
MECH 576
Geometry in Mechanics

September 16, 2009

Parametric and Bézier Curves

1 Parametric Cubics and Quintics

Before studying the following material, review and absorb the introductory ideas dealt with in
MECH 289, Design Graphics, Module M2, section 6 Parametric Curves and Surfaces,
pp.56-65. The invariant direct and inverse transformations between geometric and algebraic forms
will be derived using the algebraic coefficient vectors aj and the standard geometric form vectors
p0, p1, pu

0 and pu
1 , puu

0 and puu
1 . The transformation operators are 4 × 4 and 6 × 6 coefficient

matrices that pre-multiply the geometric form vectors, E.g.,

[
a5 a4 a3 a2 a1 a0

]


u5

u4

u3

u2

u1

u0

 =




a00 a01 a02 a03 a04 a05

a10 a11 a12 a13 a14 a15

a20 a21 a22 a23 a24 a25

a30 a31 a32 a33 a34 a35

a40 a41 a42 a43 a44 a45

a50 a51 a52 a53 a54 a55




p0

p1

pu
0

pu
1

puu
0

puu
1





T 
u5

u4

u3

u2

u1

u0

 (1)

Eq. 1 provides the 36 algebraic coefficients in the parametric quintic equations, for a spatial curve,
with three equations -one for each of the three Cartesian coordinates of any point on the curve
segment defined by the parameter u in the range 0 ≥ u ≤ 1- in a set of three. The first is the
explicit algebraic form

a5u
5 + a4u

4 + a3u
3 + a2u

2 + a1u
1 + a0u

0 = p (2)

Note that u0 = 1. The second and third are the first and second derivatives of Eq. 2.

5a5u
4 + 4a4u

3 + 3a3u
2 + 2a2u

1 + a1u
0 = pu, 20a5u

3 + 16a4u
2 + 6a3u

1 + 2a2u
0 = puu (3)

Standard form geometric to algebraic transformation of parametric cubics is similar except a5, a4,
u5, u4,puu are absent and the matrix [aij] is reduced to 4× 4.

1.1 Other Geometric Forms

Recall Eq. (23) on p.62 of the review material recommended, above, in section 1 and reproduced
below.

[A] = [P]4P [U]−1 = [P]SGF [U]−1
SGF , therefore [P]SGF = [P]4P [U]−1

4P [U]SGF

1

This permits the conversion of any invariant matrix to standard form. E.g.,

 a5x a4x a3x a2x a1x a0x

a5y a4y a3y a2y a1y a0y

a5z a4z a3z a2z a1z a0z




u5
a u5

b u5
c u5

d u5
e u5

f

u4
a u4

b u4
c u4

d u4
e u4

f

u3
a u3

b u3
c u3

d u3
e u3

f

u2
a u2

b u2
c u2

d u2
e u2

f

u1
a u1

b u1
c u1

d u1
e u1

f

u0
a u0

b u0
c u0

d u0
e u0

f


=

 pax pbx pcx pdx pex pfx

pax pbx pcx pdx pex pfx

paz pbz pcz pdz pez pfz



(4)
Eq. 4, essentially Eq. (19) on p.60 of the review material recommended, above, in section 1,

represents six given point position vectors pa, . . . , pf that are defined at six given values of
u, i.e., ua, . . . , uf . Let us examine the specification corresponding to standard geometric form
where only two points, one at either end of the segment to be connected, are given, i.e., at u = 0
and u = 1, while the remaining four are the first and second derivative vectors. so Eqs. 2 and 3
contain the numerical coefficients, in the sequence given there and taking into account u = 0 and
u = 1 taken to the various exponent powers. These coefficients are written into the columns of
the middle matrix below.

 a5x a4x a3x a2x a1x a0x

a5y a4y a3y a2y a1y a0y

a5z a4z a3z a2z a1z a0z




0 1 0 5 0 20
0 1 0 4 0 12
0 1 0 3 0 6
0 1 0 2 2 2
0 1 1 1 0 0
1 1 0 0 0 0

 =

 p0x p1x pu
0x pu

1x puu
0x puu

1x

p0y p1y pu
0y pu

1y puu
0y puu

1y

p0z p1z pu
0z pu

1z puu
0z puu

1z



Geometric specification means that matrix [P] is given. All that is needed, to compute points along
the curve segment from end to end, suitable for plotting, is matrix [A]. This can be produced
with the inverse of [U]−1, the numerical matrix above. [U], then is

−12 12 −6 −6 −1 1
30 −30 16 14 3 −2

−20 20 −12 −8 −3 1
0 0 0 0 1 0
0 0 2 0 0 0
2 0 0 0 0 0


For the standard geometric form parametric cubic we get

[U]−1 =


0 1 0 3
0 1 0 2
0 1 1 1
1 1 0 0

 and [U] =


2 −2 1 1

−3 3 −2 −1
0 0 1 0
1 0 0 0


2 Join-the-Dots

Even with modern computer graphics and CAD software concepts, for the modeling of curves
and surfaces, like the various splines, including NURBS, the designer experiences a certain user-
unfriendliness when faced with artifacts imposed by mathematical expediency, i.e., control points

2

and tangent vector magnitudes. Joining points, on a desired curve or surface, smoothly is not
always easy and convenient. Ways to adapt cubic curves to do this will be discussed after introduc-
ing the idea of rotated coordinate, explicit cubics and adapting the Bézier-de Casteljau algorithm
models to compute points on a parametric cubic curve segment in terms of the parameter u.

2.1 Subsets, Algorithms and Efficient Computation

Examine Fig. 1.

Rotated coordinate
explicit cubics

Cubic B-splines

or parametric

cubics

Venn6Aj

Bezier

Figure 1: Subset Relations

Parametric cubics, introduced in section 1, occupy a subset between the general concept of B-
splines, widely discussed in computer graphics literature, and what will be discussed in some detail,
later; join-the-dots cubics (JtDC), that we call rotated coordinate explicit cubics, are particular
cases of parametric cubic curves (PCC). JtDC can always be expressed as PCC but not necessarily
vice-versa. Before going on to treat some useful variants of JtDC look at Fig. 2. Explained therein
is the cubic Bézier curve and the algorithm to compute points on a curve segment, algebraically
and constructively, in terms of parameter u. This algorithm is conveniently adaptable to the
advanced computer architectural features of pipelining and parallel processing, as shown in Fig. 3.

P
3

0

P
3

1

P
3

2

P
3

3

P
2

0

P
2

1

P
2

2

(0.5)

(0.5)
(0.5)

0
P 0 (0.5)1

P 0 (0.5)

1
P 1 (0.5)

PoCtH6Ae

Figure 2: Bézier Algorithm and de Casteljau Construction

3

Cartesian tensor representation for the recursive construction, based on point position vectors, is
given in Eq. 5.

P j
i (u) = (P j+1

i+1 − P j+1
i)u + P j+1

i = uP j+1
i+1 + (1− u)P j+1

i (5)

Finally, by substitution and collecting terms the familiar parametric Bézier cubic expression is
obtained as Eq. 6.

P 0
0 = P 3

3 u3 + 3P 3
2 (1− u)2 + 3P 3

1 (1− u)2u + P 3
0 (1− u)3 (6)

Fig. 4 shows how unsatisfactory geometric specification can lead to unwanted tangent discon-

X
3

0

X
0

0

X
1

0

X
2

0

X
3

0

X
2

0

X
1

0

X
3

0

X
3

0

X
2

0

Y
3

0

Y
0

0

Y
1

0

Y
2

0

Y
3

0

Y
2

0

Y
1

0

Y
3

0

Y
3

0

Y
2

0

Z
3

0

Z
0

0

Z
1

0

Z
2

0

Z
3

0

Z
2

0

Z
1

0

Z
3

0

Z
3

0

Z
2

0

PrPpL6Aj

Figure 3: Pipelining and Parallel Processing

tinuity and double points on the resulting curve. The parameter u is an additional dimension
and, depending on how a smooth curve in the space with this extra dimension is projected into
Euclidean space, cusps and loops may appear. Parametric parabolæ, cubics and quintics are
merely extensions of the parametric straight line segment concept based on segment limiting point
position vectors and a single free parameter.

p = a + u(b− a)

This is illustrated in Fig. 5. This generalization allows the two simpler forms to share, as degenerate
species, a common data base with cubics and quintics. That makes for efficient processing in the
computer at the graphics card level. Furthermore one sees why polynomials of even degree, e.g.,
2 or 4, should be avoided. They occupy a odd numbered homogeneous vector space so it is not
possible to assign the same number of standard geometric form constraint vectors to both ends of
a segment.

4

PCIPS6Ae

Figure 4: Loops and Cusps

2.2 Funiculum Based Slope Vectors

The following treatment is confined to JtDC a special family of parametric cubics. One sees some
ways to systematically and consistently generate tangent vectors, including their magnitude, by
using the sequence of straight line segments formed by joining points along a desired curve. Note
that closed curves are easily and unambiguously defined by incorporating the last point as the
backward point in the first segments and the first point as the forward point in the last. In short,
in all schemes tangent vector direction at a given point is based on some combination, either
adjacent segment direction bisecting or adjacent segment length weighted, of the properties of the
segments that meet at that point. All four schemes are based on a kernel represented by a four
point, three segment sequence Pi−1, Pi, Pi+1, Pi+2. Fig. 6 bears considerable attention because the
concepts illustrated there will be repeated, with small modification, for three other cases.

• It illustrates the original scheme where unit tangent vectors t0 and t1 at Pi and Pi+1, that are
points corresponding to initial and terminal point position vectors p0 ≡ pi and p1 ≡ pi+1,
are in the forward bisector direction so that

t0 =

pi−pi−1

‖pi−pi−1‖ + pi+1−pi

‖pi+1−pi‖

‖ pi−pi−1

‖pi−pi−1‖ + pi+1−pi

‖pi+1−pi‖‖
, t1 =

pi+1−pi

‖pi+1−pi‖ + pi+2−pi+1

‖pi+2−pi+1‖

‖ pi+1−pi

‖pi+1−pi‖ + pi+2−pi+1

‖pi+2−pi+1‖‖
(7)

• Tangent vector magnitudes k0 and k1 to produce

pu
0 = k0t0, pu

1 = k1t1

are obtained by projecting t0,1 onto a “local x-axis” that in this case is in the direction of
the forward angle bisector between t0 and t1.

• The unit vector i along this x-axis is

i =
t0 + t1

‖t0 + t1‖
(8)

5

p 0

p 1

p 0

p 0
u

O

p 0

p 1
p 0

u

p 1

p 0
u

p 1
u

p 0

PCS6Ae

Figure 5: Standard Geometric Form parametric Line, Parabola and Cubic

• Tangent vector magnitudes k0 and k1 are given by

k0 = k1 =
(pi+1 − pi) · i)

t0 · i
(9)

• This, rotated single x-axis, explicit form is a special parametric form with a3x = a2x = a0x =
0, a1x = 1 for some x, y, z.

• For planar cubics of this type a3z = a2z = a1z = a0z = 0.

• For double x-axis varieties it may be interesting to investigate their explicit form if it exists.

• Parametrization along a Cartesian axis, peculiar to JtDC, might allow more efficient com-
putation of finite arc lengths. This is a very important consideration in certain video games
and interactive computer simulations where the user controls the speed of an “avatar” but
its image on a known trajectory must be deduced from its speed-time integral in real time.

• Having determined vectors pu
0 and pu

1 , in this or some other way, the two intermediate Bézier
control points P 3

1 and P 3
2 , shown in Fig. 2, and again as P1 and P2 in Fig. 6, are obtained

by chopping the tangent vector pu
0 ≡ P u

i , radiating away from Pi, at t = 1/3. Note that t is
just the parameter u which has been reserved in these diagrams as an exponent to indicate
differentiation. Similarly, the tangent vector P u

i+1 at the other end Pi+1 radiates toward
Pi+1 ≡ P3. The Bézier control point P2 is obtained at t = 2/3 or measured one-third of the
way backward from Pi+1 ≡ P3 along the vector pu

1

In Fig. 7 one sees a scheme to determine tangent vectors pu
0 and pu

1 almost identical to that
illustrated in Fig. 6. The only difference is that the respective tangent vector directions are
determined by simply adding segment vectors. Pi−1 → Pi+Pi → Pi+1 and Pi → Pi+1+Pi+1 → Pi+2

are taken to be in the direction of t0 and t1, respectively.

6

P i-1

P i

P i+1

P i+2

P i
u

P i+1

u

t=0

t=1

P i-1

P i

P i+1

P i+2

P i
u

P i+1

u

t=0

t=1

PCBZ6Ae

t=1/3
t=2/3

P 0 P 1

P 3P 2

x

x

2a

a

P i+1

u

Figure 6: Bézier and Parametric Cubic

• Computing the unit tangent vectors is simpler.

t0 =
pi+1 − pi−1

‖pi+1 − pi−1‖
, t1 =

pi+2 − pi

‖pi+2 − pi‖
(10)

• The unit vector i along this x-axis is identical to that given in Eq. 8.

i =
t0 + t1

‖t0 + t1‖
(11)

• Tangent vector magnitudes k0 and k1 are given by

k0 = k1 =
(pi+1 − pi) · i)

t0 · i
(12)

7

P i-1

P i

P i+1

P i+2

P i
u

P i+1

u

PC1XW6Ae

t=1

t=0

x

#

#

=

=

a
a

Figure 7: Length Weighted Tangents

P i-1

P i

P i+1

P i+2

P i
u

P i+1

u

PC2X6Ae

t=0

t=1

x

x0

1

a

a

b

b

Figure 8: Two Axes to Accommodate “Sharp Returns”

In Fig. 8 we see a scheme that entails two local x-axes, one at either end of the line segment
supporting the curve segment. This scheme retains the computation of unit tangent vectors
expressed by Eq. 7. However the x-axis directions at either end are computed by bisecting the
angle between each tangent and the supporting line segment. Local x-axes are given by

s =
pi+1 − pi

‖pi+1 − pi‖
, ii =

t0 + s

‖t0 + s‖
, ii+1 =

t1 + s

‖t1 + s‖
(13)

while the tangent vector magnitudes are given below.

k0 =
(pi+1 − pi) · ii

t0 · ii
, k1 =

(pi+1 − pi) · ii+1

t0 · ii+1

(14)

Double x-axis schemes were developed to overcome “mushrooming” of the curve at a very acute
funicular apex. In fact if a pair of funicular segments in the sequence overlapped, the curve, based
on single x-axis schemes, would climb the “stem” a bit before wandering off to infinity in one

8

direction, return as a very wide mushroom top, go off in the opposite direction, finally returning
to the stem and resuming a credible approximation to a JtDC until another very acute corner. The

P i-1

P i

P i+1

P i+2

P i
u

P i+1

u

PC2XW6Af
t=1

t=0

x 0

x 1

a
a

b

b

Figure 9: Two Axis Length Weighted Tangents

final scheme, shown in Fig. 9, is a combination that uses the length weighted tangent directions
computed with Eqs. 10 and the local x-axis and tangent vector magnitude computations in Eq. 14.

2.2.1 Comparison Example

To compare the four schemes described above a 4 × 1 rectangle was chosen to have its four
vertices connected by four closed curves, each generated according to one of the four scheme rules,
respectively. Fig. ?? shows three of the four corners’ position and tangent vectors. These corners
are at (−32, 8), (32, 8) and (32,−8). The tangent vectors and local x-axes for all schemes are also
illustrated there. One may sum up the geometric form data for these examples with four matrix

P

P i-1

i

P i+1
x

x

P i
P i-1

P i+1
P i+2

P i+2

O

P

P i-1

i

P i+1

P i
P i-1

P i+1
P i+2

P i+2

O

x 0
x 1

x 1

x 0

JtDQS6Am

Figure 10: Rectangle Corners, Tangent Vectors and Local x-Axes

pairs containing standard geometric form column vectors. Each pair encodes data for the right

9

half of the long horizontal side of the rectangle and the adjoining top half of the short right side,
respectively.

1XTB ≡

 −32 32 64 64
8 8 64 −64
0 0 0 0

 ,

 32 32 16 −16
8 −8 −16 −16
0 0 0 0


1XW ≡

 −32 32 64 64
8 8 16 −16
0 0 0 0

 ,

 32 32 64 −64
8 −8 −16 −16
0 0 0 0


2XTB ≡

 −32 32 64/
√

2 64/
√

2

8 8 64/
√

2 −64/
√

2
0 0 0 0

 ,

 32 32 16/
√

2 −16/
√

2

8 −8 −16/
√

2 −16/
√

2
0 0 0 0


2XW ≡

 −32 32 256/
√

17 256/
√

17

8 8 64/
√

17 −64/
√

17
0 0 0 0

 ,

 32 32 64/
√

17 −64/
√

17

8 −8 −16/
√

17 −16/
√

17
0 0 0 0


The results appear in Fig. 11. Corresponding schemes and curves are as follows.

(MECH576)PC4C6Aq

1XTB

1XW

2XTB

2XW

Figure 11: Four Pairs of Curve Segments around a Quarter of the Rectangle

• Curve identified as 1XTB corresponds to Fig. 6.

• Curve identified as 1XW corresponds to Fig. ??.

• Curve identified as 2XTB corresponds to Fig. ??.

• Curve identified as 2XW corresponds to Fig. 9.

Note that weighted schemes “hug” the rectangle more closely while tangent directions that bisect
adjacent funiculum segment directions tend to sweep more smoothly around the rectangle, more
closely approximating a circumscribing ellipse. These are in no way ellipses. Cubics do a lousy job
in mimicking conics, hence the need for NURBS or Non-Uniform-Rational-“B”-Splines, a planed
extension to these notes.

10

