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Abstract. To avoid close proximity between building envelope and a nearby power line, geometric
methods to compute normal distances from spatial point, plane and line to a parabola, approximat-
ing the catenary, are developed using projection onto ideal planes. Then line geometry is applied
for the first time to reveal a unified approach.
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1 Introduction

“Flat” catenaries can be satisfactorily approximated by parabolæ specified by two
given supporting points P,Q and only the height t2 of the lowest point or vertex
T of the curve. First the problem will be reduced to a planar model by taking the

Q

P

?

Fig. 1 Minimum Distance from Ridge Pole to Power Line

point or line (expressed in point view) on the origin of a Cartesian frame while
the parabola –or its subsequent projection on the plane taken normal to the line–
initially in standard form is translated, after possible rotation, to assume its required
position relative to the origin. Planar point or line –The line may represent an edge or
line view of an intruding plane.– to parabola distances are computed using products
of homogeneous planar point or line coordinate vectors and matrices representing
conic coefficients, rotation, translation and orthogonal projection. Line geometry
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is introduced. All solution cases are treated as a product of a 5× 6 homogeneous
matrix of constraint equation coefficients and a Plücker coordinate vector.

1.1 Origin to Translated Parabola

The missing coefficient a and coordinate t1 are computed given P(p1, p2),Q(q1,q2)
and t2 of T (t1, t2). The solution with the closest point on the left appears in Fig. 2.
Constraint equations,

(
p>,q>

)
TMspT> (p,q) = 0, Eqs. 1, are set up as follows.

[
1 p,q1 p,q2

]1 −t1 −t2
0 1 0
0 0 1

 0 0 −1/2
0 a 0
−1/2 0 0

 1 0 0
−t1 1 0
−t2 0 1

 1
p,q1
p,q2


= a(p1− t1)2 + t2− p2 = 0, a(q1− t1)2 + t2−q2 = 0 (1)

Eliminating a produces, Eq. 2, a quadratic in t1, its values being given for the nu-
merical example shown in Fig. 2.

(p2−q2)t2
1 +2[(q2− t2)p1 +(t2− p2)q1]t1 +(t2−q2)p2

1 +(p2− t2)q2
1 = 0 (2)

The parabola size coefficient a is obtained with either one of Eq. 1, linear in a,
having chosen the positive root of t1. The other root places P,Q both in the right
hand branch of the parabola. Eq. 3 is the equation of the displaced parabola, like
either of Eq. 1 but in terms of an arbitrary point (x,y).

t2− y+a(x− t1)2 = 0 (3)

Forming the squared distance from origin to parabola, x2+y2, and taking the deriva-
tive set to zero of this with respect to x, having eliminated y with Eq. 3, yields a
cubic, Eq. 4, in x-coordinates of stationary points.

2a2x3−6a2t1x2 +[2a(at2
1 + t2)+1]x−2at1(at2

1 + t2) = 0 (4)
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Fig. 2 A Numerical Example, with P(2,4), Q(9,6), T (−5 + 7
√

2,2), Closest Point at
(2.8722,2.9777) with a = 2/[49(3−2

√
2)]
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1.2 Distance between Parabola and Line

The same numerical parameters will be used together with the line given by Eq. 5.

W +Xx+Y y = 0 (5)

One finds a tangent line on the parabola that is parallel to the given one and measures
the length of the normal line segment on the point of tangency that spans to the given
line as shown in Fig. 3. The tangent line and the normal line are given by Eqs. 6.

U +Xx+Y y = 0 and V −Y x+Xy = 0 (6)

Coincident point on the parabola and tangent line is expressed by Eq. 7.
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Fig. 3 Minimum Distance from Sloping Roof Plane, Line 60−10x+10y= 0 to Power Line, Eq. 4.
The Length of the Segment, Given the Original Parabola Values, Is 1.4993.

 t2 +at2
1 −at1 −1/2

−at1 a 0
−1/2 0 0

→
 0 0 2a

0 −1 2at1
2a 2at1 4at2

U
X
Y

=

 2aY
2at1Y −X

2aU +2at1X +4at2Y

 (7)

Substituting the dehomogenized point vector above, the last term in Eq. 7, into the
parabola equation, either of Eq. 1 with P or Q taken as point variables, provides a
linear equation in U . This symbolic value of U completely defines the tangent line,
Eq. 8.

X2−4aY (t1X + t2Y )+4aY (Xx+Y y) = 0 (8)

Similarly by substituting the point coordinates into the normal line equation the
value of V is determined to yield the equation of the normal line, Eq. 9.

2at1(Y 2−X2)−2aX(U +2t2Y )−XY +2aY (Xy−Y x) = 0 (9)

Intersecting the normal line and the edge view of the roof plane yields

[V −Y X ]>×[W X Y ]> = Q{q0 : q1 : q2}
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the other end point of the line segment between given and tangent line.

1.3 Orthogonal Projection

Because the plane of the catenary is not generally normal to the ridge line an image
of the parabola, projected orthogonally on to a plane normal to the ridge line or
building wall or roof, is usually required. Operations proceed as follows.

O

o

x 3

x 1

x 2

O

t 1

2

ridge
line hinge

line
t 2

Fig. 4 Roof Ridge and Hinge Lines,

• The standard form parabola coefficient matrix Msp, the rotation operator Rθ , the
translation operator T and the orthogonal projection operator Mo are constructed.

Msp =

 0 0 1/2
0 −a 0

1/2 0 0

 , Rθ =

1 0 0
0 cosθ −sinθ

0 sinθ cosθ



T =

1 −t1 −t2
0 1 0
0 0 1

 , Mo =

 cosφ 0 0
0 1 0
0 0 cosφ


• Forming the product MoTRθ MspR>

θ
T>M>o produces the coefficient matrix Mop

of the rotated, translated parabola rotated by φ out of the fixed plane and pro-
jected orthogonally onto it. Let Mop and the orthogonally projected parabola
image be represented as
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Mop =

a00 a01 a02
a01 a11 a12
a02 a12 a22

→ a00 +2a01x1 +2a02x2 +a11x2
1 +2a12x1x2 +a22x2

2 = 0

where

a00 = cos2 φ
[
t1 sinθ − t2 cosθ −a(t1 cosθ + t2 sinθ)2

]
a01 = cosφ [2acosθ(t1 cosθ + t2 sinθ)− sinθ ]/2

a02 = cos2 φ [2acosθ(t1 sinθ + t2 sinθ)+ cosθ +2at2]/2
a11 =−cos2 θ , a12 =−(acosφ cossinθ)/2, a22 =−acos2 φ sin2

θ

• Fig. 5 shows the standard form parabola, its rotated and translated image and its
projection from its natural frame orthogonally onto the fixed frame normal to the
ridge line. The narrower image with its vertex farther to the left is the required
projection.

Fig. 5 Image of Three Parabolæ on Plane x3 = 0, a = 1/2, t1 = 2, t2 = 3, θ = π/4, φ = π/3

2 Line Congruence Pairs

Confining analysis to a planar model has its drawbacks. E.g, cases where the ridge
line is parallel to the plane of the parabola cannot be accommodated. Imagine an
approach that seeks to find all lines common to two line congruences. Without loss
in generality one contains all lines normal to tangents on a standard form parabola
while the other contains those normal to an arbitrary axial line that represents the
ridge. Alternately one may choose the second congruence to be all lines normal
to a given plane so as to represent a building wall or roof surface or the tip of
a lightening rod represented by a point. All these are shown together in Fig. 6.
Consider the parabola, an arbitrary point P(p1, p2) upon it bearing a tangent line
and its normal on P. Taking an auxiliary view normal to the tangent shows the
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Fig. 6 Four Line Congruences

normal pencil of lines G ′1 on P where G1 is the line congruence on all P. The line
one seeks has radial Plücker coordinates Gr{g01 : g02 : g03 : g23 : g31 : g12}. G2 is
shown thrice. Q ∈ G2 depicts the congruence on given point Q{1 : q1 : q2 : q3}.
G2 ⊥ e shows parallel lines normal to all given planes e{E0 : E1 : E2 : E3} in a
parallel pencil. This situation is equivalent to Q{0 : q1 : q2 : q3} an absolute point
where q1 = E1,q2 = E2,q3 = E3. This example will not be detailed below because
it is just a special case of a congruence on a given point. Finally G2 ⊥,∩H where
line Ha{H01 : H02 : H03 : H23 : H31 : H12} is given by its axial coordinates.

2.1 Line Geometry

What follows makes use of elementary line geometry. Recall points P(p1, p2) on
the standard form parabola on the plane x3 = 0.

p2−ap2
1 = 0 (10)

Tangent lines on this curve have slope d p2/d p1 = 2ap1. Spatial direction vectors of
lines G in the congruence normal to tangents on the parabola can be expressed as

[g01 g02 g03]
>·[1 2ap1 0]> = 0. (11)

The parabola is taken in standard form while Q,e,H are given as expressed in
this frame. The case where d p2/d p1 → ∞ can be safely ignored because it occurs
indefinitely far up the branches of the parabola. Therefore all radial lines G {g01 :
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g02 : g03 : g23 : g31 : g12} must satisfy the normality condition Eq. 12,

g01 +2ap1g02 = 0. (12)

In addition the condition P ∈ G , recalling that spatially P{p0 : p1 : p2 : p3}, p0 =
1, p3 = 0, provides the two middle equations chosen from the doubly singular
set, expressed in axial coordinates of G such that Gii = 0, is given by Eqs. 13. In
synopsis, P ∈ G . If G ∩P = e then ∑

3
j=0 Gi j p j = Ei 6= 0, G ji = −Gi j, Gii = 0. If

G ∩ e = P then ∑
3
j=0 gi jPj = pi 6= 0.

G00 p0 +G01 p1 +G02 p2 +G03 p3 = 0, −G01 p0 +G11 p1 +G12 p2−G31 p3 = 0
−G02 p0−G12 p1 +G22 p2 +G23 p3 = 0, −G03 p0 +G31 p1−G23 p2 +G33 p3 = 0 (13)

which lead to Eqs. 14

−g23 +g03 p2 = 0, −g31−g03 p1 = 0 (14)

because of the term by term proportional equivalence, Eq. 15.

{g01 : g02 : g03 : g23 : g31 : g12} ∝ {G23 : G31 : G12 : G01 : G02 : G03} (15)

The orthogonality between the first and second vector element triads of line coordi-
nates, Eq. 16, called the Plücker condition or quadric, is used to get p1, hence p2, to
yield coordinates of point P where G intersects the parabola.

g01g23 +g02g31 +g03g12 = 0 (16)

2.2 Parabola to Line, Point and Plane

Lines G that are normal to and intersect the ridge line H constitute the second con-
gruence. These provide the following two necessary constraint equations Eqs. 17.

H23g01 +H31g02 +H12g03 = 0, H01g01 +H02g02 +H03g03 +H23g23 +H31g31 +H12g12 = 0 (17)

All this can be arranged in Eq. 18, a system of five homogeneous linear equations in
gi j, in detached coefficients form. Recall that the first three rows represent Eqs. 12
and 14 while the last two are, respectively, normality of directions H ⊥ G and
intersection ∃H ∩G , the two equations Eqs. 17.


1 2ap1 0 0 0 0
0 0 ap2

1 −1 0 0
0 0 −p1 0 −1 0

H23 H31 H12 0 0 0
H01 H02 H03 H23 H31 H12




g01
g02
g03
g23
g31
g12

=


0
0
0
0
0

 (18)

Solving homogeneously yields all six gi j = gi j(p1). Inserting these into the Plücker
condition results in a cubic, Eq. 19, in p1, as was Eq. 4, and a trivial solution (factor).
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H12(2aH23 p1−H31)(c3 p3
1 + c2 p2

1 + c1 p1 + c0) = 0 (19)

Large coefficients ck(a,Hi j) are omitted above. Using the first and second equations
from the set Eqs. 13, with Q replacing P, to form the last two rows in the 5× 6
matrix (or alternately with e replacing P) one obtains Eq. 20.[

0 0 0 q1,E1 q2,E2 q3,E3
0 −q3,−E3 q2,E2 −1,0 0 0

][
g01 g02 g03 g23 g31 g12

]>
=
[

0 0 0 0 0
]> (20)

Solving homogeneously yields all six gi j = gi j(p1). Inserting these into the Plücker
condition produces a simple cubic with Q and a linear equation with e, Eqs. 21, in
p1. Both have trivial factors.

aq3
3 p2

1[2a2 p3
1− (2aq2−1)p1−q1] = 0, aE3

3 p2
1(2aE2 p1 +E1) = 0 (21)

3 Conclusion

This paper grew from difficulties experienced by a colleague in Innsbruck who ran
afoul of municipal authorities while building her house. Although it is unconven-
tional to put references here, rather than at the beginning, one may see relevance to
wider application by realizing that [3] was written to help in dynamic simulation of
a falling chain. Klien’s little book [1] covers many of the projective geometry trans-
formations used but I could not find material describing conics (and quadrics) in
terms of their (symmetric) coefficient matrices. This was acquired by osmosis from
exposure to my many Austrian geometer friends. Pottmann and Wallner’s line ge-
ometry text [2] treats that subject thoroughly while [4] is helpful in grasping the ba-
sics. Though I was asked to consider removing the approach and analysis connected
with the first three problems I decided to retain it in the interest of illustrating the
geometric thinking that leads to selection of ideal frames in problem formulation.
This was carried through to conceive Fig. 6 which explains the novel application of
line geometry in the unification of these types of problem.
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