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Abstract - This paper presents a new family of fully-isotropic 
parallel manipulators with Schönflies motions and complex legs 
containing up to m rhombus loops. The moving platform of a 
parallel manipulator with Schönflies motions (PMSM) has four 
degrees of freedom, which are three independent translations and 
one rotation about an axis of fixed direction. A one-to-one 
correspondence exists between the actuated joint velocity space 
and the external velocity space of the moving platform. The 
Jacobian matrix mapping the two vector spaces of fully-isotropic 
PMSMs presented in this paper is the identity 4×4 matrix 
throughout the entire workspace. The condition number and the 
determinant of the Jacobian matrix being equal to one, the 
manipulator performs very well with regard to force and motion 
transmission capabilities. As far as we are aware the family of 
14m4 solutions of fully-isotropic PMSMs introduced in this paper 
is presented for the first time in the literature. These solutions are 
derived from a family of 7m4 PMSMs with decoupled motions 
and complex legs with rhombus loops also presented for the first 
time.

Index Terms - fully-isotropic, parallel manipulators, rhombus 
loops,  Schönflies motions.

I. INTRODUCTION 
Parallel manipulators (PMs) with Schönflies motions are 

the parallel counterparts of the well-known SCARA robots.
The end-effector of these robots has four degrees of freedom, 
which are three independent translations (T3) and one rotation 
(R1) about an axis of fixed direction. This motion T3R1-type 
was study by the German mathematician Arthur Moritz 
Schönflies and is usually called Schönflies motion [1]. Several 
types of parallel robots with four degrees of mobility T3R1-
type have been proposed and investigated [2]-[19]. The most 
known PMs T3R1-type are H4 [6]-[7], [16], Manta and Kanuk 
[8], 4-URU and 4-UPU [14]. We note that all these solutions 
have coupled motions. The following joints are used in these 
solutions: revolute (R), prismatic (P), universal joint (U),
cylindrical (C) as well as the parallelogram loop (Pa) which 
can be considered as a complex pair of circular translation 
[14], [20]-[22].The first solutions of fully-isotropic parallel 
manipulators with Schönflies motions (PMSMs) have been 
very recently proposed [23]-[25]. Fully-isotropic PMSMs have 
a very simple command and achieve important energy-saving 
due to the fact that for a unidirectional motion only one motor 
works and the other are locked. For parallel manipulators, the 

velocities of the moving platform are usually related to the 
velocities of the actuated joints [ q ] by the general equation: 

p

H

v
J q                (1) 

where : [v]=[vx vy vz]T is the velocity of a point H belonging to 
the moving platform, [ ]=[ x y z ]T - angular velocity of 
the moving platform, [J] – Jacobian matrix and p is the 
coordinate system in which the velocities of the moving 
platform with respect to the fixed platform are expressed.  

Isotropy of a robotic manipulator is related to condition 
number of its Jacobian matrix, which can be calculated as the 
ratio of the largest and the smallest singular values. A robotic 
manipulator is fully-isotropic if its Jacobian matrix is isotropic 
throughout the entire workspace, i.e., the condition number of 
the Jacobian matrix is one. The condition number of the 
Jacobian matrix is an interesting performance index 
characterizing the distortion of a unit hypersphere under  the 
linear mapping (1). Condition number of the Jacobian matrix 
was first used to design mechanical fingers [26] and developed 
in [27] as a kinetostatic performance index of robotic 
mechanical systems. The isotropic design aims at ideal 
kinematic and dynamic performance of the manipulator [28].  

Four types of PMs are distinguished in [29] by taking into 
consideration the form of the Jacobian matrix: (i) fully-
isotropic PMs, if the Jacobian J is an diagonal matrix with 
identical diagonal elements throughout the entire workspace, 
(ii) PMs with uncoupled motions if J is a diagonal matrix with 
different diagonal elements, (iii) PMs with decoupled motions, 
if J is a triangular matrix and (iv) PMs with coupled motions if 
J is neither triangular nor diagonal matrix. Fully-isotropic PMs 
realize a one-to-one mapping between the actuated joint 
velocity space and the external velocity space. The condition 
number and the determinant of the Jacobian matrix being 
equal to one, the manipulator performs very well with regard 
to force and motion transmission.  

The fully-isotropic PMSMs proposed in [23]-[25] use 
elementary legs to connect the mobile platform to the 
actuators situated on the fixed base. The reduced rigidity of 
the elementary legs represents the main drawback of these 
solutions. To overcome these disadvantages, PMSMs with 
complex legs containing up to m rhombus loops are proposed 
in this paper. We recall that an elementary leg consists of a 
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serial kinematic chain and a complex leg integrates at least a 
closed loop. The closed loops integrated in leg architecture 
contribute to increasing leg rigidity and implicitly the robot 
precision. Due to space limitations, we reduced our 
presentation in this paper to decoupled, uncoupled and fully-
isotropic overconstrained PMSMs without idle mobilities and 
complex legs containing rhombus loops. In the standard 
terminology the rhombus loop, is a planar closed kinematic 
chain with four revolute pairs connected by four links of the 
same length. No fixed link exists in the rhombus loop (Rb). 
One or more rhombus loops can be concatenated in a complex 
leg. With respect to elementary legs the use of complex legs 
reduces leg torsion loading.  

II. PMS WITH DECOUPLED SCHÖNFLIES MOTIONS AND 
COMPLEX LEGS CONTAINING RHOMBUS LOOPS

In this paper we consider parallel manipulators with 
Schönflies motions (PMSMs) T3R1-type enabling three 
independent translations along x, y and z-axes and one 
independent rotation about y-axis. Rotation about x or z-axis 
could also be considered. The basic kinematic structure of a 
PMSMs is obtained by concatenating four legs Ai(1 0-…-
nAi n), i=1,2,3,4 that can be identical or different.  The first 
link (1) of each leg is the fixed platform (0) and the final link 
is the moving platform (nAi n). The first joint of each leg Ai

(i=1,…,4) is actuated. We denote by qi and iq  (i=1,2,3,4) the 
finite displacements and the velocities in the actuated joints 
and by xv , yv , zv and y  the translational and angular 
velocities of a point H situated on the mobile platform.  

Examples of structural solutions of complex legs with 4 or 5 
degrees of freedom (dof) containing one or two rhombus loops 
used in PMs with decoupled Schönflies motions are presented 
in Figs. 1-2. Table I presents the joint arrangement in each leg 
Ai (i=1,…,4). The notations  and  in Figs. 1-2 and Table 1 
indicate the perpendicular or parallel positions of the joint 
axes. The indexes x, y, z, c, and d associated with the joint 
symbol denotes the direction of the joint axis. Two 
consecutive joints with the same index have parallel axes. 
Two consecutive joints with different indexes have 
perpendicular axes. The actuated joint of each leg Ai (i=1,…,4)
is underlined. 

By various associations of the four legs Ai presented in  

TABLE I
JOINT ARRANGEMENT IN COMPLEX LEGS WITH RHOMBUS LOOPS 

Table I we could obtain m4 basic structural types of PMs with 
decoupled Schönflies motions without idle mobilities and 
complex legs containing rhombus loops. Figures 3 and 4 
present structural solutions with one and two rhombus loops in 
each leg. To simplify the notations of the elements eAi

(i=1,2,3,4 and e=1,2,…,n) by avoiding the double index in 
Fig. 3 and the following figures we have denoted by eA the 
elements belonging to the leg A1 (eA eA1), by eB the elements 
of the leg A2 (eB eA2), by eC the elements of A3 (eC eA3) and 
by eD the elements of A4 (eD eA4). The axes of revolute joints 
connecting the legs A1 and A3 to the moving platform must be 
superposed and the reference point H must be situated on this 
common axis, as we can see in the examples presented in Figs. 
3-4. The axis of revolute joint connecting the leg A2 to the 
moving platform could be: (i) superposed with the axis of the 
last revolute joint of the leg A4, as in Fig. 3 and Fig. 5-a, (ii) 
superposed with the axis of the last revolute joints of the legs
A1 and A3, as in Fig. 5-b or (iii) not superposed with the axis of 
another joint, as in Fig. 5-c. These different positions do not 
involve structural modifications of the basic solution of PMs 
with decoupled Schönflies motions. In all cases four revolute 
joints are adjacent to the mobile platform.      

Derived structural solutions of PMs with decoupled 
Schönflies motions can be obtained from the basic solutions 
by: integrating in a common element the last elements of the 
legs (i) A1 and A2 (Fig. 6-a), (ii) A2 and A3 (Fig. 6-b), (iii) A2

and A4 (Fig. 6-c), (iv) eliminating the last revolute joint of the 

Fig. 1.  Complex legs with 4 dof and one rhombus loop PRRbR-type (a) and 
two concatenated rhombus loops PRRbRbR-type (b). 

Fig. 2.  Complex legs with 5 dof and one rhombus loop PRRbR-type (a) 
and two concatenated rhombus loops PRRbRbR-type (b). 
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Fig. 3.  Basic kinematic structure of PM with decoupled Schönflies motions 
containing one rhombus loop in each leg (a) and its associated graph (b). 

leg A1 and integrating in a common element the last elements 
of the legs A1 and A3 (Fig. 6-d), (v) eliminating the last 
revolute joint of the leg A1 and integrating in a common 
element the last elements of the legs A1 and A3 and in another 
common element the last elements of the legs A2 and A4 (Fig. 
6-e ), (vi) eliminating the last revolute joint of the leg A1 and 
integrating in a common element the last elements of the legs 
A1, A2 and A3 (Fig. 6,f). Only two or three revolute joints are 
adjacent to the mobile platform in the derived solutions. In this 
way we can set up 6m4  structural solutions of PMs with 
decoupled Schönflies motions without idle mobilities and 
complex legs containing rhombus loops. These PMSMs are 
obtained by coupling various legs with the mobile platform 
according to the six connecting solutions presented in Fig. 6. 
The 7m4 basic and derived solutions obtained in this way have 
decoupled motions and complex legs actuated by linear 
motors situated in the fixed base. For these solutions of 
PMSMs, (1) becomes 

Fig. 4.  Basic kinematic structure of PM with decoupled Schönflies motions 
containing one rhombus loop in each leg (a) and its associated graph (b). 

Fig. 5. Different positions of the axis of revolute joint connecting the leg A2 to 
the moving platform. 
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Fig. 6. Six distinct structural solution for coupling the four legs to the moving 
platform. 

p
x 1

y 2

z 3

y 4H

v q1 0 0 0
v q0 1 0 0
v q0 0 1 0

q0 0 a a

,    
y

1
a

r cos
                 (2) 

where r=HG and y are the length and the rotation angle of 
the moving platform (see Figs. 3 and 4). The length r is 
defined by the common normal on the revolute axes 
connecting the moving platform to the legs A3 and A4. We can 
see that xv , yv  and zv are uncoupled motions ( x 1v q ,

y 2v q , z 3v q ) and y  is a coupled motion depending of 

3q  and 4q  with y 4 3 y( q q ) /( r cos ) .

III. PMS WITH UNCOUPLED SCHÖNFLIES MOTIONS AND 
COMPLEX LEGS CONTAINING RHOMBUS LOOPS

The leg A4 in the PMs with decoupled Schönflies motions 
presented in the previous section connects the fixed and the 
mobile platform. If we connect the leg A4 between the first 
kinematic element of the leg A3 (1D 2C) and the mobile 
platform we can obtain PMs with the four uncoupled 
Schönflies motions of the mobile platform (Fig. 7). In this 
way, m4 basic structural solutions and 6m4 derived solutions of 
PMs with uncoupled Schönflies motions can be set up from 
the solutions presented in the previous section. For these 
PMSMs the linear mapping (1) becomes: 

p
x 1

y 2

z 3

y 4H

v q1 0 0 0
v q0 1 0 0
v q0 0 1 0

q0 0 0 a

,    
y

1
a

r cos
   .            (3) 

In these solutions the fourth actuator is not situated on the 
fixed base.  

Fig. 7. Example of basic kinematic structure of PM with uncoupled Schönflies 
motions actuated by four linear motors (a) and its associated graph (b). 

Fig. 8.  Variation of the transmission factor 4 with the rotation angle of the 
platform: for the characteristic length  Lc= r=1 (a) and  for various values of 

the platform length (b) 

We can see that xv , yv , zv  and y  are uncoupled motions 

( x 1v q , y 2v q  , z 3v q  and y 3 yq /( r cos ) .
To compare the singular values of the Jacobian matrix of 

the linear mapping (1), the elements of this matrix should have 
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the same units. From (3), the elements of the first and the 
second columns of the Jacobian matrix J are non-dimensional. 
The third column has the unit of length-1. The characteristic 
length of the manipulator, i.e., Lc, is used to homogenize the 
elements of the Jacobian matrix so that the condition number 
is non-dimensional. The characteristic length renders the 
Jacobian dimensionally homogeneous and optimally 
conditioned, i.e., with a minimum condition number [27]. The 
isotropic configuration of the PMs with uncoupled Schönflies 
motions given by the isotropy condition of the Jacobian matrix 
of linear mapping (3) is obtained when y 0  and Lc=r=1. In 
this isotropic configuration the Jacobian becomes the identity 
4×4 matrix and (3) maps the joint rates belonging to a unit 
hypersphere into operational velocities belonging to another 
unit hypersphere. In any other robot configuration for joint 
rates belonging to a unit hypersphere are mapped into the 
operational velocities of the moving platform belong to a 4-
dimensional ellipsoid. The eigenvectors of the matrix (JJT)-1

define the direction of the principal axes of this ellipsoid. The 
square roots 1 , 2 , 3  and 4  of the eigenvalues of  (JJT)-1

are the lengths of the aforementioned principal axes. The 
velocity transmission factors in the directions of the principal 
axes are defined by  1 11 / , 2 21 / , 3 31 /  and 

4 41 / . These transmission factors can be used to define 
the joint limits [30]. The PMs with uncoupled Schönflies 
motions have 1 1 , 2 1 , 3 1  and 4 y1 /( r cos ) .
Fig. 8 presents the variation of the transmission factor 4

with the rotation angle of the moving platform. In Fig. 8-a we 
considered that the platform length is equal to the 
characteristic length r=Lc=1. In Fig. 8-b various values of 
platform length are considered. For 1 r 2  and 

y 60 ,60  the transmission factor is 40.4 2 .

IV. FULLY-ISOTROPIC PMSMS

Fully-isotropic PMSMs can be set up from the PMs with 
uncoupled Schönflies motions, presented in the previous 
section, by replacing the actuated prismatic joint in leg A4 by a 
kinematic chain with two revolute joints (Fig. 9). These two 
revolute joints have parallel axes situated in a plane 
perpendicular to the other revolute joints of the leg A4 i.e., the 
plane xy. The first revolute joint is actuated and q4 represents 
its rotation angle. In these 7m4 basic and derived fully-
isotropic solutions the fourth actuator is not on the fixed base. 
Other 7m4 solutions of fully-isotropic PMSMs with the four 
actuators mounted on the fixed base can be set up from the 
previous fully-isotropic solutions by replacing the kinematic 
chain of two revolute parallel joints in A4-leg by an extensible 
double parallelogram De Roberval scale-type (Fig. 10).  We 
can see that in this case the actuated revolute joint in the 
fourth leg can also be adjacent to the fixed base. The Jacobian 
matrix of the linear maping (1) for the 14m4 basic and derived 
fully-isotropic PMSMs is the identity 4×4 matrix throughout 
the entire workspace. A one-to-one correspondence exists 
between the actuated joint velocity space and the external  

Fig. 9.  Example of basic kinematic structure of fully-isotropic PMSM 
actuated by one rotative and three linear motors. 

Fig. 10.  Example of kinematic structure of fully-isotropic PMSMs with the 
four actuators mounted in the fixed base. 
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velocity space of the moving platform ( x 1v q , y 2v q  , 

z 3v q  and y 4q ).

V. CONCLUSIONS 

An approach has been proposed for structural synthesis of a 
new family of over-constrained fully-isotropic parallel 
manipulators with Schönflies motions and complex legs 
containing up to m rhombus loops. This family includes 14m4

structural solutions that are set up from a family of 7m4

parallel manipulators with decoupled Schönflies motions. An 
intermediary family of 7m4 solutions of parallel manipulators 
with uncoupled Schönflies motions is also set up. The 
Jacobian matrix mapping the joint and the operational vector 
spaces of the fully-isotropic parallel manipulators presented in 
this paper is the identity 4×4 matrix throughout the entire 
workspace. These solutions realize a one-to-one mapping 
between the actuated joint velocity space and the operational 
velocity space. The condition number and the determinant of 
the Jacobian matrix being equal to one, the manipulator 
performs very well with regard to force and motion 
transmission. Moreover, the 7m4 solutions of fully-isotropic 
parallel manipulators with Schönflies motions have the 
actuators mounted directly on the base. This effectively 
contributes to the reduction of the weight of the moving parts. 
The solutions presented in this paper overcome many 
disadvantages usually affecting parallel manipulators such as 
complex command and a lower dexterity due to a high motion 
coupling and multiplicity of singularities inside their 
workspace. Special legs integrating rhombus loops have been 
conceived to achieve fully-isotropic conditions. Examples of 
fully-isotropic solutions and solutions with decoupled and 
uncoupled motions are presented in this paper to illustrate the 
proposed approach. A modular prototype is under construction 
at the French Institute of Advanced Mechanics. As far as we 
are aware the solutions of parallel manipulators with 
Schönflies motions and complex legs containing rhombus 
loops set up in this paper are presented for the first time in the 
literature.  
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