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Planar Kinematic Mapping Fundamentals

1 Introduction

The intent of this article is to explain, in a clear and simple way, what planar kinematic mapping
is in terms of elementary homogeneous matrix transformations which “move” points and lines in
the plane. Relationship of the image space coordinates to the pole of displacement, the invariant
point of a planar motion, is derived. It is believed that these preliminaries are useful preparation
to study modern applications of planar kinematic mapping, e.g, [1, 2] or to delve deeper into the
theory, [3, 4].

2 Notions

For planar displacements consider the transformations which express the homogeneous coordinates
of points and lines in the moving, end effector frame EE premultiplied by a transformation matrix
and converted to their homogeneous coordinates in the fixed frame FF. Points are transformed as t

u
v

 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


 w

x
y


Lines are transformed as  T
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The coefficients will be evaluated by using three ideal elements in the EE frames and their corre-
sponding coordinates in FF. Then these coefficients will be converted and expressed in terms of
four homogeneous Blaschke-Grünwald coordinates, a mapping in the kinematic image space. This
is an abstract projective 3-space wherein a point represents a displacment of a rigid body in the
plane.
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3 The Point Transformation

Ideal point elements are chosen as the origin,
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a11 = λ, a21 = λa, a31 = λb

the point at infinity which closes the x-axis,
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and the point at infinity which closes the y-axis,
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where λ is an arbitrary constant. Populating [aij] with these results and making the tangent
half-angle substitutions
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which becomes, after substitution for {X0 : X1 : X2 : X3} and simplifying and dividing through
by 4.
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The metric is obtained as [aij][aij]
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4 The Line Transformation

Ideal line elements are chosen. The first is the invariant line at infinity.
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Then the coordinates of the x-axis in FF are formed with the origin and the point at infinity.∣∣∣∣∣∣∣
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A13 = λ(a sin φ− b cos φ), A23 = −λ sin φ, A33 = λ cos φ

Finally the coordinates of the y-axis in FF are found with the origin and the point at infinity.∣∣∣∣∣∣∣
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Note X = −1 making line normal in EE compatible with that in FF. Populating [Aij] with these
results and making the tangent half-angle substitutions and multiplying through by (1 + tan2 φ
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which, after substitution for {X0 : X1 : X2 : X3}, simplification and dividing through by 4,
becomes
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Then the metric
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It is noted with satisfaction that [Aij] = [[aij]
−1]T .

5 Examples

Examining Fig. 1.
One sees a coordinate frame pair with
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Transforming points and lines in the plane:

An exercise in image space coordinates

(20)XIS
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p{-927.916702:20.362:45.571}FF

Figure 1: Frames and Elements

Then for the line p
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6 Pole, Half-Angle and Image Space Coordinates

The homogeneous image space coordinates of planar kinematic mapping may be derived using the
following parameters which descibe planar displacement of a rigid body. Refer to Fig. 2.

• Cartesian coordinates of a reference point, say, the origin (0, 0) in FF which is (0, 0) in EE
and becomes (a, b) under displacement in FF and

• The angle φ between any line in FF and its image in EE after displacement
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The displacement pole:

an invariant point under 

planar displacement
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Figure 2: Displacement Pole

Notice that the Cartesian coordinates of a point PI , the displacement pole, may be expressed in
terms of a, b, φ and these coordinates are identical in FF and EE.
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The homogeneous coordinates of PI in FF are {w : x : y} and in EE they are {t : u : v}. In terms
of a, b, φ the Cartesian coordinates of PI may be homogenized as{
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It does not matter that the ordering has been circular left shifted as {u : v : t} and {x : y : w}
in the representation above. This reordering has been done to minimize subsequent sequence
shuffling below while proceeding to the ultimate goal to present the homogeneous planar image
space coordinates, ordered as they were initially introduced. But these are just the coordinates
of an ordinary point. A point in the Cartesian kinematic image space, which must have three
coordinates to represent the three degrees of freedom of displacement in the plane, is obtained by
dividing by cot φ

2
. (

a

2
tan

φ

2
− b

2
,
a

2
+

b

2
tan

φ

2
, tan

φ

2

)
To make this a projective 3-space, four homogeneous coordinates are required{
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Multiplying by 2 cos φ produces the image space coordinates
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One may conduct the following simple verification upon the example shown in Fig. 2.
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7 Conclusion

Recently planar kinematic mapping has been applied with very encouraging results to

• A unified approach to solving, in compact form, the direct kinematics of all possible varieties
of three-legged parallel platforms, [1].

• Solving the five precision pose design problem, [2], using a general algorithm which, when
formulated in the projective image space, will reveal the mechanism, whether two-jointed
dyad, revolute four-bar, slider-crank or even elliptical trammel, without resort to separate
formulation as documented in [3].

The purpose of this short article is to describe, once again, the nature of the projective image space;
possibly in a more simple way, more palatable to a wider audience of engineering kinematicians
who are yet reluctant to adapt these methods to their own research and teaching. To those who
feel that planar kinematics is a well worked over field with little new to offer, it is submitted that a
similar rework of spherical and spatial mapping will help us to effectively attack more challenging
problems.
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