensional ge-
ometry in the seven dimensional kinematic image space of Euclidean displacements. The main idea is to find the
algebraic representation of anRR-chain in this space. This algebraic representation turns out to be the intersection
of a three-plane with the Study-quadric. To solve the Bennett synthesis problem we have to look for intersection
possibilities of two three-planes. Therefore for the first time the geometric nature of the Bennett synthesis problem
is revealed. This geometric preprocessing leads to a considerable simplification of the computational procedure.
The paper is organized as follows: In Section 2 we give a brief introduction to representations of Euclidean
displacements using dual quaternions and recall kinematic mapping. In Section 3 we derive the kinematic image
of RR-chains and Bennett motions. In Section 4 we solve the synthesis problem using this representation. Section 5
illustrates the presented algorithm with a numerical example.

2 PRELIMINARIES

Euclidean displacementsD can be described by

x′ = Ax + t, (1)

wherex′ andx represent a point in the fixed and moving frame, respectively,A ∈ SO(3) is a 3×3 proper orthogonal
matrix andt = (t1, t2, t3)T is the translation vector (Husty et al. (1997); McCarthy (2000)). Expanding the dual
quaternion representation (Husty et al. (1997), section 3.3.2) and using an operator approach the matrix operator
corresponding to the normalized dual quaternionq = (x0,x1,x2,x3)+ ε(y0,y1,y2,y3) is given by

M :=


1 0 0 0

2x0y1−2y0x1−2y2x3 +2y3x2 x2
0 +x2

1−x2
3−x2

2 −2x0x3 +2x2x1 2x3x1 +2x0x2

2x0y2−2y0x2−2y3x1 +2y1x3 2x2x1 +2x0x3 x2
0 +x2

2−x2
1−x2

3 −2x0x1 +2x3x2

2x0y3−2y0x3−2y1x2 +2y2x1 −2x0x2 +2x3x1 2x3x2 +2x0x1 x2
0 +x2

3−x2
2−x2

1

 . (2)

The pointx = (x,y,z)T is transformed tox′ = (x′,y′,z′)T according to(1,x′T)T = M · (1,xT)T . The entries(xi ,yi)
in the transformation matrixM have to fulfill the quadratic identity

x0y0 +x1y1 +x2y2 +x3y3 = 0 (3)

and at least onexi 6= 0. The lower right 3×3 sub-matrix ofM is an element of the special orthogonal group SO(3)
and thexi are its Euler-parameters. This representation of Euclidean displacements is sometimes called Study-
representation and allows the following multidimensional interpretation: Eq. 3 defines a six dimensional quadric
hyper-surface in a seven dimensional projective spaceP7. This quadricS2

6 is called Study-quadric and serves as a
point model for Euclidean displacements. The quadricS2

6 is of hyperbolic type and has the following properties:

1. The maximal linear spaces onS2
6 are three dimensional (generator spaces).

2. Each tangent space cutsS2
6 in a five dimensional cone.

3. The generator spacex0 = x1 = x2 = x3 = 0 is one of the spaces mentioned above but it does not represent
regular displacements, because in this space all Euler-parameters would be zero. Therefore this space has to
be cut out ofS2

6. A quadric with one generator space removed is called sliced.

The mapping

κ : D → P∈ P7

M(xi ,yi)→ (x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3) 6= (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0) (4)

is calledkinematic mappingand maps each Euclidean displacementD to a pointP onS2
6 ⊂ P7.
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Given a displacementD as in Eq. 1 one can use Cayley’s theorem (Husty et al. (1997), p. 305) to compute the
Euler-parametersxi with help of the skew symmetric matrixS associated with the 3×3 lower right sub-matrixA
of M .

S= (A− I)(A + I)−1,

whereI denotes the 3×3 unit matrix. Theyi are given by

y0 =−1
2
(t3x3 + t2x2 + t1x1),

y1 =−1
2
(t3x2− t2x3− t1x0),

y2 =−1
2
(−t3x1 + t1x3− t2x0),

y3 =−1
2
(−t3x0 + t2x1− t1x2).

(5)

3 SYNTHESIS OF THE BENNETT MECHANISM

The Bennett mechanism is a closed 4R-chain. For the synthesis of such a mechanism we attach two of the revolute
axes to the fixed system and two axes to the moving (coupler) system. Now we prize open the coupler link and
obtain two openRR-chains. The basic idea of the synthesis is now: We map the possible displacements of the first
RR-chain ontoS2

6. This yields the constraint manifoldM1 of theRR-chain in the kinematic image space. The same
procedure we perform with the otherRR-chain and obtain a second constraint manifoldM2. Possible assembly
modes of the twoRR-chains correspond to intersection points ofM1 andM2.

3.1 CONSTRAINT MANIFOLD OFRR-CHAINS

Using the Denavit-Hartenberg notation we compute the forward kinematics of theRR-chain. This yields a coordi-
nate transformation of the type

x′(u1,u2) = A(u1,u2)x+ t(u1,u2). (6)

u1 andu2 are the rotation parameters of the two rotations about the axes of theRR-chain. We apply the procedure
explained in Section 2 to obtain the Study-parameters which are in this case functions of two parametersu1,u2:

xi = fi(u1,u2), yi = gi(u1,u2), i = 0, . . .3. (7)

Elimination of the two parameters yields five equations in the unknownsxi ,yi , i = 0, . . . ,3. It turns out that four
equations are linear and one equation is the equation of the Study-quadricS2

6. This result agrees with Selig (1995),
who derived a normal form of the equations using dual quaternions and exponential mapping. The multidimen-
sional interpretation of the five equations is as follows: each linear equation describes a (six dimensional) hyper-
planeL6 of P7. The intersection of these hyperplanes is a linear three-planeL3. This means that all possible poses
of the end-effector of theRR-chain are inL3. Note that not allL3 ⊂ P7 correspond toRR-chains. The constraint
manifoldM of anRR-chain is therefore the intersection ofL3 andS2

6.
With this knowledge we have a much simpler algorithm to derive the five linear equations describingM : Each
three-plane (i.e. a three dimensional space) is determined by four points. To find the four linear equations we
choose four discrete sets of rotation anglesui

1,u
i
2, i = 1, . . . ,4. These four sets correspond to four pointsPi on the

Study-quadric. Now we construct four arbitrary hyperplanesL6 containing the four pointsPi . This is done by
adding three arbitrary pointsQk

j , j = 1, . . . ,3, k = 1, . . . ,4 of P7 different for each hyperplane and computing the
Grassmann determinant:

Ei =

∣∣∣∣∣∣
x0 x1 x2 x3 y0 y1 y2 y3

pi0 pi1 pi2 pi3 pi4 pi5 pi6 pi7

qk
j0 qk

j1 qk
j2 qk

j3 qk
j4 qk

j5 qk
j6 qk

j7

∣∣∣∣∣∣ = 0, i = 1, . . . ,4, j = 1, . . .3, k = 1, . . . ,4. (8)

Due to the fact that a Bennett mechanism consists of twoRR-chains, one has to intersect two three-planesL3
1, L3

2
in P7. According to the well known dimension formula

dim(U ∩V) = dim(U)+dim(V)−dim(U +V) (9)

whereU,V denote sub-spaces of ann-dimensional spacePn, the intersection of two three-planesL3
1, L3

2 in a seven
dimensional spaceP7 can be:
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• dim(L3
1∩L3

2) =−1,⇒ intersection is empty,

• dim(L3
1∩L3

2) = 0,⇒ intersection is one point,

• dim(L3
1∩L3

2) = 1,⇒ intersection is a line,

• dim(L3
1∩L3

2) = 2,⇒ intersection is a two-plane

• dim(L3
1∩L3

2) = 3⇒ L3
1 andL3

2 coincide.

The first case is the general case. The mechanical interpretation is that two generalRR-chains never can be as-
sembled to form a closed 4R-mechanism. There have to be conditions to make this happen. When the constraint
manifolds are chosen such that they come from a 4R-chain, then they have exactly one point in common, which is
on S2

6 (forward kinematics of a serial 4R-chain). This fact is also a simple proof that the inverse kinematics of a
general 4Rserial chain has one solution. The case of the line intersection is only possible for special 4R-chains for
which the inverse kinematics then has two solutions, which correspond to the two intersections of the line withS2

6.
As we know, the Bennett motion is a one-parameter-motion, represented by a curve in the kinematic image space.
Therefore only the cases of a line, which lies completely onS2

6 or a two-plane are of interest. The case that the line
is contained inS2

6 is not possible. Following Baker (1998), who argued via screws, the relative motion between
opposite links of a proper Bennett loop can be neither purely rotational nor purely translational at any time. Since
straight lines onS2

6 correspond to rotations or translations we can restrict ourselves to the case of dim(L3
1∩L3

2) = 2.
The kinematic image of the Bennett motion is therefore the intersection of a two-plane with the Study-quadricS2

6.
This yields another confirmation of the fact that the synthesis of a Bennett needs three precision points. Three
precision points correspond to three points on the Study-quadric and span the two-plane. This agrees with Suh and
Radcliffe (1978). Summarizing we have:

Theorem 1. Bennett motions are represented by planar sections of the Study-quadric and vice versa.

The intersection of the two-plane andS2
6 is a quadratic curve. In this sense Bennett motions can be regarded as

the simplest non-trivial one parameter space motions. A direct consequence of the above considerations is the
following

Corollary 1. Bennett linkages are the only movable4R-chains.

It should be noted that to the authors’ best knowledge up to now there exist only complicated algebraic proofs of
this result (see for example Karger).

4 SYNTHESIS ALGORITHM

Given are three precision pointsA, B, C ∈ S2
6, corresponding to three poses of a coordinate system. The goal is

to compute the design parameters of the Bennett mechanism that guides the coupler system through these poses.
Theorem 1 states that the Bennett motion corresponds to the conic onS2

6 passing throughA, B andC. This conic
can be parameterized rationally according to

f(s) = p0 +sp1 +s2p2, p0,p1,p2 ∈ R8.

In Section 5 it is shown how to compute the coefficient vectorspi . Applying inverse kinematic mapping by
substituting the components of the vector functionf(s) into (2) yields a rational parameterizationM(s) of the
Bennett motion. The trajectory of a point having homogeneous coordinates(1,x,y,z)T is the rational quartic of
second kind

c(s) := (w′,x′,y′,z′)T(s) = M(s) · (1,x,y,z)T . (10)

After this step of the algorithm the motion of the coupler system of the synthesized Bennett mechanism is deter-
mined. For the mechanical design the axes and the Denavit-Hartenberg-parameters of the mechanism are neces-
sary. To compute the parametric representation of the axes we follow the procedure developed in Bottema and Roth
(1979) in a slightly modified and adapted way. This is necessary because the motion is not given in the canonical
form on which the geometric arguments in Bottema and Roth are based.
In Bottema and Roth it is shown that there exist two pairs of conjugate complex isotropic planesψi , ψi (i = 1,2)
whose points have trajectories of degree three or lower. Their pairwise intersections consist of four complex and
two real lines. The two real lines are the moving axes of the Bennett mechanism and the paths of points on these
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lines are circles. The circles are in parallel planes having centers on common axes, the two real circle axes are the
fixed axes of the mechanism.
From Eq. 10 it is known that all trajectoriesc(s) are parameterized with rational functions of degree four. This
is also true for the cubic trajectories and the circles. The only possibility to obtain a rational parameterization of
degree four for twisted cubics is degree elevation of a rational cubic parametrization (see Farin (2001)). Therefore
in case of a cubic trajectory the parametric representation can be written in the form

c(s) = (s− s̃) · c̃(s) (11)

wheres̃∈R is constant and̃c(s) consists of cubic polynomials. We have to determine points in the moving system
such that they have common zeros of all of their coordinate functions. As we know from above the solutions will
be the points in the planesψi andψi . Since the homogenizing coordinatew′(s) is independent ofx, y andz (see
(2)), we can compute the zeros of this function. It turns out that the four zeros are pairwise conjugate complexs1,
s1, s2 ands2. The equations of the isotropic planes are found by substitutingsi andsi in eitherx′(s), y′(s) or z′(s).
The computation of the mechanism’s fixed and moving axes is now elementary.
The implementation of this algorithm is straightforward. The most expensive step is solving the quartic equation
w′(s) = 0. As opposed to previous solutions no system of equations has to be solved and no discussion of reality
of roots is necessary.

5 NUMERICAL EXAMPLE

We start with three pointsA,B,C on the Study-quadric corresponding to three arrays of Study-parameters which
represent the three given poses:

a := (0,17,−33,−89,0,−6,5,−3)T ,

b := (0,84,−21,−287,0,−30,3,−9)T ,

c := (0,10,37,−84,0,−3,−6,−3)T

Conics passing throughA,B andC can be parameterized in the formf(s) = p0 +sp1 +s2p2, where

p0 := αa, p2 := ωc, p1 := b−p0−p2.

We want to determineα andω so thatf(s) ∈ S2
6 for every parameter values.

We insertf(s) in the algebraic equation (3) ofS2
6 and obtain a polynomialm= ∑4

i=0simi . The coefficientsm0 and
m4 vanish because ofp0,p2∈S2

6. Furthermore,p1∈S2
6 implies thats= 1 is a zero ofm. Hencem̂:= s−1(s−1)−1m

is a linear polynomial ins that has to vanish identically. This yields two linear equations for computingα andω.
The resulting parameterized equation off(s) is

f(s) =



0,
22134+39870s+4440s2

−42966+9927s+16428s2

−115878−73843s−37296s2

0,
−7812−14586s−1332s2

6510−1473s−2664s2

−3906−1881s−1332s2


.

We substitute these Study-parameters in the matrix (2) to obtain the parameterized equationc(s) = ∑4
i=0cisi of the

trajectory of the point(1,x,y,z)T . The vector coefficients in this representation are

c0 =


15763701996,

1844381952−14783874084x−1902018888y−5129687304z,
1983388680−1902018888x−12071547684y+9957628296z,
−383116104−5129687304x+9957628296y+11091719772z

 ,

c1 =


18025476504,

704147640−14495546184x−2986660404y−12508993644z,
4928848596−2986660404x−19731570432y+4044834864z,
−644404068−12508993644x+4044834864y+16201640112z

 ,
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c2 =


14569381678,

−400565028−10997048038x+1137275604y−8568256788z,
3289200888+1137275604x−17195672812y−2068446618z,
254221920−8568256788x−2068446618y+13623339172z

 ,

c3 =


6188304168,

−591557184−5480212968x+1398120480y−3629708880z,
1407633624+1398120480x−5535981144y−3166660392z,
280175544−3629708880x−3166660392y+4827889944z

 ,

c4 =


1680584400,

−242477280−1641157200x+145880640y−331188480z,
111184704+145880640x−1140826032y−1225397376z,
20107872−331188480x−1225397376y+1101398832z

 .

The four coordinate functions ofc(s) have four common zeros. We compute them as the zeros of the homogenizing
(first) coordinate function

15763701996+18025476504s+14569381678s2 +6188304168s3 +1680584400s4,

which is independent ofx, y andz. Its roots are

s1 :=−1.389840+1.215278I , s1 :=−1.389840−1.215278I ,

s2 :=−0.451278+1.596314I , s2 :=−0.451278−1.596314I .

The four corresponding tetrahedron planes are obtained by substitutings1,s2,s1 ands2 in either of the remaining
coordinate functions ofc(s). We intersect the two pairs of conjugate complex planes and find the following
parameter description of the real intersection lines

a2 : (5.196983,−0.205495,−5.042517)T +λ · (0,−0.225164,−0.004477)T ,

a3 : (−14.731250,0.324224,−13.187488)T +λ · (0,0.193593,−0.004366)T

in Σ. They constitute the moving axes of the Bennett mechanism. The fixed axes as axes of path circles have the
parametric descriptions

a1 : (−8.843661,0.194642,−7.916889)T + µ · (0.004877,0.193486,0)T ,

a4 : (0.572393,−0.022633,−0.555380)T + µ · (−0.004614,−0.224981,0)T .

The fixed and moving axes, the sweep surfaces of the moving axes during the motion (hyperboloids of revolution)
and the common normals between successive axes are displayed in Fig. 4.

6 CONCLUSION

A new method for the synthesis of Bennett mechanisms using kinematic mapping was presented. In contrast to
earlier methods, it relies on multidimensional geometry, clear geometric interpretations and avoids complicated
equation systems. A new and simple proof for the uniqueness of the synthesized Bennett mechanism was given.
It turned out that the kinematic image of a Bennett motion is a conic in the kinematic image space. The conic can
be parameterized rationally and this yields a rational parameterization of the corresponding motion in 3D-space.
Once the motion is determined, it is easy to calculate the axes of the mechanism performing in that motion. It is
believed that this method can be applied to many similar synthesis problems.
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