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In this paper, we focus on some examples of practical applications of the primitive Schön-
flies-motion generators that are named also the primitive X-motion generators for concise-
ness. We address especially the serial SCARA-type robots and the 3-dof translational
parallel manipulators. Based on the limb architectures of primitive X-motion generators,
we systematically introduce general architectures of serial or parallel manipulators for
the purpose of practical applications. The brief account of various achievements of some
of the X-motion generators that are already described in the recent literature is also pro-
posed and their obviously singular postures are preliminarily obtained.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The Schönflies-motion generators [2,11,12] have many applications [1–10]. For instance, all the kinematic pairs or par-
allelogram couplings can be actuated thus making up a serial 4-dof manipulator often called a SCARA robot. The motion
set fXðuÞg of Schönflies motions includes 3-dof translation and 1-dof rotation around any axis that is parallel to u. In most
of practical applications, the orienting vector u is vertical and the tasks are pick-and-place operations of small objects like
chocolates, parts of a device, etc. In this tendency, a SCARA manipulator was studied at the McGill University [9,10].

In addition to the serial SCARA robots, in order to account for the increasing interest on the parallel manipulators, the
sequel will focus on translational parallel manipulators (TPMs), which potentially can be mechanisms of machine-tools like
milling machines. The manipulators introduced hereinafter are the serial SCARA-type robots with general architectures and
the overconstrained symmetrical translational parallel manipulators with three 4-dof limbs. Several manipulators are syn-
thesized systematically by using the limb architectures of primitive X-motion generators that are proposed in [2] and further
addressed in [11,12]. Additionally, some already-known manipulators, such as Delta robot [1], Star robot [3,4], Orthoglide
[5], MEL micro-finger [6], Tripteron TPM [8], SCARA-type McGill manipulator [9,10] etc., are verified through the parallel
arrangement of primitive X-motion generators.

2. Serial SCARA-type Robots

The SCARA acronym stands for Selective Compliance Assembly Robot Arm. This robot was first developed at Yamanashi Uni-
versity in Japan for assembly tasks. It is constructed with four joints with parallel axes. It includes two vertical revolute pairs
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(a) HHHH (b) PHHH (c) HPHH

(d) PPHH (e) PHPH (f) PHHP

(g) HPPH (h) PPPH (i) PPHP

Fig. 1. General architectures of serial SCARA robots.

(b) HPaHH(a) PaHHH (c) PaPaHH

(d) PaHPaH (e) PaHHPa (f) HPaPaH

Fig. 2. Six general architectures of serial SCARA robots with Pa.

2154 C.-C. Lee, J.M. Hervé / Mechanism and Machine Theory 44 (2009) 2153–2163



(c) HPaPH(b) PaHPH

(d) PPaHH (e) PHPaH (f) PaPaHP

(h) PaPHP 

(a) PaPHH

(g) PPaHPa (i) PPPaH

Fig. 3. Nine general architectures of serial SCARA robots with at least one Pa.
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and a vertical prismatic pair. The fourth joint is also a vertical revolute pair that controls the rotation in the wrist. Now, several
SCARA robots are commercially available, such as the Adept One robot, the IBM 7545 robot, the Intelledex 440 robot, and the
Rhino SCARA robot. The SCARA-type serial robot designed at McGill University includes two hinged parallelograms. These spe-
cial versions of 4-dof serial robots implement one among the primitive Schönflies-motion generators. However, more architec-
tures of serial SCARA robot can be synthesized by using all the primitive X-motion generators [12]. These robots are obtained by
fixing the first link and attaching a gripper (or an end-effector) to the last link. We show the general forms of the novel SCARA-
type robots in Fig. 1. When R pairs replace one, two or three of H pairs, there are forty-three general types of serial SCARA-type
robot. Reversing the order of joints in any of these architectures produces also an SCARA-type robot.

Furthermore, implementing the X motion generators with hinged parallelograms, we can design more SCARA-type robots
with at least one parallelogram. Fig. 2 shows six robots derived from them by replacing all prismatic pairs P by hinged par-
allelograms Pa. Nine typical robots with hinged parallelograms in Fig. 3 have at least one prismatic pair. Once more, the kine-
matic inversions of these robots are also SCARA-type serial manipulators. The locution of ‘‘kinematic inversion” designates a
mechanical operation on a kinematic chain, which means the change of fixed body into a moving end-body and vice versa.
Based on the above findings, the original SCARA robot is a special geometric choice of the inversion of Fig. 1b with three Rs
(R-joints) instead of three Hs (H-joints); the P is chosen parallel to the R axes for sake of simple motion control. Furthermore,
McGill SCARA-type serial robot is a special configuration of the inversion of Fig. 2c with two Rs in place of Hs.

3. Translational parallel manipulators
The Schönflies-motion subgroup plays a key role in the comprehensive enumeration of overconstrained parallel manipu-
lators producing 3-dof translation of the moving platform through the parallel setting of two or three 4-dof limbs. As a matter
of fact, the limbs generate Schönflies-motions [2,11,12]. Based on the architectures of all the primitive mechanical generators
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of X-motion, we will systematically synthesize symmetrical TPMs. The parallel layout of three X-motion generators with at
least two distinct orienting vectors, between a fixed base and a moving platform, leads to a particular kind of TPMs.

The set of feasible displacements between the base and the moving platform is the intersection of the limb bonds. In order
to achieve the 3-DOF translation of the moving platform in a fully parallel manner [13], we implement in parallel three limbs
that generate three distinct X motions. For simplicity, the rotation axis in each X-motion is parallel to one of three unit vec-
tors of an orthonormal vector base (u, v, w). Then, the three limbs generate three kinematic bonds fXðuÞg; fXðvÞg and
fXðwÞg. The platform can undergo motions that are represented by fXðuÞg \ fXðvÞg \ fXðwÞg. Each of the X-bonds can be
equated to a product of a set of spatial translations and a set of rotations:
fXðuÞg ¼ fTgfRðA;uÞg; 8A ð1Þ
fXðvÞg ¼ fTgfRðB;vÞg; 8B ð2Þ
fXðwÞg ¼ fTgfRðC;wÞg; 8C ð3Þ
These three equalities are valid for any point A; B, or C. Hence, we can choose A ¼ B ¼ C ¼ N;N being any given point, and
then we will have
fXðuÞg \ fXðvÞg \ fXðwÞg ¼ fTg½fRðN;uÞg \ fRðN;vÞg \ fRðN;wÞg� ð4Þ
fRðN;uÞg \ fRðN;vÞg \ fRðN;wÞg represents the motion of a body that is connected to a fixed base by three limbs, each limb
having only one R pair. All the R axes intersect at N and the whole mechanism is a 3-R parallel spherical chain, which is not
movable. As a matter of fact, the parallel system 3-R can be regarded as a parallel 3-dof wrist of structural type 3-RRR with
six locked R pairs. Hence we have
fRðN;uÞg \ fRðN;vÞg \ fRðN;wÞg ¼ fEg ð5Þ
and, therefore,
fXðuÞg \ fXðvÞg \ fXðwÞg ¼ fTgfEg ¼ fTg ð6Þ
The motion set of the moving platform is the 3D group fTg of spatial translations.
All the combinations delineated in the enumeration of primitive X-motion generators [12] can be used as limbs in the

construction of TPMs. In this way, avoiding the presence of inactive or idle pairs, all possible architectures of symmetrical
TPMs can be synthesized. Some representative architectures are graphically displayed in Fig. 4, in which H pairs can be arbi-
trarily replaced by R pair but avoiding the 3-RRRR architecture. The limbs including three P (or Pa) are of minor interest be-
cause in such limbs the H or R pair plays no role in the production of translation and, therefore, remains inactive. The
kinematic inversion of these tripods, are also valid TPMs. For brevity, they are omitted in the figures hereinafter.

Fig. 5 graphically displays eight typical TPMs with hinged parallelograms. In these combinations, an R pair can replace any
H pair. In addition, the kinematic inversion brings forth more valid TPMs.

4. Already described parallel manipulators

Various achievements of some of the primitive generators of X-motion are already published in the recent literature [1–
10]. In this section, they are verified via the primitive X-motion generators that are enumerated in [11,12].

4.1. Delta robot

Probably, the well-known Delta robot [1] is historically the first TPM. This noteworthy robot was successfully used in the
industry. A limb RRPaR of this Delta robot [1] in Fig. 6a is derived by kinematic inversion of the X-motion generator HPaHH,
which appears in Fig. 2b or is an II16 generator of Fig. 6 in [12], and by choosing H pairs with a zero pitch. One can notice that
a Delta limb can reach singular poses (or configurations). The singularity of the flattened parallelogram, Fig. 6b should be
avoided and the infinitesimal singularity may happen when the three R axes are in the same plane as shown in Fig. 6c.

4.2. Star and H robots

The Star robot is a TPM having three limbs as shown in Fig. 7a [3,4]. A Star limb has a RHPaR architecture, which can be
derived from the X-motion generator HPaPH (III12 generator) of Fig. 9 in [12] or Fig. 3c in this paper when the P is parallel to
the H axis. The fixed R and the adjacent H are chosen collinear thus being equivalent to a C pair and making up a kind of jack.
Ignoring the singularity of the flattened parallelogram, the limb can become singular when, in the RH-R sub-chain, the R axis
coincides with the R axis. Moreover, the coaxial R and H are also equivalent to an array RP with a P that is parallel to the R
axis. Hence, the singularity of two parallel P can occur when the translation provided by the Pa is parallel to the fixed R axis,
Fig. 7b.

The H robot implements two geometric arrangements of PRPaR limbs, Fig. 8a and b. Both belong to the general category
PHPaH of X-motion generators that is depicted as being an III8 generator of Fig. 10 in [12] or a serial SCARA robot in Fig. 3e. In
addition, Fig. 8c shows a possible singular posture.



(a) 3-HHHH(I9) (b) 3-PHHH(II8) (c) 3-HPHH(II16)

(e) 3-PHPH(III8)(d) 3-PPHH(III3) (f) 3-PHHP(III11)

(g) 3-HPPH(III12) (h) 3-PPPH(IV2) (i) 3-PPHP(IV4)

Fig. 4. Representative TPMs with primitive X-motion generators.
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4.3. Orthoglide

A PRPaR limb of the Orthoglide TPM [5], which is shown in Fig. 9a, is a special geometric choice in the general category
PHPaH of primitive X-motion generators [12]. Ignoring the singularity of the flattened parallelogram, two limb singularities
can happen: two R become coaxial and the translation provided by Pa becomes parallel to the fixed P. Actually, such a sit-
uation corresponds also to the parallelogram flattening. Another limb singularity can happen when the sub-chain PR-R is a
singular generator of planar motion; then the P is perpendicular to the plane of the R axes, as shown in Fig. 9b.
4.4. MEL micro-finger

A TPM used as a micro-finger with flexure R joints [6] was designed at the Mechanical Engineering Laboratory (MEL) of
Tsukuba. The MEL micro-finger has the limb structure RPaPaR belonging to the general category HPaPaH (III12 generator)
depicted in Fig. 7 of [12] or Fig. 2f. This limb kind is displayed in Fig. 10a. What is more, a patented device for a three-axis
machine that prevents rotational movement [7] has the same architecture. The singular poses of the MEL limb may happen if
the translations of the two Pa become locally parallel, Fig. 10b and also if the two Rs can become coaxial.
4.5. Tripteron

A 3-CRR TPM [8] also named ‘‘Tripteron” whose limb architecture is shown in Fig. 11a is an improved version, namely a
special TPM with Cartesian control of the platform translation, of a more general architecture prior proposed in [2]. The limbs
are derived from the general category PHHH (II8 generator) of Fig. 3 in [12] or Fig. 1b: the P is parallel to the parallel H axes
and the H pitches are zero. The limb singularity happens when the three pair axes lie in the same plane, which is displayed in
Fig. 11b.



(b) 3-HPaHPa(a) 3-HHPaH

(c) 3-PHPaH (d) 3-HPPaH

(e) 3-PaPaHH (f) 3-PaHPH

(g) 3-PPaHH (h) 3-PaPHH

Fig. 5. General TPMs with hinged parallelograms.
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4.6. Prism robot

The Prism robot [4] is a TPM implementing CPR limbs belonging to the general category PHPH (III8 generator)
of Fig. 4 in [12] or Fig. 1e. A simple control of the platform translation is obtained by using two geometric arrange-
ments shown in Fig. 12a and b of the CPR architecture. Limb singularity may happen if the C and the R can become
coaxial.



(a) (b) (c)

Fig. 6. Limb architecture of Delta robot.

(a) (b)

Fig. 7. Limb architecture of Star robot.

(a) (b) (c)

Fig. 8. Limb architectures of H-robot.

(b)(a)

Fig. 9. Limb architecture of Orthoglide manipulator.
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4.7. McGill robot

At McGill University, a serial generator and a parallel generator with two limbs of X motion were designed [9]. The chosen
limbs RPaRPa of these ‘‘robust” parallel manipulators depicted in Fig. 13a are derived from an inversion of the chain HPaHPa



(b)(a)

Fig. 10. Limb architecture of MEL micro-finger.

(a) (b)

Fig. 11. Limb architecture of a 3-CRR TPM.

(a) (b)

Fig. 12. Limb architectures of Prism-robot.
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with two hinged parallelograms of Fig. 2d or of Fig. 7 (III8 generator) in [12]. The singularity of two R pairs transitorily coaxial
can happen, such as Fig. 13b. The singularity of two locally parallel translations can also happen, Fig. 13c.

Besides these obvious singular poses, more special singular poses of the generators of fXðuÞg motion have to be derived
through the study of a possible linear dependency of twists of joints. Any singular pose of the chain studied at McGill Uni-
versity can be obtained by kinematic inversion from the singular poses of PaRPaR. Each Pa produces 1-dof translation with
equal circular trajectories, which is called a circular translation; when its amplitude is small, such a motion is similar to lin-
ear translation parallel to the local tangent to a circular trajectory. Hence, the singular postures of the foregoing chain can be



(a) (b) (c)

Fig. 13. Generator of X-motion at McGill university (a) obviously singular poses (b) and (c).
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derived from those of a PRPR chain. Moreover, the singular PRPR chain is the special case with zero pitches of the singular
PHPH chain. As explained in the pseudo-planar motion generators [14], a singularity of X-motion generators is attained if and
only if the twist of the moving H is a linear combination of the three twists in the other three pairs that are P, H and P. Hence,
in a general approach, the resultant twist of the sub-chain PHP is studied and this resultant twist is the twist of an H pair
with an axis designated by ðNR;uÞ and a pitch depending on NR. For instance, the twist of a first P parallel to the unit vector
s1 is expressed as d1M ¼ b1s1. The twist of a second P is d2M ¼ b2s2. The twist of the H with the axis ðN;uÞ and the pitch
p ¼ 2pk is d3M ¼ a½u� ðOMÞ þ ðONÞ � uþ ku�. For simplicity, the point N is chosen in the plane PlðO;? uÞ that contains
the origin O and is perpendicular to u. Then, the resultant twist of a serial array PHP (PPH or HPP) is
dRM ¼ a½u� ðOMÞ þ ðONÞ � uþ ku� þ b1s1 þ b2s2 ¼ aR½u� ðOMÞ þ tR� ð7Þ
where aR ¼ a and tR ¼ ½ðONÞ � uþ ku� þ ðb1s1 þ b2s2Þ=a. This equation stands for the twist of a H pair with an axis parallel to
u. Its pitch pRð¼ 2pkRÞ is provided by kR ¼ u � tR ¼ kþ ½b1ðu � s1Þ þ b2ðu � s2Þ�=a. Its axis ðNR;uÞ is determined by
ðONRÞ ¼ u� tR ¼ ðONÞ þ ðb1=aÞu� s1 þ ðb2=aÞu� s2 ð8Þ
The vectors u� s1 and u� s2 are perpendicular to u and, therefore, are parallel to the plane PlðO;? uÞ. Let d1 and d2 be unit
vectors that are parallel to u� s1 and u� s2 respectively. For instance, d1 ¼ u� s1=ku� s1k ¼ u� s1=j sinðu; s1Þj and
d2 ¼ u� s2=ku� s2k ¼ u� s2=j sinðu; s2Þj. Placing the origin O at N yields
ðNNRÞ ¼ ðb1=aÞu� s1 þ ðb2=aÞu� s2 ð9Þ
ðNNRÞ ¼ j sinðu; s1Þjðb1=aÞd1 þ j sinðu; s2Þjðb2=aÞd2 ð10Þ
The parameters b1=a and b2=a can be derived from the datum of any point NR lying in the plane PlðO;? uÞ. In a general case,
d2–d1; ðN;d1;d2Þ is a reference frame for the plane PlðO;? uÞ ¼ PlðN;? uÞ. In this frame, the coordinates of NR are
a1 ¼ j sinðu; s1Þjb1=a and a2 ¼ j sinðu; s2Þjb2=a. By using a1 and a2, which can be readily derived from the geometry of the
chain posture, the pitch pR of the resultant twist is expressed as follows
pR ¼ 2pkR ¼ 2pfkþ ½a1=j sinðu; s1Þj�ðu � s1Þ þ ½a2=j sinðu; s2Þj�ðu � s2Þg ð11Þ
Maintaining the notations of the general case, the resultant twist of the special chain PaRPa is considered, Fig. 14. The trans-
lations generated by the two Pas replacing the two Ps of the general case are instantaneously parallel to s1 and s2, respectively.
The unit vectors d1 and d2 are defined by d1 ¼ u� s1=ku� s1k ¼ u� s1=j sinðu; s1Þj and d2 ¼ u� s2=ku� s2k ¼
u� s2=j sinðu; s2Þj. These vectors are perpendicular to the two parallelogram planes and, therefore, are parallel to the two sets
of parallelogram hinges. The point N is chosen in the plane PlðO;? uÞ. This point N determines the axis ðN;uÞ of the R in the
PaRPa chain. Generally d1–d2, and ðN;d1;d2Þ is a frame of reference of PlðO;? uÞ. The resultant twist of PaRPa open chain
characterizes a H pair whose axis ðNR;uÞ is determined by ðNNRÞ ¼ a1d1 þ a2d2 and its pitch is derived as
pR ¼ 2pkR ¼ 2pf0þ ½a1=j sinðu; s1Þj�ðu � s1Þ þ ½a2=j sinðu; s2Þj�ðu � s2Þg ð12Þ
In the current special case, pR ¼ 0 is laid down by the choice of a PaRPaR generator of X motion. The prescribed condition
pR ¼ 0 implies ½a1=j sinðu; s1Þj�ðu � s1Þ þ ½a2=j sinðu; s2Þj�ðu � s2Þ ¼ 0. Hence, we have
a2 ¼ �a1j sinðu; s2Þjðu � s1Þ=½j sinðu; s1Þjðu � s2Þ� ð13Þ
The point NR cannot be chosen arbitrarily in PlðO;? uÞ and has to be on the straight line, Fig. 14,
NR ¼ N þ ðNNRÞ ¼ N þ a1fd1 � d2j sinðu; s2Þjðu � s1Þ=½j sinðu; s1Þjðu � s2Þ�g ð14Þ
Generally the axis ðN0;uÞ of the last R in PaRPaR does not intersect the previous straight line, N0–NR, where N0 is the position
of N after moving and the PaRPaR chain is not singular. Furthermore, let us assume that ðNN0Þ ? d2, which means that the
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Fig. 15. Singular poses of McGill robot.
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Fig. 14. A more special singular pose of McGill robot.
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parallelogram plane is parallel to the two R axes plane, and that N0 ¼ NR, which characterizes the chain singularity. Then
ðNNRÞ � d2 ¼ 0, and
a1fðd1 � d2Þ � j sinðu; s2Þjðu � s1Þ=½j sinðu; s1Þjðu � s2Þ�g ¼ 0 ð15Þ
Generally ðd1 � d2Þ � j sinðu; s2Þjðu � s1Þ=½j sinðu; s1Þjðu � s2Þ�–0 and necessarily a1 ¼ 0. Then NR ¼ N, and the two R axes are
collinear as already detected, Fig. 13b. Even though this singular pose is avoided, the equality ðd1 � d2Þ�
j sinðu; s2Þjðu � s1Þ=½j sinðu; s1Þjðu � s2Þ� ¼ 0 can be locally or instantaneously achieved. For instance, let us assume the partic-
ular condition ðd1 � d2Þ ¼ 0, which means that the two parallelogram planes are perpendicular. The resulting special equation
is j sinðu; s2Þjðu � s1Þ=½j sinðu; s1Þjðu � s2Þ� ¼ 0, which is satisfied with either sinðu; s2Þ ¼ 0 or ðu � s1Þ ¼ 0.

Case A sinðu; s2Þ ¼ 0

In this situation, we have s2 ¼ u, the translation parallel to s2 is parallel to u. Fig. 15a illustrates this kind of local or infin-
itesimal singularity.

Case B u � s1 ¼ 0

This condition means s1 ? u, i.e. the translation parallel to s1 is perpendicular to u. This singular pose is shown in Fig. 15b.
One can notice that, in this configuration, the sub-chain R-RPa of the chain RPaRPa is instantaneously a singular generator R-
RP (P ? plane R axes) of fGðuÞg, what confirms the singularity.

More generally, when ðd1 � d2Þ – 0, a singular pose is attained when we have j sinðu; s2Þj=ðu � s2Þ ¼ ðd1 � d2Þj sinðu; s1Þj=
ðu � s1Þ. Then,
tanðu; s2Þ ¼ �ðd1 � d2Þ tanðu; s1Þ ð16Þ
The datum through ðd1 � d2Þ of the relative angular position between the two planes of parallelograms and the datum
through tanðu; s1Þ of the translation direction in one parallelogram yield the singular poses characterized by the translation
direction in the other parallelogram given by the previous formula in Eq. (16). That way, we found out an infinity of singular
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poses for the McGill robot. A special example is obtained with d1 � d2 ¼ 1. Then, the two parallelogram planes are parallel. Eq.
(16) becomes tanðu; s2Þ ¼ � tanðu; s1Þ which has the solutions as follows,
angleðu; s2Þ ¼ � angle ðu; s1Þ þ np ðn is integerÞ: ð17Þ
The vectors s1 and s2 are parallel and, therefore, the translations generated by the two Pa couplings are parallel. This obvious
type of singularity is illustrated by Fig. 13c.

5. Conclusions

The X motion generators are very useful for the synthesis of novel serial or parallel manipulators. In this paper, a brief
account of some applications of the X-motion generators is addressed. All serial SCARA-type robots and all fully parallel sym-
metrical TPMs with 4-dof limbs are systematically introduced. Various achievements of some of the generators of X-motion
are already described in the present-day literature. These mechanisms highlight and confirm the effectiveness of the enu-
meration of primitive Schönflies-motion generators, which was further studied with full details in [12]. Additionally, the sin-
gularity is detected in some of the known limbs recalled in this paper. Beyond the theoretical findings of this work, we expect
that specialization in general architectures will be considered for the synthesis of practical parallel mechanisms.
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