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Abstract

This paper presents a geometric interpretation of spherical four-bar motions as
intersection curve of two quadrics, similar to the case of planar four-bar motions.
We give a geometric characterization of the quadrics and use it for determining if
two task positions of a spherical four-bar linkage lie on separate assembly modes
of a coupler curve, known as “assembly mode defect.”

Keywords: spherical kinematic mapping, spherical four-bar, branch defect, assembly mode
defect.

1. Introduction

An important problem in the five-position synthesis of spherical four-bar linkages
is the separation of task positions due to a discontinuous coupler curve, which is
termed “assembly mode defect”: In order to reach the prescribed input orientations, the
mechanism has to be disassembled and re-assembled in a different way. Mechanisms
with this defect are unusable in practice. Therefore, methods for effective and early
recognition of assembly mode defective solutions to the synthesis problem are of
interest.

Given the mechanism dimensions and the crank angles of the prescribed orientations,
it is always possible to decide whether the orientations fall within the same assembly
mode or not. If the mechanism has two assembly modes, one can identify two disjoint
sub-intervals I1, I2 ⊂ (0, 2π) of the input crank angle (see Murray and Larochelle 1998).
The mechanism is assembly mode defective, if the prescribed orientations belong to
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crank angles in both intervals I1 and I2. However, this method is rather cumbersome: It
requires knowing the mechanism dimensions as well as the input crank angles.

Recently, Brunnthaler et al. 2006 proposed an efficient kinematic-mapping based
synthesis algorithm for spherical four-bars. It allows to compute in full generality, i.e.,
without specifying the orientation parameters, a univariate polynomial P of degree six
that governs the solutions to the synthesis problem. Any pair of real roots of P can
be combined to produce a spherical four-bar. Hence, the synthesis problem has up
to 15 real solutions. They might, however, be afflicted with an assembly mode defect.
In the paper at hand we present a simple kinematic mapping based assembly mode
test. It can be combined with the algorithm of Brunnthaler et al. 2006 to provide a
homogeneous design environment for five position synthesis of spherical four bars.

The assembly mode test we propose transforms the problem to the assembly mode
test for planar four-bars of Schröcker et al. 2007. For computing the transformation,
we make use of the fact that the spherical kinematic image of a four-bar motion is
the intersection curve of two quadrics Q1 and Q2 (similar to the well-known fact for
planar four-bar motions, see Bottema and Roth 1990, Chapter 12). For spherical four-bar
motions this was recently observed in Brunnthaler et al. 2006 (implicitely it was already
used in Bulca and Husty 1995). A detailed study of the geometry of the quadrics Qi is
a necessary prerequisite for our assembly mode test and a further contribution of the
present article.

In Section 2 we recall basic notions and concepts of spherical kinematic mapping.
Sections 3 and 4 are dedicated to an analytic description and a geometric characteriza-
tion of the image curve of spherical four-bar motions. The actual assembly mode test is
derived in Section 5. In Section 6 we present numerical examples.

2. Preliminaries

Spherical Euclidean displacements D can be described by

X = A · x, (1)

where X and x represent a point in the fixed and moving frame, respectively, and
A ∈ SO(3) is a 3× 3 proper orthogonal matrix (Husty et al. 1997; McCarthy 2000). For
the following it is convenient to use the Euler parameterization of SO(3):

A :=

x2
0 + x2

1 − x2
2 − x2

3 2(x1x2 − x0x3) 2(x1x3 + x0x2)
2(x1x2 + x0x3) x2

0 + x2
2 − x2

1 − x2
3 2(x2x3 − x0x1)

2(x1x3 − x0x2) 2(x0x1 + x2x3) x2
0 + x2

3 − x2
1 − x2

2

 . (2)

In the matrix A the entries xi have been normalized so that

x2
0 + x2

1 + x2
2 + x2

3 = 1. (3)
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Figure 1: Spherical four-bar

We refer to Equation (3) as the first normalizing condition. The mapping

κ : D → p ∈ P3,

A = A(xi) 7→ [x0 : x1 : x2 : x3]T 6= [0 : 0 : 0 : 0]T (4)

is called spherical kinematic mapping and maps each spherical Euclidean displacement
D to a point p in P3. The space P3 is called kinematic image space and is naturally
endowed with an elliptic metric (Blaschke 1960). Changes of coordinates in either the
moving or fixed frame induce collineations of P3 that fix the absolute quadric E of
elliptic geometry (compare Section 4).

3. Kinematic image of spherical four-bars

In a spherical four-bar two points of the coupler revolute joint move on circles. In
Figure 1 this is shown for the point m. When we want to model this constraint we can
say that point m is constrained to be on two spheres. One is the unit sphere κ0 the
other is a sphere κ centered at the piercing point m0 of the base revolute joint with the
unit sphere and radius r = mm0. Let the vector of the fixed revolute axis be [A, B, C]T

and let the corresponding vector of the moving revolute axis in the coupler system be
[a, b, c]T. The endpoints of these vectors will be m0 resp. m when we have the side
conditions

A2 + B2 + C2 = 1, and a2 + b2 + c2 = 1. (5)

We refer to Equation (5) as the second normalizing condition. The path of m is now
modeled as the intersection curve of the two spheres:

κ0 : X2
1 + X2

2 + X2
3 − X2

0 = 0, (6)

κ : X2
1 + X2

2 + X2
3 − 2AX0X1 − 2BX0X2 − 2CX0X3 + RX2

0 = 0. (7)
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with R = A2 + B2 + C2 − r2 = 1− r2, where r is the radius of the sphere κ and A, B, C
are the coordinates of the sphere center. Note that R is confined to the interval (−3, 1)
in order to ensure a real intersection of κ0 and κ.

Xi are the coordinates of the moving pivot in the fixed system and can be computed
via Equation (1). We substitute [X0, X1, X2, X3]T = A · [a, b, c]T into Equation (7). Sim-
plifying the result using Equation (6) (which is automatically met if the normalizing
conditions (3) and (5) hold) and the first normalization condition (3) we obtain the
constraint equation of a surface Q ⊂ P3. Denoting by E the four by four unit matrix
and letting x = [x0, x1, x2, x3]T, the equation of Q reads

Q : xT ·Q · x = 0 (8)

where
Q = Q? − 1 + R

2
· E, R ∈ (−3, 1), (9)

and

Q? =


Aa + Bb + Cc Cb− Bc Ac− Ca Ba− Ab

Cb− Bc Aa− Bb− Cc Ab + Ba Ac + Ca
Ac− Ca Ab + Ba −Aa + Bb− Cc Bc + Cb
Ba− Ab Ac + Ca Bc + Cb −Aa− Bb + Cc

 . (10)

Q is a quadratic surface in P3 and can be conveniently used for the analysis of
spherical four-bar mechanisms following the process demonstrated in Bottema and
Roth 1990 for planar four-bar mechanisms. The four-bar motion is mapped to the
intersection curve of two quadrics of type (8)–(10) in the image space and can easily be
investigated using the properties of the image space curve.

4. Geometric characterization

In this section we will give a geometric characterization of the quadric Q defined by
Equations (8)–(10). We already mentioned that the geometry in P3 is elliptic (Blaschke
1960); a change of coordinates in either the moving or the fixed system induces a
projective transformation of P3 that leaves fixed the absolute quadric

E : xT · E · x = 0. (11)

Note that the quadric E contains no real points.

Theorem 1. The quadrics Q defined by Equations (8)–(10) are precisely the quadrics with
infinitely many real points whose intersection with E consists of two pairs of conjugate complex
lines S, S and T, T that form a spatial quadrilateral (Figure 2).

Before we give the proof of Theorem 1, we shortly discuss how to verify that a
straight line L with Plücker coordinate vector l = [l0 : . . . : l5]T is contained in the
quadric Q : xT ·Q · x = 0. This will be needed during the proof of Theorem 1.
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Figure 2: Intersection of E and Q

Generically, the intersection points of L and the coordinate planes ζi : xi = 0 can be
computed by the formulas

L ∩ ζ0 = l0 = [ 0 : l0 : l1 : l2]T,

L ∩ ζ1 = l1 = [−l0 : 0 : l5 : −l4]T,

L ∩ ζ2 = l2 = [−l1 : −l5 : 0 : l3]T,

L ∩ ζ3 = l3 = [−l2 : l4 : −l3 : 0]T

(12)

(Pottmann and Wallner 2001, Section 2.1). The formula for li fails (i.e., li is zero) iff
L ⊂ ζi. We conclude that at most two of the above formulas fail and at least two of the
points l0, . . . , l3 (say li and lj) are different. Now we consider the polynomial

P(t) = (li + tlj)T ·Q · (li + tlj). (13)

Generically, P(t) is of degree two and its roots correspond to the intersection points of
L and Q. The straight line L is contained in Q if and only if (13) vanishes identically in t.

Proof of Theorem 1. At first we show that any quadric Q of the shape (8)–(10) satisfies
the characterizing conditions of the theorem. The restriction of R to the interval (−3, 1)
guarantees that Q contains infinitely many real points. Furthermore, the characteristic
polynomial of the pencil of quadrics spanned by E and Q is

16 det(Q + λE) = (2λ + 1− R)2(2λ− 3− R)2. (14)

It has two roots of multiplicity two. From this we can already conclude that the
intersection Q∩ E consists of four straight lines (see Sommerville 1934, p. 268). Because
Q and E can be described by real equations and E contains no real points, this set of
lines consists of two pairs (S, S) and (T, T) of conjugate complex lines. These pairs of
conjugate complex lines are necessarily skew because otherwise their intersection point
would be real – a contradiction to the fact that E contains no real points. Furthermore,
no three of the lines S, S, T and T can be skew because otherwise E and Q would be
equal. Hence elements of opposite pairs are intersecting and the lines S, S, T, T form a
spatial quadrilateral.

Assume now conversely that Q′ is a quadric with infinitely many real points that
intersects E in four straight lines S′, S′, T′, T′, as required by the theorem. We have
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to show there exist values a, b, c, A, B, C and R such that Q′ equals the quadric Q of
(8)–(10).

The intersection lines of Q′ and E can be written as

[s′, s′]T, [s′, s′]T, [t′,−t′]T, [t′,−t′]T (15)

where

s′ =

 1 + s2

2si
(s2 − 1)i

 , t′ =

 1 + t2

2ti
(t2 − 1)i

 , s, t ∈ C∪∞. (16)

The intersection lines of Q and E can be written as

[s, s]T, [s, s]T, [t,−t]T, [t,−t]T (17)

where

s =

−AC− Bi
−BC + Ai

A2 + B2

 , t =

−ac− bi
−bc + ai

a2 + b2

 . (18)

Equations (15) to (18) can be verified using the procedure described right before this
proof. We let

A :=
−2=(s)

<(s)2 +=(s)2 + 1
, B :=

<(s)2 +=(s)2 − 1
<(s)2 +=(s)2 + 1

, C :=
−2<(s)

<(s)2 +=(s)2 + 1
(19)

and

a :=
−2=(t)

<(t)2 +=(t)2 + 1
, b :=

<(t)2 +=(t)2 − 1
<(t)2 +=(t)2 + 1

, c :=
−2<(t)

<(t)2 +=(t)2 + 1
. (20)

These values are real and satisfy a2 + b2 + c2 = A2 + B2 + C2 = 1. Furthermore,
substitution of (19) and (20) into (18) yields vectors s, t that are proportional to s′, t′.
Hence, we can build the quadric Q? of Equation (10) using the values (19) and (20) for a,
b, c and A, B, C. The intersection of Q? and E (and hence also of Q and E) will consists
of the straight lines S′ = S, S′ = S, T′ = T and T′ = T. The quadric Q′ lies in the pencil
spanned by Q? and E and there exists a value R ∈ C such that the quadric Q of (9)
equals Q′. Because Q′ contains infinitely many real points, R is real and contained in
the interval (−3, 1). This finishes the proof.

Corollary 1. The straight lines S and S depend only on A, B and C. The straight lines T and
T depend only on a, b and c.

Proof. The corollary follows from Equations (17) and (18), where the Plücker coordinates
of S are given in terms of A, B, C and the Plücker coordinates of T are given in terms
of a, b, c.
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Remark 1. The intersection of E and Q is independent of R. We can view R as the pencil
parameter of the pencil of quadrics spanned by E and Q. In other words, varying R
yields quadrics Q and Q̃ that intersect in four conjugate complex lines S, S, T and
T. Hence Q and Q̃ have no real intersection points. This is similar to the kinematic
image of planar four-bars where it has been exploited for workspace and tolerance
analysis (see Husty 1996 and Hofmeister et al. 2006). The ideas of these articles
could, in principle, also be used for the workspace and tolerance analysis of spherical
mechanisms.

5. Assembly mode decisions for spherical four-bar mechanisms

The introductory comments on the necessity of efficient elimination of assembly mode
defective solutions to synthesized four-bars not only apply to the spherical case but also
to planar four-bar synthesis. As an accompanying tool to recent kinematic mapping
based five-position synthesis algorithms for planar four-bar mechanisms (Brunnthaler
et al. 2005; Hayes and Zsombor-Murray 2002) a simple kinematic mapping based test
for deciding whether two positions of a planar four-bar lie within the same assembly
mode or not has been presented in Schröcker et al. 2005 and Schröcker et al. 2007. It is
based on the solution of two quadratic equations and, depending on the number of
real roots, a subsequent interval determination or sign comparison. In Section 5.2 we
will show that this algorithm can also be used for spherical assembly mode decisions.
We summarize the algorithm for the planar case in the following section.

5.1 Planar four-bar mechanisms. Similar to the spherical case, the kinematic image of
a planar four-bar is the intersection curve of two quadrics (hyperboloids) H0 and H1 in
P3. The equations of H0 and H1 are Hi : xT ·Hi · x = 0 where Hi is of the shape

H =


(a− ξ)2 + (b− η)2 − $2 2η − 2b 2a− 2ξ 2bξ − 2aη

2η − 2b 4 0 −2a− 2ξ

2a− 2ξ 0 4 −2b− 2η

2ξb− 2ηa −2a− ξ −2b− η (a + ξ)2 + (b + η)2 − $2

 , (21)

ξ, η, a, b, $ ∈ R.

The hyperboloid H : xT · H · x = 0 is the constraint surface of all proper Euclidean
motions such that the image of the point (ξ, η)T lies on the circle with center (a, b)T

and radius $.

Lemma 1. Any hyperboloid of the shape (21) can be characterized geometrically by the following
two properties:

1. H contains the points i = [0 : 1 : i : 0]T and i = [0 : 1 : −i : 0]T.
2. H is tangent to the planes ω = [1 : 0 : 0 : i] and ω = [1 : 0 : 0 : −i]

(see Figure 3).
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Figure 3: Geometric characterization of the quadric (21).

A proof of this lemma is given in Bottema and Roth 1990, Chapter 11.7.
Via planar kinematic mapping, the four-bar motion is identified with the intersection

curve C of two hyperboloids H0 and H1 (if a kinematic mapping based synthesis
algorithm is used, the hyperboloids H0 and H1 are readily available). The kinematic
images of two prescribed positions are the precision points p, q ∈ C. Branch defect
occurs if and only if, p and q lie in different branches of C. This can be tested by
computing the roots zi of the quadratic equations

T1(z) := ‖m1(z)−m2(z)‖2 − (r1(z) + r2(z))2 = 0,

T2(z) := ‖m1(z)−m2(z)‖2 − (r1(z)− r2(z))2 = 0,
(22)

where

m(z) = 1/2

 b− η + z(a + ξ)
−a + ξ + z(b + η)

2z

 (23)

and
r2(z) = 1/4 $2(1 + z2). (24)

The zeros of (22) give the z-coordinate of points of C with horizontal tangents. Now
three cases have to be distinguished:

Case 1: Two roots of (22) are real and two are conjugate complex. In this case the planar
four-bar has only one assembly mode and nothing more needs to be done.

Case 2: Equation (22) has four real roots z0, z1, z2 and z3. In this case we consider the
z-coordinates zp and zq of p and q. The points p and q lie in the same branch of
C if and only if the interval [zp, zq] contains either none or all of the values zi.

Case 3: Equation (22) has four complex roots. In this case, we consider the quantities

∆p = det
(
m′

1(zp)− p′, m′
2(zp)− p′

)
and ∆q = det

(
m′

1(zq)− q′, m′
2(zq)− q′

)
(25)
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Figure 4: Configuration of the eight lines Si, Si Ti, Ti (i = 0, 1)

(prime denotes projection onto the plane z = 0, i.e., dropping of the z-coordinate).
The points p and q lie in the same branch of C if and only if ∆p and ∆q are of the
same sign.

Detailed proofs of the correctness of this assembly mode test are given in Schröcker
et al. 2005 and Schröcker et al. 2007.

5.2 Spherical four-bar mechanisms. In principle, the situation in spherical kinematics
is the same as in planar kinematics, except that we have to use quadrics Q0, Q1 of shape
(8)–(10) instead of H0 and H1. Given the kinematic images p and q of two orientations
of the spherical four-bar, we have to decide whether p and q lie in different branches
of C := Q0 ∩ Q1 or not. This question is of topological nature. In particular, it is
invariant with respect to real projective transformations. In the following we will show
that there exists a regular real projective transformation α : P3 → P3 that maps the two
quadrics Qi onto two quadrics Hi of the shape (21). Performing the assembly mode
test of Section 5.1 with H0 = α(Q0), H1 = α(Q1), α(p) and α(q) as input data will tell
whether the orientations to p and q lie in the same assembly mode of the spherical
four-bar or not.

Theorem 2. To any two quadrics Q0, Q1 of the shape (8)–(10) there exists a real projective
transformations α : P3 → P3 that transforms Q0 and Q1 into quadrics H0, H1 of the shape (21).

Proof. We give a constructive proof that exploits the geometric properties of the hyper-
boloids Hi and the quadrics Qi. The complete intersection of Qi and E consists of four
straight lines Si, Si, Ti and Ti (i = 0, 1; see Figure 4). Because these lines are generators
of E, the lines S0 and T1 are intersecting. They intersect in a point h = S0 ∩ T1 and span
a plane η = S0 ∨ T1. Since S0 and T1 are intersecting as well, we have

h ∈ η, h ∈ η, h ∈ η, h ∈ η. (26)
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A homogeneous coordinate vector of h is
(1− C2

0)(1− c2
1)− (1− c1C0)(b1B0 + a1 A0)

(1− c2
1)B0C0 − (1− C2

0)b1c1

−(1− c2
1)A0C0 + (1− C2

0)a1c1

(B0a1 − A0b1)(C0c1 − 1)

 + i ·


(c1 − C0)(B0a1 − A0b1)
a1(1− C2

0)− A0(1− c2
1)

b1(1− C2
0)− B0(1− c2

1)
(C0 − c1)(A0a1 + B0b1)

 ; (27)

a homogeneous coordinate vector of η is
−(1 + c1C0)(A0a1 + B0b1)− (1− C2

0)(1− c2
1)

−B0C0(1− c2
1) + b1c1(1− C2

0)
A0C0(1− c2

1)− a1c1(1− C2
0)

(1 + c1C0)(A0b1 − B0a1)

 + i ·


(c1 + C0)(A0b1 − B0a1)
A0(1− c2

1) + a1(1− C2
0)

B0(1− c2
1) + b1(1− C2

0)
(c1 + C0)(A0a1 + B0b1)

 .

(28)
We denote by <(h), =(h), <(η) and =(η) the respective real and imaginary parts of
(27) and (28). It is easy to see that (26) is equivalent to

<(η)T<(h) = <(η)T=(h) = =(η)T<(h) = =(η)T=(h) = 0. (29)

In other words: Real and imaginary part of h lie in real and imaginary part of η. There exists
a real projective transformation α that maps <(h) to [1, 0, 0, 0]T, =(h) to [0, 0, 0, 1]T and
arbitrary real points of <(η) and =(η) to [0, 1, 0, 0]T and [0, 0, 1, 0]T, respectively (in
fact, there exists an infinity of such transformations). Because the defining conditions
on α are real, we can assume that α itself is real. This implies

α(h) = i, α(h) = i, α(η) = ω, α(η) = ω. (30)

Hence, the α-images of Qi satisfy the geometric characterization of the hyperboloids Hi
which finishes the proof.

5.2.1 The transformation formula. The proof of Theorem 2 is constructive but actual
formulas for α are missing. We will derive them in the following. The projective
transformation α maps a point x to α(x) = A · x where A is a real, regular four by four
matrix. We will compute A−1 instead of A. Because we may assume

A · <(h) = [0 : 1 : 0 : 0]T and A · =(h) = [0 : 0 : 1 : 0]T, (31)

the second and third column of A−1 can be taken as <(h) and =(h), respectively. The
first and fourth column can be taken as real and imaginary part of any point in η. A
simple choice is k := S0 ∩ T1 whose real and imaginary part equal <(η) and =(η)
(because η is tangent to E in k and the polar system of E is described by the identity
matrix). Hence, the matrix A−1 can be written as

A−1 = [<(η),<(h),=(h),=(η)]. (32)
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Equation (32) describes the transformation α−1 directly in terms of parameters of the
spherical four-bar mechanism. This inverse transformation is needed for computing
the equation of Hi = α(Qi). It is Hi : xT ·Hi · x = 0 where

Hi = (A−1)T ·Qi ·A−1. (33)

Remark 2. The singularities of the suggested construction manifest in the vanishing of
the determinant of A−1:

det A−1 = 4(A2
0 + B2

0)
2(a2

1 + b2
1)

2(a2
1(B2

0 + C2
0) + b2

1(A2
0 + C2

0) + c2
1(A2

0 + B2
0)

− 2(A0B0a1b1 + A0C0a1c1 + B0C0b1c1)). (34)

This case is characterized by the failure of the span and intersection formulas for
Plücker coordinates that we used to compute (27) and (28) (see Pottmann and Wallner
2001, Section 2.1). Because this failure has no geometric meaning, it is always possible
to use our formulas after a suitable change of coordinates in the fixed and/or moving
system.

5.2.2 The assembly mode test. The algorithm for making assembly mode decisions for
spherical four-bars is as follows:

Step 1: From the mechanism dimensions compute the parameters ai, bi, ci, Ai, Bi, Ci
and Ri that describe the quadric Qi via Equations (8)–(10).

Step 2: Compute the transformation α−1 according to Equation (32) and the transfor-
mation α.

Step 3: Compute the equations of hyperboloids Hi via Equation (33).
Step 4: Compute the planar precision points qj from the spherical precision points pj

according to qj = α(pj).
Step 5: Make an assembly mode decision for the planar four-bar motion to H0 ∩ H1

and the precision points qj. The spherical four-bar is afflicted with an assembly
mode defect if and only if the planar four-bar is.

Remark 3. The hyperboloids H0 and H1 described by (33) are not in the general form of
Equation (21). In fact, their entries hi

jk satisfy the additional relations

h0
03 = 0, h0

02 = −h0
13, h0

01 = h0
23 and h1

03 = 0, h1
02 = h1

13, h1
01 = −h1

23 (35)

plus the relations obtained from symmetry of Hi. This implies that the base points of
the corresponding four-bars are

(a0, b0)T, (0, 0)T (36)

(i.e., a1 = b1 = 0) while the coordinates of the coupler joint in the moving frame are

(0, 0)T, (ξ1, η1)T (37)

(i.e., ξ0 = η0 = 0). This is no restriction of generality and can always be attained by
choosing the coordinate frames in the fixed and moving frame appropriately.
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Remark 4. The transformation (33) is independent of R. Hence it not only transforms
two quadrics Q0 and Q1 to hyperboloids H0 and H1 but the complete pencil spanned
by Qi and E to a pencil of hyperboloids, spanned by Hi and α(E).

6. An Example

In this section we illustrate our algorithm with a comprehensive example. We consider
the five position synthesis problem to the prescribed precision points

p0 = [1.0000 : 0.0000 : 0.0000 : 0.0000]T, p1 = [1.0000 : 0.1875 : 1.7188 : 2.1875]T,

p2 = [1.0000 : 2.6207 : 0.3103 : 0.3793]T, p3 = [1.0000 : 1.8333 : 0.6000 : 0.4333]T,

p4 = [1.0000 : 0.2969 : 0.6406 : 1.4844]T.
(38)

Using the algorithm of Brunnthaler et al. 2006 we find that the synthesis problem
has 15 real solutions. In kinematic image space they belong to the intersection curves
Cij = Qi ∩Qj of the quadrics Qi : xT ·Qi · x = 0 where

Q0 =


−0.7768 0.4900 −0.8305 0.0569

0.4900 −0.9556 −0.4523 −0.6031
−0.8305 −0.4523 −0.5480 −0.3238

0.0569 −0.6031 −0.3238 0.2089

 ,

Q1 =


−0.6693 0.5430 −0.7364 −0.3364

0.5430 −1.0021 −0.6210 0.1019
−0.7364 −0.6210 −0.5729 −0.2367
−0.3364 0.1019 −0.2367 0.4596

 ,

Q2 =


−0.8339 −0.9219 −0.0939 −0.2529
−0.9219 −0.2602 0.2063 −0.1414
−0.0939 0.2063 −1.4807 −0.3055
−0.2529 −0.1414 −0.3055 0.3511

 ,

Q3 =


−0.3963 0.1389 −0.9479 −0.2543

0.1389 −0.6534 −0.3064 0.8575
−0.9479 −0.3064 0.1882 0.0417
−0.2543 0.8575 0.0417 0.1811

 ,

Q4 =


−1.0532 −0.8754 0.3249 −0.0697
−0.8754 −0.4463 −0.3133 −0.2646

0.3249 −0.3133 −1.3313 −0.6328
−0.0697 −0.2646 −0.6328 0.0222

 ,

Q5 =


1.1249 0.7027 0.0386 −0.6034
0.7027 0.6108 0.6228 0.3145
0.0386 0.6228 0.4760 0.7318

−0.6034 0.3145 0.7318 0.7880

 .

(39)
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i ai bi ci Ai Bi Ci r2
i

0 0.4164 0.3043 0.8568 −0.8366 −0.4749 0.2730 3.0357
1 0.7460 0.2726 0.6076 −0.5221 −0.6417 0.5618 2.8924
2 −0.0344 −0.8894 0.4558 −0.2582 0.6762 0.6900 3.1119
3 0.9805 0.0981 0.1701 −0.2658 −0.2859 0.9206 2.5284
4 −0.3547 −0.9076 0.2246 0.1342 0.5400 0.8309 3.4043
5 0.1817 0.9450 0.2721 0.6488 0.0535 0.7591 0.5001

Table 1: Solutions to the synthesis problem

The corresponding solutions for the parameters ai, bi, ci Ai, Bi, Ci and r2
i are given in

Table 1.
We will not discuss all 15 solutions but consider particular examples.

Example 1. We start with C01 = Q0 ∩Q1. The transformation matrix A−1 reads

A−1 =


0.2165 0.8904 −0.0310 0.0816
0.1726 −0.1726 0.8947 0.1194

−0.4139 0.4139 0.4053 −0.0348
0.1081 0.0773 0.1851 −0.4874

 (40)

and the transformed quadric equations are Hi : xT ·Hi · x = 0 where the matrices

H0 =


−0.2874 −0.5696 −0.0934 0.0000
−0.5696 4.0000 0.0000 0.0934
−0.0934 0.0000 4.0000 −0.5696

0.0000 0.0934 −0.5696 −0.2874

 ,

H1 =


−0.3475 −0.4209 −0.5317 0.0000
−0.4209 4.0000 −0.0000 −0.5317
−0.5317 0.0000 4.0000 0.4209

0.0000 −0.5317 0.4209 −0.3475

 .

(41)

are computed according to (33). The circle tangent conditions (22) read

− 0.0178− 0.0658z− 0.0497z2 = 0, 0.0054− 0.0658z− 0.0265z2 = 0. (42)

They have the four real roots

ζ0 = −0.9428, ζ1 = −0.3805, ζ2 = −2.5661, ζ3 = 0.0798. (43)

The transformed precision points qi = A · pi are

q0 = [0.4248 : 0.4538 : −0.0158 : 0.1602]T, q1 = [−0.1420 : 0.2835 : 0.2019 : −0.6417]T,

q2 = [0.3309 : 0.0880 : 0.3709 : 0.1132]T, q3 = [0.1951 : 0.1308 : 0.2955 : 0.0404]T,

q4 = [0.2048 : 0.3976 : 0.2508 : −0.7895]T.
(44)

13



Their z-coordinates are

z0 = 0.3772, z1 = 4.5198, z2 = 0.3422, z3 = 0.2068, z4 = −3.8556. (45)

Any two of them enclose an interval [zi, zj] that contains either all of the values ζi of
(43) or none of them. Hence, all prescribed precision points can be reached within the
same assembly mode.

Example 2. Next we turn our attention to the spherical four-bar to C02 = Q0 ∩Q2. In
this case, the transformation matrix A−1 reads

A−1 =


−0.8161 0.2225 −0.0875 0.3490
−0.1793 0.1793 0.4151 −0.4570
−0.1095 0.1095 −0.2940 −0.7890

0.5384 0.4192 −0.0543 0.2164

 . (46)

The transformed matrices Hi are

H0 =


9.8241 −5.1622 11.1590 0.0000

−5.1622 4.0000 0.0000 −11.1590
11.1590 0.0000 4.0000 −5.1622

0.0000 −11.1590 −5.1622 9.8241

 ,

H1 =


10.9828 −11.1572 −4.4625 0.0000
−11.1572 4.0000 0.0000 −4.4625
−4.4625 0.0000 4.0000 11.1572

0.0000 −4.4625 11.1572 10.9828

 .

(47)

The circle tangent conditions (22) are

− 25.5175 + 18.6785z− 69.0877z2 = 0, 37.9668 + 18.6785z− 5.6034z2 = 0. (48)

They have two real and two conjugate complex roots:

ζ0 = −1.4242, ζ1 = 4.7576, ζ23 = 0.1352± 0.5925i. (49)

We conclude that the spherical four-bar to C02 has only one assembly mode.

Example 3. Finally we make an assembly mode decision for the spherical four bar to
C04. The transformation matrix A−1 reads

A−1 =


−0.9312 0.1103 0.0161 0.1658
−0.0370 0.0370 0.2629 −0.6331
−0.0807 0.0807 −0.2194 −0.7280

0.3536 0.3128 0.0199 0.2043

 . (50)
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The transformed matrices Hi are

H0 =


88.7583 −17.1901 35.6379 0.0000
−17.1901 4.0000 0.0000 −35.6379
35.6379 0.0000 4.0000 −17.1901
0.0000 −35.6379 −17.1901 88.7583

 ,

H1 =


51.1175 −8.6796 −18.6643 0.0000
−8.6796 4.0000 0.0000 −18.6643
−18.6643 0.0000 4.0000 8.6796

0.0000 −18.6643 8.6796 51.1175

 .

(51)

The circle tangent conditions (22)

− 0.0304 + 0.0368z− 0.2155z2 = 0, 0.1967 + 0.0368z + 0.0116z2 = 0 (52)

have four complex roots

0.0854± 0.3657i, −1.5918± 3.8036i. (53)

The normal projections of the transformed points qi = A · pi onto the plane z = 0 are

q′0 = (−1.0051,−0.1469)T, q′1 = (−26.3018, 7.5027)T,

q′2 = (−3.2393,−5.9493)T, q′3 = (−3.4353,−3.5582)T,

q′4 = (−11.5293, 0.3056)T.

(54)

The normal projections of the centers mij(zj) obtained by intersecting Hi with a hori-
zontal plane through qj are

m′
00 = (−3.1734,−17.8189)T, m′

01 = (44.4989,−17.8189)T,

m′
02 = (31.8348,−17.8189)T, m′

03 = (26.7671,−17.8189)T,

m′
04 = (7.0413,−17.8189)T

(55)

and
m′

10 = (7.0177,−4.3398)T, m′
11 = (31.9847,−4.3398)T,

m′
12 = (25.3522,−4.3398)T, m′

13 = (22.6982,−4.3398)T,

m′
14 = (12.3673,−4.3398)T.

(56)

The determinants ∆j = det(m′
0j − q′j, m′

1j − q′j) have values

∆0 = 150.8697, ∆1 = 637.4517, ∆2 = 395.8222, ∆3 = 349.0752, ∆4 = 346.8475 (57)

and are all of the same sign. From this we conclude that the synthesized four-bar is not
assembly mode defective.

An overview of the number of real roots of the circle tangent conditions and assembly
mode defects for all solution four-bars is given in Table 2. It is remarkable that none of
the 15 real solutions suffers from an assembly mode defect.
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ij 01 02 03 04 05 12 13 14 15 23 24 25 34 35 45

no. real roots 4 2 2 0 2 2 2 2 2 2 2 2 0 2 4

ass. mode def. no no no no no no no no no no no no no no no

Table 2: Complete discussion of assembly mode defects.

7. Conclusion

We showed that the kinematic image of a spherical four-bar motion is the intersection
curve of two quadrics Q0 and Q1 ⊂ P3. The quadrics Qi are characterized by the fact
that their intersection with the quadric E : x2

0 + x2
1 + x2

2 + x2
3 = 0 is a spatial quadrilateral,

formed by two pairs of conjugate complex lines.
We used this geometric characterization for an explicit description of a real projective

transformation α : P3 → P3 that transforms Q0 and Q1 to two hyperboloids H0 and H1,
respectively, whose intersection is the kinematic image of a planar four-bar motion
and we demonstrated how to use the transformation α for assembly mode decisions of
spherical four-bars.
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