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ABSTRACT

This thesis treats type synthesis and kinematic analysis of translational parallel ma-

nipulators (TPMs) from a group theoretical point of view.

For the TPM type synthesis, based on displacement group theory (DGT), TPM

leg motion is represented by a series of displacement subgroups. For symmetrical

three-legged TPMs, three categories are classified and a total of 90 architectures are

proposed. For asymmetrical three-legged TPMs, 13 cases of possible leg combinations

are presented and some possible constructions of TPMs are shown. The advantages

of DGT in mechanism synthesis are described.

For the kinematic analysis of symmetrical TPMs, geometric elements are em-

ployed to denote the workspace of different leg links. Solutions of the inverse and di-

rect kinematics of a certain example are obtained. Moreover, the proposed approach

is applied to a class of TPMs, and the corresponding geometric representations are

listed. The applicability of the proposed approach is discussed as well.

This thesis provides a theoretical approach to design TPMs and analyze their

kinematics for practical applications.



RÉSUMÉ

Cette thèse porte sur l’aspect théorique de la synthèse structurelle et l’analyse cinématique

des manipulateurs parallèles à mouvements de translation (TPMs).

La synthèse structurelle des TPM est basée sur la théorie des groupes de déplacement

(DGT) où chaque patte d’un TPM est représentée par une série de sous-groupements

de déplacement. Les TPMs symétriques à trois pattes sont classés en trois catégories

et un total de quatre-vingt-dix architectures sont proposées. Dans le cas des TPMs

asymétriques à trois pattes, treize combinaisons de membrures sont présentés et cer-

taines parties de la construction de ces TPMs sont illustrés. De plus, les avantages

du DGT appliqué à la synthèse des mécanismes sont décrits.

Concernant l’analyse cinématique des TPMs symétriques, des éléments de géométrie

sont employés pour exprimer l’espace de travail des différentes membrures de chaque

patte. Certains exemples de problèmes géométriques directs et inverses sont également

résolus et présentés. De plus, l’approche proposée est appliquée pour une classe de

TPMs et les représentations géométriques correspondantes sont énumérées. La fais-

abilité de l’approche proposée est de plus discutée.

Cette thèse fourni une approche théorique de concevoir TPMs et analyser leur

cinématique pour des applications pratiques.
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CHAPTER 1

Introduction

This thesis is a comprehensive investigation of translational parallel manipulators

(TPMs), including both type synthesis and kinematic analysis. Based on displace-

ment group theory (DGT), the synthesis procedure is quite easy to follow and the

results present all possible three-legged TPMs. With line geometry, the direct and

inverse kinematics of TPMs can be simplified to geometric problems and analyzed

in a unified fashion. These two methodologies are applicable to other problems in

mechanism synthesis and analysis.

1.1. Thesis Subject Development

Parallel-kinematics machines (PKMs) generally consist of a moving platform con-

nected to a fixed base by several kinematic chains, called the legs. Typically, though

not always, each leg has one actuated joint. Therefore, the number of degrees of

freedom (dof) of such a PKM is equal to the number of legs. PKMs are reputed

to have several advantages over their serial counterpart, like high structural rigidity,

increased load capacity and higher accuracy. The Stewart platform (Stewart, 1965) is

a classical example of PKMs, which has six dofs and all the linear actuators are under

pure axial forces. Variations of the Stewart platform have been proposed. Kohli et

al. (1988) designed a six-dof parallel manipulator that utilizes base-mounted rotary-

linear actuators; Pierrot et al. (1991) developed the high-speed “Hexa” six-dof parallel
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manipulator; and Tahmasebi and Tsai (1994) proposed a six-dof parallel manipulator

with three inextensible limbs. However, existing six-dof PKMs have drawbacks such

as complex direct kinematics, small workspace, and complications due to universal

and spherical joints, especially in quasi-coincident ones.

Parallel manipulators with fewer than six dofs have been developed to overcome

some disadvantages. Their simpler architectures and better performances in certain

applications have stimulated considerable research interest. TPMs are one family of

reduced-dof PKMs. The end effector (EE) of TPMs can perform translations in all

directions but provides no change in rotation. A special application of TPMs is in the

fields of automated assembly where component orientation must remain fixed under

manipulation or where orientation is of no concern like with a uniform sphere. Since

the first TPM, the Delta robot (Clavel, 1988), was produced in the 1980’s, researchers

have investigated a number of TPM designs, hence TPMs of various architectures

have been proposed, designed and built. Tsai et al. (1996) configured a TPM with a

structure similar to the Delta robot. Chablat and Wenger (2003) developed a three-

dof TPM for machining applications, the Orthoglide. Kong and Gosselin (2002)

performed kinematics and singularity analysis for a three-CRR TPM, where C means

that the translational dof of the cylindrical pair is actuated. Kim and Tsai (2003)

built the Cartesian Parallel Manipulator, called CPM, whose leg is a PRRR kinematic

chain, where P stands for a prismatic joint and R is a revolute joint. Carricato and

Parenti-Castelli (2003) developed a family of three-dof TPMs and did both inverse

and direct position analysis. Tsai and Joshi (2001) compared four TPM architectures

and proposed a design for hybrid kinematic machines.

In accordance with the proposed individual TPM architectures, this thesis presents

a systematic approach to synthesize TPMs based on DGT. Other researchers have

also attempted to design TPMs from a theoretical point of view. For example, Di

Gregorio (2002) presented a family of TPMs with five-dof leg architectures; Carri-

cato and Parenti-Castelli (2002) proposed singularity-free fully-isotropic TPMs by

classifying the entire TPM family into three subcategories; and Kong and Gosselin

2
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(2004) did type synthesis of TPMs based on screw theory and derived the whole class

of possible leg architectures, as well as the TPM structures. However, the author

believes that use of DGT renders the synthesis procedure quite straightforward and

easier to follow. Synthesis based on DGT can generate all possible structures of the

three-legged TPM family. Moreover, this method can exempt one from frustrating

mathematical concepts and tedious derivations, which is a main concern in mechanism

synthesis, since simpler synthesis procedures mean more efficient design and extends

opportunity to examine a wider variety of alternatives. This approach was used by

Hervé (1991, 1999) to perform mechanism design including architecture synthesis of

several representative TPMs, and by Angeles (2004) to carry out qualitative synthesis

of PKMs. The main contribution of this thesis is to produce comprehensive results.

Regarding the direct and inverse kinematics of TPMs, algebraic and projective

line geometry elements are used herein to represent the workspace of different links.

By intersecting these geometric graphs, kinematics solutions can be obtained in a

unified fashion. A detailed analysis of the Delta robot has been given by Zsombor-

Murray (2001), using a similar approach. In contrast, a different TPM architecture,

with prismatic pairs instead of revolute pairs coupled to the base, is analyzed. More-

over, the idea to apply the algebraic geometric method to formulate and algebraically

solve kinematics problems of TPMs in a general way is exposed. Due to similarities

in structure and movement characteristics among TPMs, a common kinematics algo-

rithm can be very helpful to analyze a variety of mechanisms, and can thus simplify

the solution procedure. That is another contribution of this thesis.

1.2. Thesis Overview

In Chapter 2, relevant mathematical concepts and theories are introduced. These

concepts will be applied in subsequent chapters.

Chapters 3 and 4 describe the procedure of TPM type synthesis. Chapter 3 fo-

cuses on leg architecture synthesis. Chapter 4 deals mainly with building the whole

3
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three-legged TPM family structure, including symmetrical and asymmetrical archi-

tectures. Also, examples are given in Chapter 4 to show how DGT is applied to

mechanism synthesis.

Chapters 5 and 6 present the kinematic analysis of TPMs using geometric ele-

ments. Chapter 5 treats a specific example and performs detailed analysis of its direct

and inverse kinematics. Chapter 6 applies this approach in a more general way and

summarizes the applicability of this method to a class of TPMs. Again, examples are

given in Chapter 6 to demonstrate the effectiveness of the proposed approach.

Finally, Chapter 7 summarizes main contributions of this research work and an-

ticipates broader applications in future mechanism synthesis and analysis.

4



CHAPTER 2

Mathematical Background

In this chapter, some relevant mathematical theories and concepts are recalled. These

will be used later. Subsection 2.1 introduces dual quaternions. Subsection 2.2 recalls

the group theory and displacement subgroups. Subsection 2.3 describes the duality

of point and line in the plane, as well as Plücker coordinates.

2.1. Dual Quaternions

Quaternions are members of a noncommutative division algebra. Similar to the

complex numbers being representable as a sum of real and imaginary parts, a quater-

nion can also be written as a linear combination of real and imaginary parts (Zsombor-

Murray, 1998), in which the quaternion is put into a vector format.

Q = c0 + c1i + c2j + c3k =




c0

c1

c2

c3




(2.1)



2.2.1 DUAL QUATERNIONS

A dual quaternion includes both dual and real parts. A general expression of a

dual quaternion is given as well.

Qd = (c0 + εq0) + [(c1 + εq1)i + (c2 + εq2)j + (c3 + εq3)k] =




c0 + εq0

c1 + εq1

c2 + εq2

c3 + εq3




(2.2)

The expression in Eq. (2.2) separates the dual quaternion into a dual scalar and

a dual vector. Sometimes, a dual quaternion is also divided into real and dual parts,

i.e., two quaternions, one of which is multiplied by the dual unit ε where ε2 = 0.

Qd = Q + εQε =




c0

c1

c2

c3




+ ε




q0

q1

q2

q3




(2.3)

where

Q =




c0

c1

c2

c3




=




cos(φ/2)

cos(α) sin(φ/2)

cos(β) sin(φ/2)

cos(γ) sin(φ/2)




(2.4)

and

Qε =
1

2




0

a1

a2

a3







c0

c1

c2

c3




=
1

2




−(a1c1 + a2c2 + a3c3)

(a1c0 + a2c3 − a3c2)

(a2c0 + a3c1 − a1c3)

(a3c0 + a1c2 − a2c1)




(2.5)

Note that the operation rule of the multiplication of two quaternions is that each

element in one quaternion should be multiplied to all elements of the other. It is the

same as the multiplication of two polynomials. The operation rules of the imaginary

6



2.2.2 GROUP THEORY

units are summarized as

i · i = j · j = k · k = −1

i · j = k, j · k = i, k · i = j (2.6)

i · j = −j · i, j · k = −k · j, k · i = −i · k

Note that i, j and k are notions of three mutually orthogonal imaginary units.

2.2. Group Theory

In algebra, a group is a set G of elements related by a binary operation “∗” with

four properties:

1) If a and b ∈ G, then a ∗ b ∈ G;

2) If a, b and c ∈ G, then a ∗ (b ∗ c) = (a ∗ b) ∗ c;

3) G contains an element σ called the identity of G under “∗”, such that a ∗ σ =

σ ∗ a = a;

4) For every a ∈ G, there exists an element a−1, called the inverse of a under “∗”
such that a ∗ a−1 = a−1 ∗ a = σ.

In order, the four properties are called closure, associativity, idempotence and

inversibility, respectively.

A subgroup Gs of a given group G is a set of objects such that:

1) ∀ a ∈ Gs, then a ∈ G;

2) ∃ b ∈ G, where b 6∈ Gs;

3) Gs satisfies the four group properties with respect to the binary operation “∗”.

Rigid-body displacements constitute a group with subgroups. If the elements of a

set D are rigid-body displacements, then a binary operation “∗” of displacements can

be defined as the concatenation of some: As the body first undergoes a displacement

7
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da, taking the body from pose B0 to pose Ba, and then a displacement db, taking the

same body from pose Ba to pose Bb, successively, it is apparent that the concatenation

of the two displacements, da ∗ db, is also a rigid-body displacement (Angeles, 2003).

Using dual quaternions, subgroup properties of rigid-body displacements can be

better illustrated from an algebraic point of view. In accordance with rigid-body

displacements, in Eq. (2.4), φ denotes the angle of rotation undergone by the rigid

body about its axis of rotation; α, β and γ are angles formed between the axis of

rotation and coordinate axes. Therefore, the real part of a dual quaternion completely

represents rotations of a rigid body in three-dimensional space. In Eq. (2.5), a1, a2

and a3 are three components of the vector representing a rigid-body displacement, and

the dual part of a dual quaternion represents the translational motion of a rigid body.

Defined in this way, it is clear that by setting certain elements of the dual quaternion

to zero, certain displacements can be represented. For example, by setting

c1 = c2 = a3 = 0

accordingly, one obtains

c1 = c2 = q0 = q3 = 0

which represents the planar motion, and if

a1 = a2 = a3 = 0

accordingly, one obtains

q0 = q1 = q2 = q3 = 0

which represents pure rotation in all directions. Besides, c1 = c2 = c3 = 0 represents

the spatial translation, and c1 = c2 = 0 represents the Schönflies motion. Accord-

ingly, all possible displacements in three-dimensional space can be represented by

dual quaternions.

Now the subgroup properties of a general displacement can be examined system-

atically. For example, one can define two displacements with different parameters.

8
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Through operations, it can be verified that a combination of the two displacements

is still a displacement itself, namely that it satisfies the closure condition. Similarly,

the other three conditions must be met as well. Therefore, practically, one can say a

general displacement in three-dimensional space meets the conditions of a group, and

hence, it forms a group {D}.
A subgroup {Ds} of the group {D} is itself a group of displacements, but generally

lacks some properties of the general one. Since a subgroup is confined to the same four

conditions, one can determine whether a certain displacement forms a subgroup. For

example, the planar motion forms a planar subgroup since it concurrently satisfies the

four conditions, and it is contained in the entire displacement group {D}. However,

a combination of two rotations with non-parallel axes does not form a subgroup,

because such a combination violates the closure condition.

Using this approach, one can comprehensively examine displacement subgroups

and obtain all existing ones. A more detailed description and application of dis-

placement subgroups will be given in Chapter 3 in order to synthesize the TPM leg

architectures.

2.3. Point, Plane and Line

2.3.1. Points and Planes in Homogeneous Vector Space. In a ho-

mogeneous four-dimensional vector space, point position vectors are represented by

four component magnitudes, P (w : x : y : z). A plane is similarly represented by

p(W : X : Y : Z). With homogeneous coordinates, it is convenient to denote points

at infinity by setting w = 0, and to denote a plane passing through the origin by

setting W = 0 (Zsombor-Murray, 1996).

2.3.2. Plücker Line Coordinates. Now we consider the line on two given

points (wi : xi : yi : zi) (i = 1, 2) expressed by a 4×4 determinant of a rank-2 matrix;


 w1 x1 y1 z1

w2 x2 y2 z2




9
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expanding the determinant on 2× 2 minors and cofactors yields

Lr{(w1x2 − w2x1) : (w1y2 − w2y1) : (w1z2 − w2z1) : (y1z2 − y2z1) :

(z1x2 − z2x1) : (x1y2 − x2y1)} = {p01 : p02 : p03 : p23 : p31 : p12}

The first three coordinates are the line direction numbers and the last three are

the components of the moment of these numbers about O, the origin of the reference

frame. Obtained by expanding on two given points, the Plücker coordinates are called

radial. These coordinates are subject to conditions

p2
01 + p2

02 + p2
03 + p2

23 + p2
31 + p2

12 6= 0

and

p01p23 + p02p31 + p03p12 = 0

thereby restricting the line to its required four free parameters rather than six implied

by its homogeneous coordinates.

Similarly, if one expands a pair of plane coordinates, the resulting Plücker coor-

dinates are La{P01 : P02 : P03 : P23 : P31 : P12}, which are called axial. The first

three coordinates are the moment components of the line with direction numbers

corresponding to the last three. If a pair of points and a pair of planes produce the

same line, then

{p01 : p02 : p03 : p23 : p31 : p12} ≡ c{P23 : P31 : P12 : P01 : P02 : P03}

where c is a non-zero real multiplier.

Now the condition that a point B{b0 : b1 : b2 : b3} is on a line pa{P01 : P02 : P03 :

P23 : P31 : P12} is given as

Xi =
3∑

j=0

Pijbj = 0, (i = 0, 1, 2, 3) (2.7)

where plane x{X0 : X1 : X2 : X3} is expressed by a point B and a line pa such that

plane x vanishes.

10



CHAPTER 3

Architecture Synthesis of TPM Legs

In this chapter, a total of 90 leg architectures for three-legged symmetrical TPM

are derived. Based on DGT, the procedure to synthesize TPM legs is simplified

to a permutation and combination problem. Section 3.1 recalls all displacement

subgroups and the kinematic bond {K5(u,v)}, which were introduced by Hervé (1978,

1999). Section 3.2 analyzes the characteristics of symmetrical TPMs, as well as some

limitations in building TPM legs. The main synthesis procedure is dealt with in

Section 3.3, where three categories of structures are classified.

3.1. Displacement Subgroups and Kinematic Bonds

3.1.1. Displacement Subgroups. As introduced in Section 2.2, a displace-

ment forms a displacement subgroup if it meets the four conditions concurrently and

if it is included in the displacement group {D}. The six lower kinematic pairs are

regarded as six basic displacement subgroups as shown in Table 3.1, which was intro-

duced in (Hervé, 1978). Note that N , u, v and w denote a given orthogonal frame

of reference, with N denoting the origin, vectors u, v and w being three mutually

orthogonal axes, and p standing for the pitch of a screw pair.

There are six other displacement subgroups which are not provided by any basic

kinematic joint. These are shown in Table 3.2, which was introduced in (Hervé,



3.3.1 DISPLACEMENT SUBGROUPS AND KINEMATIC BONDS

1978). Together with the first six, these twelve comprise all rigid-body displacement

subgroups.

Table 3.1. Six basic subgroups of lower kinematic pairs.

Group of displacements Dimension Associated kinematic pairs

{R(N,u)} 1 Revolute pair R

{T (v)} 1 Prismatic pair P

{H (N,u,p)} 1 Screw pair H

{C (N,v)} 2 Cylindrical pair C

{G(u)} 3 Planar pair G

{S (N )} 3 Spherical pair S

Table 3.2. Six other subgroups of rigid-body displacements.

Group of displacements Dimension Name or typical motion

{I } 0 Identity subgroup

{T2(u,v)} 2 Planar translational subgroup

{T3(u,v,w} 3 Spatial translational subgroup

{Y (u,p)} 3 Translating-screw subgroup

{X (w)} 4 Schönflies subgroup

{D} 6 Displacement group

Note that in Table 3.2, the translating-screw subgroup {Y(u, p)} allows a screw

motion with axial direction u, combined with two translational motions whose di-

rections are normal to the vector u; the Schönflies subgroup {X(w)} allows three-

direction translations and one rotation about the vector w. Finally {D} is the entire

displacement group itself.

12



3.3.1 DISPLACEMENT SUBGROUPS AND KINEMATIC BONDS

Now based on the above twelve displacement subgroups, a combination of some

may be used to synthesize mechanisms capable of some desired, special spatial motions

having fewer than six dofs.

3.1.2. Kinematic Bond. Combining a certain number of displacement sub-

groups to yield a serial kinematic chain, capable of producing a constrained relative

motion, generates a kinematic bond. A kinematic bond itself can be a subgroup. For

example, a combination of two translational subgroups {T(u)} and {T(v)}, where

vectors u and v are not parallel, yields a {T2(u,v)} subgroup. Moreover, a kinematic

bond can also be a non-group. For example, a combination of a rotational subgroup

{R(N,u)} and a second rotational subgroup {R(N,v)} is not a subgroup, if vector u

is not parallel to vector v.

For kinematic bonds, two operations are employed, the intersection “∩” and the

product “·”, to generate the desired motion. An intersection operation “∩” between

two or more kinematic bonds indicates motion common to each kinematic chain, and

the specific motions peculiar to one chain but not shared by others are mutually

counteracted. A product operation “·” between two or more displacement subgroups

is the overall effect of different groups, so that the motion produced by the kinematic

bond includes all the motions of each subgroup element.

Examples are given in the following two equations to illustrate the two operations.

{T(u)} · {R(u)} · {R(u)} · {R(u)} = {X(u)} (3.1)

Equation (3.1) indicates that the product of four subgroups, in the sequence of

one translational subgroup and three rotational subgroups as shown above, yields the

Schönflies subgroup.

{X(z1)} ∩ {X(z2)} ∩ {X(z3)} = {T3(u,v,w)} (3.2)

Equation (3.2) indicates that the intersection of three Schönflies subgroups yields

the spatial translational subgroup, capable of spatial translations. The definitions

of the symbols employed here are specified in Tables 3.1 and 3.2. Actually, the

13



3.3.2 GENERAL ANALYSIS OF TPM ARCHITECTURES

combination displayed by Eq. (3.2) exactly represents the mechanical structure of

Clavel’s Delta robot (1988), where each leg provides the motion of a Schönflies sub-

group. Note that for the Delta robot, the three vectors of three Schönflies subgroups

{X(zi)} (i = 1, 2, 3) are coplanar, meaning that vectors z1, z2 and z3 are in the plane

defined by vectors u and v. Therefore, they are all perpendicular to vector w.

Now a specific kinematic bond, called {K5(u,v)}, is recalled as having five dofs,

three translations in three-dimensional space and two rotations not parallel to the one

about the vector w, which is defined to be perpendicular to vectors u and v simulta-

neously. Kinematic bond {K5(u,v)} presents the third possibility for a symmetrical

TPM leg, and will be employed in the following Section.

3.2. General Analysis of TPM Architectures

As mentioned in Section 3.1, the motion common to legs of a TPM is that of the

moving platform. Therefore, the main task in TPM type synthesis is to design the leg

architectures to be combined to form the entire parallel manipulator desired. Each

leg is a serial kinematic chain containing a set of joints. The chain can be constructed

using the six lower kinematic pairs, listed in Table 3.1, as basic synthesis elements.

Note that this thesis is devoted to the synthesis of three-legged TPMs. Since the

EE has three dofs, three actuators, one for each leg, are appropriate and sufficient to

drive the moving platform. Also, this architecture accounts for most existing TPMs.

Architectural complications, such as doubly actuated and redundant legs, make non

three-legged TPMs much less popular. Therefore, they are not considered here.

Now, with the intention to generate translational motion of the moving plat-

form, the three categories defined below provide three basic rules to synthesize TPMs

with symmetrical base and platform and three identical legs. These three categories

describe all possible cases in the synthesis procedure.

Category 1:

{T3(u,v,w)} ∩ {T3(u,v,w)} ∩ {T3(u,v,w)} = {T3(u,v,w)} (3.3)

14



3.3.2 GENERAL ANALYSIS OF TPM ARCHITECTURES

Category 2:

{X(w1)} ∩ {X(w2)} ∩ {X(w3)} = {T3(u,v,w)} (3.4)

Category 3:

{K5(u1,v1)} ∩ {K5(u2,v2)} ∩ {K5(u3,v3)} = {T3(u,v,w)} (3.5)

Equation (3.3) means that a combination of three spatial translational subgroups

is still the same, which is obvious. Equation (3.4) shows that a combination of

three Schönflies subgroups forms the spatial translational subgroup, a typical example

of which is the well-known Delta robot. For Eq. (3.5), {K5(u1,v1)} is defined in

Section 3.1 and the entire equation means that a combination of three kinematic

bonds {K5(u1,v1)} also produces the {T3(u,v,w)} subgroup. For the second and

third cases, the conflicting rotational dofs are cancelled among legs. The key point

here is that each leg should have at least three translational dofs, but less than six,

including the three rotations, in three-dimensional space. Hence, it is implied that

spherical joints cannot be employed in symmetrical TPM design because of their three

rotational dofs. Moreover, any revolute, screw or cylindrical joint that rotates about

an axis parallel to the vector w, which is perpendicular to vectors u and v, should

be avoided. Furthermore, if a planar subgroup {G(u)} is employed in the synthesis,

one should notice that the vectors u and w should not be parallel.

For TPMs with asymmetrical architectures, the two subgroups {T3(u,v,w)} and

{X(w1)}, and kinematic bond {K5(u1,v1)} remain the synthesis elements. An asym-

metrical TPM can be generated by combining any three of them. Moreover, the

entire displacement group {D} may be used to synthesize an asymmetrical TPM in

some cases as well. However, commonly preferred TPM architectures with topologi-

cally identical leg geometry require fewer kinds of components. Symmetrical TPMs

are simpler and less expensive to manufacture, and hence avoid the loss of precision

introduced by additional joints. This advantage is an important consideration in

choosing a mechanism. Most existing industrial TPMs are symmetrical. Therefore,

asymmetrical TPM architectures will not be delved into deeply.

15



3.3.3 ARCHITECTURE SYNTHESIS OF TPM LEGS

3.3. Architecture Synthesis of TPM Legs

3.3.1. Category 1: T3(u,v,w) Subgroup. The synthesis based on this

subgroup is elementary. Since each leg of the mechanism admits translational motion

without rotation, only prismatic joints apply. As each leg contains only translational

joints, the rotation of the moving platform is impossible. The three legs have no inter-

nal constraining relations like the Delta robot that involves cancellation of conflicting

rotational dof. Therefore, any leg synthesized from the spatial translational subgroup

can perform the desired motion individually; and actually, such an architecture is

overconstrained, because any constraint is repeated three times. A leg architecture

schematic is shown in Fig. 3.1.

Figure 3.1. Leg architecture of spatial translational subgroup.

3.3.2. Category 2: {X(w1)} Schönflies Subgroup. The Schönflies sub-

group is a Schönflies-motion generator, allowing three translations and one rotation.

Obviously, the three translational dofs can be represented by a three-dimensional spa-

tial translational subgroup, namely {T3(u1,v1,w1)}, while the one-dof rotation can

be represented by a rotational subgroup {R(w1)}. Therefore, the algebraic expression

for legs of the Schönflies subgroup architecture is shown as

{X(w1)} = {T3(u1,v1,w1)} · {R(w1)} (3.6)
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3.3.3 ARCHITECTURE SYNTHESIS OF TPM LEGS

However, Eq. (3.6) displays a trivial case of TPM leg synthesis, because the

spatial translational subgroup {T3(u1,v1,w1)} has already fulfilled the aim of trans-

lations in three-dimensional space. Hence, the rotational subgroup added to each leg

is useless and irrelevant as regards realization of spatial translations.

An alternative implementation of the Schönflies subgroup {X(w1)} is given, indi-

cating that the Schönflies motion can be generated by combining a planar subgroup

and a translational subgroup.

{X(w1)} = {G(w1)} · {T(w1)} (3.7)

Table 3.3 displays the possible planar subgroup constitutions formed by combin-

ing rotational and translational subgroups.

Table 3.3. Kinematic bond and joint configuration for the planar subgroup.

Kinematic bond Joint configuration

{T(u1)} · {T(v1)} · {R(w1)} P P R

{T(u1)} · {R(w1)} · {T(v1)} P R P

{R(w1)} · {T(u1)} · {T(v1)} R P P
{G(w1)} {R(w1)} · {R(w1)} · {T(u1)} R R P

{R(w1)} · {T(u1)} · {R(w1)} R P R

{T(u1)} · {R(w1)} · {R(w1)} P R R

{R(w1)} · {R(w1)} · {R(w1)} R R R

Note that vectors u1, v1 and w1 differ from vectors u, v and w in Tables 3.1

and 3.2 in that the former need not be mutually orthogonal. Now together with the

translational subgroup in Eq. (3.7) and removing repeated ones, a total of 14 possible

leg architectures are obtained. Their configurations are shown in Table 3.4.

Class 1 in Table 3.4 is the the same as the one synthesized with Eq. (3.6) except

for a shuffle of the revolute joint position. That is because the Schönflies subgroup

can be divided either into a combination of a spatial translational subgroup and a
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3.3.3 ARCHITECTURE SYNTHESIS OF TPM LEGS

Table 3.4. All possible leg architectures for the Schönflies subgroup.

Classification Kinematic bond

{T(w1)} · {T(u1)} · {T(v1)} · {R(w1)}
{T(w1)} · {T(u1)} · {R(w1)} · {T(v1)}

Class 1: Three {T} subgroups {T(w1)} · {R(w1)} · {T(u1)} · {T(v1)}
{R(w1)} · {T(w1)} · {T(u1)} · {T(v1)}
{T(w1)} · {R(w1)} · {R(w1)} · {T(u1)}
{R(w1)} · {T(w1)} · {R(w1)} · {T(u1)}
{R(w1)} · {R(w1)} · {T(w1)} · {T(u1)}

Class 2: Two {T} subgroups {T(w1)} · {R(w1)} · {T(u1)} · {R(w1)}
{R(w1)} · {T(w1)} · {T(u1)} · {R(w1)}
{T(w1)} · {T(u1)} · {R(w1)} · {R(w1)}
{T(w1)} · {R(w1)} · {R(w1)} · {R(w1)}
{R(w1)} · {T(w1)} · {R(w1)} · {R(w1)}

Class 3: One {T} subgroup {R(w1)} · {R(w1)} · {T(w1)} · {R(w1)}
{R(w1)} · {R(w1)} · {R(w1)} · {T(w1)}

rotational subgroup, or into a combination of a planar subgroup and a translational

subgroup. Therefore, Eqs. (3.6) and (3.7) are equivalent. But Eq. (3.7) conveys

more details than Eq. (3.6). As previously mentioned, three translational subgroups

meet the synthesis requirement. Hence, the first class is ignored. Figures 3.2 and 3.3

show synthesized architecture schematics for classes 2 and 3.

3.3.3. Category 3: Kinematic Bond {K5(u1,v1)}. Leg architectures with

five dofs constitute kinematic bonds but not subgroups because they do not satisfy

all group properties. The five-dof kinematic bond mentioned here includes three-

direction translations and two rotations different from the one about the normal to

the horizontal plane, assuming that the base plane is considered horizontal. Again,
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3.3.3 ARCHITECTURE SYNTHESIS OF TPM LEGS

Figure 3.2. Leg architectures of class 2.

in this case, the two rotational dofs for each leg are mutually counteracted and only

translations in three-dimensional space are preserved for the EE motion.

Based on the kinematic characteristics of the kinematic bond {K5(u1,v1)}, ap-

parently, it can be formed by combining one spatial translational subgroup and two

rotational subgroups.

{K5(u1,v1)} = {T3(u1,v1,w1)} · {R(u1)} · {R(v1)} (3.8)

However, the same problem occurs again as with Eq. (3.6) where the three-

dimensional translations provided by subgroup {T3(u1,v1,w1)} renders the two ro-

tational subgroups useless. Therefore, Eq. (3.8) cannot be regarded as a synthesis

formula. A more general alternative expression is given herein.

{K5(u1,v1)} = {G(u1)} · {G(v1)} (3.9)
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Figure 3.3. Leg architectures of class 3.

In Eq. (3.9), the kinematic bond {K5(u1,v1)} is divided into two planar sub-

groups, whose axes of rotation u1 and v1 are not parallel. Although one planar

subgroup has three dofs, a combination of two does not give six because they share

one common translation which is in the direction of the normal to the plane defined

by vectors u1 and v1 as shown in Fig. 3.4.

Now we recall Table 3.3. It is clear that this table presents in general three cases

for the constitution of a planar subgroup.

{G(w1)} = {T(u1)} · {T(v1)} · {R(w1)} (3.10)

{G(w1)} = {R(w1)} · {R(w1)} · {T(u1)} (3.11)

{G(w1)} = {R(w1)} · {R(w1)} · {R(w1)} (3.12)

Choosing any two of these three equations to substitute into Eq. (3.9) produces

an equation from which a kinematic bond {K5(u1,v1)} can be synthesized. However,

if two of Eq. (3.10) are selected, there will be four translational subgroups, which is

impractical since three-dimensional space only allows three translations. Hence, such

a situation is omitted. Besides, a combination of Eqs. (3.10) and (3.12) is equivalent
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Figure 3.4. Common translation perpendicular to vectors u1 and v1.

to a combination of twice Eq. (3.11), hence another case may be removed. Therefore,

four possible situations remain, namely the following four equations where repeated

subgroups have been omitted. Note that the unit vectors u1, v1 and w1 are defined

in such a way that vector w1 is in the direction of u1 × v1. The vector w1 can be

normal to the horizontal plane.

{K5(u1,v1)} = {T(w1)} · {T(v1)} · {R(u1)} · {T(u1)} · {R(v1)} (3.13)

{K5(u1,v1)} = {R(u1)} · {R(u1)} · {T(w1)} · {R(v1)} · {T(u1)} (3.14)

{K5(u1,v1)} = {R(u1)} · {R(u1)} · {R(v1)} · {R(v1)} · {T(w1)} (3.15)

{K5(u1,v1)} = {R(u1)} · {R(u1)} · {R(u1)} · {R(v1)} · {R(v1)} (3.16)

Based on each synthesis equation, the corresponding leg architectures are shown in

Tables 3.5 through 3.8.

The architectures listed in Table 3.5 are similar to class 1 of Subsection 3.3.2

in that each leg has three translational subgroups, which are sufficient to perform
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Table 3.5. Kinematic bond {K5(u1,v1)} with three translational subgroups.

{T(w1)} · {T(u1)} · {T(v1)} · {R(u1)} · {R(v1)}
{R(u1)} · {T(w1)} · {T(u1)} · {T(v1)} · {R(v1)}
{R(u1)} · {R(v1)} · {T(w1)} · {T(u1)} · {T(v1)}
{T(w1)} · {R(u1)} · {R(v1)} · {T(u1)} · {T(v1)}
{T(w1)} · {T(u1)} · {R(u1)} · {R(v1)} · {T(v1)}

Class 4: Three {T} subgroups {T(w1)} · {R(u1)} · {T(u1)} · {T(v1)} · {R(v1)}
{T(u1)} · {T(v1)} · {R(u1)} · {T(w1)} · {R(v1)}
{R(u1)} · {T(w1)} · {R(v1)} · {T(u1)} · {T(v1)}
{R(u1)} · {T(w1)} · {T(u1)} · {R(v1)} · {T(v1)}
{T(w1)} · {R(u1)} · {T(u1)} · {R(v1)} · {T(v1)}

three-dimensional translations. Therefore, the revolute joints in class 4 are inactive

and do not contribute to the motion generation of spatial translations.

There are a total of 30 cases for the kinematic bond {K5(u1,v1)} with two trans-

lational subgroups, and based theoretically on Eq. (3.14). Since there are three

rotational subgroups and two translational subgroups, arranging their order is only a

permutation and combination problem. In Table 3.6, three possible architectures are

described, with 27 remaining cases omitted to keep the tabulation concise. For each

architecture shown in Table 3.6, the order of the three rotational subgroups is differ-

ent; there are in all 10 possible combinations for each of the three cases. That is, each

kinematic bond listed there can be considered as a generator of 10 leg architectures

in this class.

The kinematic bond {K5(u1,v1)}, with one translational subgroup, is a more

complicated case. There are two ways to choose the four rotational subgroups. For

instance, one can choose three identical ones and one different, meaning that the axes

of three revolute joints are parallel, while one is not. Alternatively, one can choose a

pair of different identical pairs. The first case is again a permutation and combination
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Table 3.6. Kinematic bond {K5(u1,v1)} with two translational subgroups.

{R(u1)} · {R(u1)} · {R(v1)} · {T(w1)} · {T(u1)}
Class 5: Two {T} subgroups {R(u1)} · {R(v1)} · {R(u1)} · {T(w1)} · {T(u1)}

{R(v1)} · {R(u1)} · {R(u1)} · {T(w1)} · {T(u1)}

problem. All one needs to do is to vary the position of the prismatic joint with respect

to the four revolute joints. There are four possible arrangements for the four revolute

joints as follows:

{R(u1)} · {R(u1)} · {R(u1)} · {R(v1)} (3.17)

{R(u1)} · {R(u1)} · {R(v1)} · {R(u1)} (3.18)

{R(u1)} · {R(v1)} · {R(u1)} · {R(u1)} (3.19)

{R(v1)} · {R(u1)} · {R(u1)} · {R(u1)} (3.20)

For each arrangement, there are five possible prismatic joint sites. Therefore, for the

first case, three identical rotational subgroups and a differing fourth, there are 20

possible architectures.

For the second case, the sequence of the four rotational subgroups cannot be arbi-

trary. As Carricato and Parenti-Castelli (2002) state, at least two identically oriented

revolute joints should be kept adjacent; therefore, there are two possible arrangements

of revolute joints as shown below. The prismatic joint placement remains arbitrary.

{R(u1)} · {R(u1)} · {R(v1)} · {R(v1)} (3.21)

{R(u1)} · {R(v1)} · {R(v1)} · {R(u1)} (3.22)
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To summarize cases represented by Eqs. (3.17) through (3.22), Table 3.7 shows

six possible leg architectures for the kinematic bond {K5(u1,v1)} with one transla-

tional subgroup. Similar to Table 3.6, each listed configuration implies four other

possibilities.

Table 3.7. Kinematic bond {K5(u1,v1)} with one translational subgroup.

{R(u1)} · {R(u1)} · {R(u1)} · {R(v1)} · {T(w1)}
{R(u1)} · {R(u1)} · {R(v1)} · {R(u1)} · {T(w1)}
{R(u1)} · {R(v1)} · {R(u1)} · {R(u1)} · {T(w1)}

Class 6: One {T} subgroup {R(v1)} · {R(u1)} · {R(u1)} · {R(u1)} · {T(w1)}
{R(u1)} · {R(u1)} · {R(v1)} · {R(v1)} · {T(w1)}
{R(u1)} · {R(v1)} · {R(v1)} · {R(u1)} · {T(w1)}

For the situation described in Eq. (3.16), containing no translational subgroup,

there are three parallel revolute joints and two in another direction but mutually

parallel. Theoretically, there are 10 possible leg architectures. However, at least one

parallel pair must remain adjacent. Therefore, five out of ten are thus eliminated and

the remaining five are listed in Table 3.8.

Table 3.8. Kinematic bond {K5(u1,v1)} with no translational subgroup.

{R(u1)} · {R(u1)} · {R(u1)} · {R(v1)} · {R(v1)}
{R(u1)} · {R(v1)} · {R(v1)} · {R(u1)} · {R(u1)}

Class 7: No {T} subgroup {R(u1)} · {R(u1)} · {R(v1)} · {R(v1)} · {R(u1)}
{R(v1)} · {R(v1)} · {R(u1)} · {R(u1)} · {R(u1)}
{R(v1)} · {R(u1)} · {R(u1)} · {R(u1)} · {R(v1)}

Four representatives of classes 4 through 7 are shown in Fig. 3.5 to indicate leg

architectures that constitute kinematic bond {K5(u1,v1)}.
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Figure 3.5. Several leg architectures for classes 4-7.

So far, the whole class of 90 leg architectures for three-legged symmetrical TPMs

has been synthesized.
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CHAPTER 4

Type Synthesis of TPMs

In this chapter, TPM types, including both symmetrical and asymmetrical ones, are

synthesized. Section 4.1 introduces joint replacements. Section 4.2 presents the sym-

metrical TPMs, as well as some TPM variations. Section 4.3 presents type synthesis

of asymmetrical TPMs. A comparison of different synthesis methods and the advan-

tages of DGT are discussed in Section 4.4.

4.1. Joint Replacements for Leg Architectures

For the leg architectures of categories 2 and 3 mentioned in Sections 3.2 and

3.3, only the translational subgroup and rotational subgroup are employed. When

considering other subgroups, such as the cylindrical subgroup, and joint replacements,

one can obtain a more comprehensive set of leg architectures.

It is well known that a cylindrical joint can be used to replace an adjacent pris-

matic and revolute joint, provided that the revolute axis is parallel to the translation

direction of the prismatic joint. Moreover, a four-bar parallelogram, called the Π

joint, comprising four revolute joints with parallel axes and four links in parallel-

ogram array, can be used to generate the third type of translation wherein points

move on circular paths. Therefore, one can synthesize additional leg architectures of

category 2 with the cylindrical joint and the four-bar parallelogram. Figure 4.1 shows

these two architectures.



4.4.1 JOINT REPLACEMENTS FOR LEG ARCHITECTURES

Figure 4.1. Leg architectures with cylindrical joint and parallelogram.

Besides the two substitutions mentioned above, two adjacent revolute joints with

nonparallel axes can be replaced by a universal joint. Different category 3 architec-

tures can also be obtained as shown in Fig. 4.2.

Figure 4.2. Leg architectures with universal joints.

With the above-mentioned joint replacements, many different TPM structures

can be obtained. Several practical examples will be given in the following section.
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4.2. Type Synthesis of Symmetrical TPMs

Based on the leg architectures enumerated in Chapter 3, one can perform type

synthesis of symmetrical TPMs by combining any three identical legs, with a base

and moving platform. A generic TPM is shown in Fig. 4.3, where the kinematic

chains between the base and the moving platform represent three identical legs.

Figure 4.3. Prototype of a three-legged TPM.

We recall that, for leg architectures of classes 1 and 4, there are three translational

subgroups in each leg to provide three-dimensional translation. The revolute joints

are useless if the desired motion is confined to spatial translation. This was noted in

Section 3.3 regarding TPM leg synthesis. However, when considering the entire TPM

and selection of actuated joints, one cannot neglect these architectures. One may

choose to actuate such revolute joints to produce the desired translation. Therefore,

for symmetrical TPMs, a total of 90 possible configurations have been enumerated so

far.

Now with some TPM variations obtained with joint replacements, the entire

family of symmetrical TPM architectures has been described. All known and existing

TPMs are included. For example, Kim and Tsai’s Cartesian Parallel Manipulator
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(CPM) (2003), as shown in Fig. 4.4, belongs to the first case of class 3, and admits

two actuation options, revolute and prismatic. CPM has a structure of {T(w1)} ·
{R(w1)} · {R(w1)} · {R(w1)} and employs the originally synthesized subgroups.

Figure 4.4. Kim and Tsai’s CPM (2003).

Kong and Gosselin’s CRR manipulator (2002) is the outcome of replacing two

adjacent prismatic and revolute joints with a cylindrical joint, as shown in Fig. 4.5.

This manipulator has a structure of {T(w1)} · {R(w1)} · {R(w1)} · {R(w1)}.

Figure 4.5. Kong and Gosselin’s CRR manipulator (2002).
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Clavel’s Delta robot (1988) is obtained by replacing the prismatic joint in class

3 with a four-bar parallelogram, as shown in Fig. 4.6. The leg architecture of Delta

robot results from a subgroup product of {R(u1)} · {R(u1)} · {T(w1)} · {R(u1)}.

Figure 4.6. Clavel’s Delta robot (1988).

The Orthoglide proposed by Chablat and Wenger (2003) is a variation of case 4

in class 2 by using the parallelogram instead of a prismatic joint. Fig. 4.7 shows its

structure, which is a subgroup product of {T(w1)} · {R(u1)} · {T(u1)} · {R(u1)}.

Figure 4.7. Chablat and Wenger’s Orthoglide (2003).
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4.3. Type Synthesis of Asymmetrical TPMs

For asymmetrical TPMs, displacement group {D}, which describes all the possible

motions of a rigid body in three-dimensional space, can also be applied to construct

a leg. Its rotational dof about the normal of the horizontal plane should be cancelled

by the other two legs. For a six-dof kinematic chain, there is a great variety of

architectures that may be synthesized. Therefore, six-dof leg architecture synthesis

will not be investigated in this thesis.

In order to synthesize an asymmetrical TPM, there are four leg architectures

to choose from, the three represented by Eqs. (3.3), (3.4) and (3.5), as well as the

six-dof kinematic chain. Taking any three out of the four which are not all identical

gives a maximum of sixteen possibilities; however, three of them are not applicable

to TPM synthesis. By representing the corresponding dof of a kinematic chain with

a number, for example, 3 represents the three-dof kinematic chain of category 1,

the three omitted options are 4-6-6, 5-6-6 and 5-5-6, respectively. The remaining

13 constructions constitute asymmetrical TPM possibilities. This conclusion was

reported by Kong and Gosselin (2004) as well.

Figure 4.8 shows some asymmetrical constructions. Selection is left to prospective

designers. Because the asymmetrical structures rarely appear in practice, investiga-

tion of asymmetrical TPMs is discontinued herein.

4.4. A Comparison of Different Synthesis Methods

The previously reported synthesis methods for TPMs seem quite limited, even

the most general one, based on screw theory, by Kong and Gosselin (2004). In

their research, they utilized the screw concept to describe the legs. Thus the whole

structure was represented by a system of constraining wrenches. By defining some

conditions that a PKM has to satisfy in order to be a TPM, they obtained the whole

class of TPMs with exhaustive constructions. The conclusion they draw is quite

comprehensive, but, quite apart from screw theory, the synthesis argument is rather

complicated. In a later paper, Kong and Gosselin (2004) employed the virtual joint, a
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Figure 4.8. Constructions of asymmetrical three-legged TPMs.

serial kinematic chain composed of three prismatic joints, to represent the motion of

the moving platform of a TPM. This artifact to produce the derivations simplifies the

synthesis somewhat; however, the screw-theoretical basis inherent in this approach

still leaves concepts that are not easy to follow.

Carricato and Parenti-Castelli (2003) presented a family of three-dof TPMs using

vector operations. In their research, only revolute and prismatic joints are employed.

By defining the axis vectors of different joints and according to some conditions ex-

amined, they investigated four cases and generated some possible TPM architectures.

Although the theory is not hard to comprehend, the derivation and computation is

tedious. Moreover, in that research the whole family of TPMs is not synthesized

comprehensively. The situation is similar to the work of Di Gregorio (2002), where

the condition is that the angular velocity and acceleration of the moving platform is

zero. In that paper, only TPMs with five-dof legs are obtained.

The method proposed in this thesis, TPM synthesis based on displacement sub-

groups, is easy to follow and sufficient to generate any possible three-legged TPM

architecture. As shown in the foregoing sections, similar conclusions have been ob-

tained as with screw theory. The main advantage claimed for our method is its simpler
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derivation. By designing kinematic chains according to their kinematic characteris-

tics as described by displacement subgroups, synthesis is reduced to finding all the

possible combinations of basic displacement subgroups. Moreover, this method avoids

overlooking possible cases if the correct synthesis formula is utilized. The flowchart

shown in Fig. 4.9 describes the synthesis procedure in a neat, compact way. The au-

thor believes that the displacement group concept can be regarded as a fundamental

design tool and extended to the synthesis of many other mechanisms.

Figure 4.9. A flowchart of the proposed TPM synthesis procedure.
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CHAPTER 5

TPM Kinematic Analysis with Geometric

Graphs

In this chapter, the inverse and direct kinematic analyses of a TPM model with

prismatic actuators are set forth. The approach to solve the TPM kinematics problem

by intersecting corresponding geometric graphs is presented. This research work,

named by the author as geometric kinematics, was first exposed in (Wei and Zsombor-

Murray, 2004). The analyzed TPM model comes from the author’s design in a course

project, and has a similar, but not identical architecture as Orthoglide (Chablat and

Wenger, 2003). Figure 5.1 shows the architecture of this TPM. Figure 5.2 displays the

layout revealing that each leg of this TPM has one prismatic joint, two revolute joints

and one Π joint, yielding a PRΠR structure, where the Π joint is a 4R parallelogram

linkage. Three sliders move along three vertical rails attached to the base, forming

three prismatic pairs. Taking one leg as an example, two opposite links in the four-

bar linkage are respectively coupled to the slider and the moving platform by revolute

joints. Each leg forms a Schönflies subgroup, thus having four dofs. A combination of

three Schönflies subgroups forms the {T3} subgroup, which allows translations in all

directions in three-dimensional space. Actually, this example belongs to a variation

of the fourth case of class 2 in Subsection 3.3.2.



5.5.1 THE INVERSE KINEMATICS PROBLEM (IKP)

Section 5.1 analyzes the inverse kinematics of this TPM. Section 5.2 analyzes its

direct kinematics. Section 5.3 discusses kinematics of variations to this TPM and

draws some pertinent conclusions.

Figure 5.1. Model of the analyzed TPM.

5.1. The Inverse Kinematics Problem (IKP)

As shown in Fig. 5.3, the rails of the slides are schematically represented by three

lines, L1, L2 and L3. The four-bar linkage is represented by a line segment of length

rl. The fixed coordinate frame is defined so that the origin O is at the centre of the

base triangle, with its x-axis intersecting line L1 normally and its z-axis parallel to

Lj (j = 1, 2, 3). For the purpose of this example, each side of the base triangle is

2R and each side of the moving platform is 2r. Note that the value 2 chosen here

simplifies the calculations. The three sliders are denoted by points A1, A2 and A3,

respectively, where the axis of the R-joint, which attaches the Π-joint to the centre

line of the slider, intersects the latter normally. The three revolute joints coupled
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5.5.1 THE INVERSE KINEMATICS PROBLEM (IKP)

Figure 5.2. The kinematic structure of the analyzed TPM.

to the moving platform are represented by three points C1, C2 and C3. To perform

the IKP analysis, the coordinates of point M , the centre of the EE, are given as

(xM , yM , zM). The displacements of the three sliders, denoted as z1, z2 and z3 in the

z-direction, are unknowns.

Since a distinct characteristic of translational manipulators is that the moving

platform may only exhibit translation in three directions, the directions of the seg-

ments directed from point M to points C1, C2 and C3 do not change. Therefore, the

coordinates of points C1, C2 and C3 can be expressed as

(xC1, yC1, zC1) = (xM , yM , zM) + (
2
√

3

3
r, 0, 0)

(xC2, yC2, zC2) = (xM , yM , zM) + (−
√

3

3
r, r, 0) (5.1)

(xC3, yC3, zC3) = (xM , yM , zM) + (−
√

3

3
r,−r, 0)
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5.5.1 THE INVERSE KINEMATICS PROBLEM (IKP)

Figure 5.3. A simplified structure of the mechanism.

With respect to the point Cj, the four-bar linkage can perform two rotations, one

about the axis of the R-joint at Cj, the other about the normal at Cj of the four-bar

linkage plane, respectively. For example, when unconstrained, the workspace of a leg

attached at Cj but detached from the slider is a sphere centred at Cj with a radius

of rl. Assume that a point B on the sphere surface has the homogeneous coordinates

{w : x : y : z}. According to the sphere equation with its centre and radius known,

we can derive the three equations.

(xC1w − x)2 + (yC1w − y)2 + (zC1w − z)2 − r2
l w

2 = 0

(xC2w − x)2 + (yC2w − y)2 + (zC2w − z)2 − r2
l w

2 = 0 (5.2)

(xC3w − x)2 + (yC3w − y)2 + (zC3w − z)2 − r2
l w

2 = 0
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5.5.1 THE INVERSE KINEMATICS PROBLEM (IKP)

Moreover, for the three lines Li representing rails, we can write radial Plücker coor-

dinates as

L1 : {0 : 0 : 1 : 0 : −2
√

3

3
R : 0}

L2 : {0 : 0 : 1 : R :

√
3

3
R : 0} (5.3)

L1 : {0 : 0 : 1 : −R :

√
3

3
R : 0}

Now the problem at hand is to seek the intersections of spheres and lines as the

possible displacements of the three sliders. These can be found as the solutions of a

combination of the sphere equations and the radial line equations.

Here we take the sphere 1, centred at point C1, and the line L1 as an example to

calculate the intersections. Since the point B is also on the radial line, we recall the

constraint of a point on a line.

Xi =
3∑

j=0

Pijbj = 0 (5.4)

After replacing the radial coordinates of the line L1 by their equivalent axial

counterparts, we obtain the second constraint, namely,




0 p23 p31 p12

−p23 0 p03 −p02

−p31 −p03 0 p01

−p12 p02 −p01 0







w

x

y

z




=




0

0

0

0




(5.5)

The values of x and y can be calculated from Eq. (5.5) as

x =
2
√

3

3
R

y = 0

Substituting the values of x and y into Eq. (5.2) yields

[(xM +
2
√

3

3
r)w − 2

√
3

3
R]2 + (yMw)2 + (zMw − z)2 − r2

l w
2 = 0 (5.6)

38



5.5.2 THE DIRECT KINEMATICS PROBLEM (DKP)

which is a quadratic equation in terms of z. Solving this equation, two positions of

the slider 1 are obtained

z1 =
−P +

√
P 2 − 4Q

2

z2 =
−P −

√
P 2 − 4Q

2

where

P = −2zMw

Q = [(xM +
2
√

3

3
r)w − 2

√
3

3
R]2 + (yMw)2 + (zMw)2 − r2

l w

z1 and z2 are the inverse kinematics solutions for the displacements of slider 1.

Using the same method, the displacements of sliders 2 and 3 can be calculated as

well. For each slider there are two solutions, the IKP of this structure admits eight

possible solutions. In general, selection among these solutions is obvious, since the

sliders do not descend beneath the base, i.e., complex solutions and solutions where

z < 0 are deemed unacceptable.

5.2. The Direct Kinematics Problem (DKP)

In the DKP calculation, the displacement of the sliders are known, while the

position of the moving platform is sought. Again, using the algebraic geometric

method, the problem at hand can be easily solved.

First, we give the displacements of the actuators A1, A2 and A3, namely, the

coordinates of the sliders.

A1 : (
2
√

3

3
R, 0, z1)

A2 : (−
√

3

3
R, R, z2) (5.7)

A3 : (−
√

3

3
R,−R, z3)

Similar to the IKP analysis outlined in Section 5.1, with respect to each slider, the

movements of a point on the four-bar linkage are bound to a sphere. The point can
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5.5.2 THE DIRECT KINEMATICS PROBLEM (DKP)

rotate about the axis of the revolute joint on the slider; the point can also rotate in

the four-bar plane. So, again, an unconstrained point on the four-bar linkage moves

on a sphere centred at point Aj. This allows us to derive three sphere equations.

However, the sphere surface is only a possible position, of the revolute joint coupled

to the moving platform, from which the displacements of the EE centre cannot yet be

obtained. Notice that the distinct characteristic of a TPM applies to all its motions.

The relative directional relation of EE’s centre M and the three joints remains the

same, so that allows us to move the centres of the four-bar sphere, A1, A2 and

A3, horizontally inward, by a distance of 2
√

3r/3. Based on this, we can write the

coordinates of the displaced sphere centres.

O1 : (
2
√

3

3
R, 0, z1)− (

2
√

3

3
r, 0, 0) = (

2
√

3

3
(R− r), 0, z1)

O2 : (−
√

3

3
R,R, z2)− (−

√
3

3
r, r, 0) = (−

√
3

3
(R− r), (R− r), z2) (5.8)

O3 : (−
√

3

3
R,−R, z3)− (−

√
3

3
r,−r, 0) = (−

√
3

3
(R− r),−(R− r), z3)

We assume that a point on the sphere centred at point Oj has the homogeneous

coordinates of {w : x : y : z}; then, the sphere equation can be written as

(xOw − x)2 + (yOw − y)2 + (zOw − z)2 − r2
l w

2 = 0 (5.9)

Hence, the three sphere equations can be derived.

(
2
√

3

3
(R− r)w − x)2 + y2 + (zlw − z)2 − r2

l w
2 = 0 (5.10)

(−
√

3

3
(R− r)w − x)2 + ((R− r)w − y)2 + (z2w − z)2 − r2

l w
2 = 0 (5.11)

(−
√

3

3
(R− r)w − x)2 + (−(R− r)w − y)2 + (z3w − z)2 − r2

l w
2 = 0 (5.12)

Now, intersecting two pairs of the three spheres, we can derive two circles, and a

line on the planes of the two circles yields two solutions on its intersection with any

sphere. These are the two possible positions of the centre M of the moving platform

when displacements of the input actuators are given.
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Equations (5.10) through (5.12) are all quadratic. An easy way to solve them is to

find the difference of two equation pairs, which yields two linear equations. Together

with a sphere equation, these produce a quadratic univariate equation in, say x.

The two solutions may be backsubstituted into the two linear equations, resulting in

unique corresponding values of y and z. Thus, the position of the moving platform

can be obtained.

Substracting Eq. (5.10) from Eq. (5.11) and Eq. (5.11) from Eq. (5.12) produces

the two linear equations.

D1x0 + E1y0 + F1z0 + G1 = 0 (5.13)

D2x0 + E2y0 + F2z0 + G2 = 0 (5.14)

where x0 = x/w, y0 = y/w and z0 = z/w are the Cartesian coordinates of point M ,

and

D1 = 2
√

3(R− r)

E1 = −2(R− r)

F1 = 2(z1 − z2)

G1 = (z2
2 − z2

1)

D2 = 0

E2 = 4(R− r)

F2 = 2(z2 − z3)

G2 = (z2
3 − z2

2)

Solving the Eqs. (5.13) and (5.14) yields

x0 =
1

D1

[
E1

E2

(F2z0 + G2)− F1z0 −G1]

y0 = − 1

E2

(F2z0 + G2)
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Together with the equation of sphere 1, we have one quadratic equation, with z0

as the unique variable. Solving this equation, we can obtain

z0 =
−I ±√I2 − 4HJ

2H

where

H =
1

D2
1E

2
2

(E1F2 − E2F1)
2 +

F 2
2

E2
2

+ 1

I =
2

D2
1E

2
2

(E1F2 − E2F1)(E1G2 − E2G1) +
2F2G2

E2
2

− 2

3E2

(E1F2 − E2F1)− 2z1

J =
1

D2
1E

2
2

(E1G2 − E2G1)
2 +

G2
2

E2
2

+ z2
1 − r2

l −
2

3E2

(E1G2 − E2G1) +
4

3
(R− r)2

Now, we have obtained the z-axis coordinates of point M . Substituting z0 into

Eqs. (5.13) and (5.14), the two DKP solutions of this special TPM can be obtained.

x0 =
(E1F2 − E2F1)z0 + (E1G2 − E2G1)

D1E2 −D2E1

y0 =
(D1F2 −D2F1)z0 + (D1G2 −D2G1)

D2E1 −D1E2

(5.15)

z0 =
−I ±√I2 − 4HJ

2H

5.3. TPMs with Arbitrary P-Joint Translation Directions

Now we consider the TPM example introduced in the foregoing context. Its par-

ticular architecture of slider and four-bar linkage leg layout reduces the IKP analysis

to the intersections between spheres and radial lines. Similarly, the DKP analysis

is formulated as intersections among three spheres. Now the approach is restated

in a more general way. When solving the inverse kinematics problem, with the EE

position given, we can locate the points connecting legs and the EE. For each leg,

there are two spatial geometric graphs, one located on the fixed frame (FF), the other

on the EE. Intersections of these two geometric graphs yield the possible solutions

of the IKP. In direct kinematics, the actuated joint displacements are given, and the

position of the link coupled to the FF is to be determined. What we seek are the

intersections of the workspace of the links coupled to the EE, namely, the possible
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solutions of the DKP. Such a geometric thinking makes the TPM kinematics problem

easy to visualize and to explain.

Other TPMs, with quite different architectures, are solved with similar methods.

Clavel’s Delta robot is a good example, whose kinematics problems are treated as

intersections between circles in the IKP and spheres in the DKP (Zsombor-Murray,

2001). Now, let us consider the Orthoglide (Chablat and Wenger, 2003), as shown

in Fig. 4.7. It is apparent that this manipulator also has three legs, in this case

driven by three prismatic joints. Each leg is a PRΠR serial array that is the same

as the architecture analyzed in this chapter. The Orthoglide is subject to the same

kinematics analysis method. Note that the directions of translation of the three

prismatic joints in Orthoglide are orthogonal; what changes in the solution procedure

are just the sets of Plücker coordinates of the three lines AjBj, which are geometrically

equivalent to the three parallel rails of the TPM analyzed in Sections 5.1 and 5.2.

The situation is also the same if the three lines have arbitrary directions.
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CHAPTER 6

Applicability Investigation of the

Proposed Approach

In this chapter, the applicability of the approach proposed in Chapter 5 is examined.

Section 6.1 employs Tsai’s CPM (2003) as an example to be analyzed and derives its

kinematics solutions. Section 6.2 discusses the general applicability of the approach

to a class of TPMs.

6.1. Kinematic Analysis of Tsai’s CPM

We recall Fig. 4.4. Tsai (2003) proposed the CPM that employs only revolute and

prismatic joints to achieve translational motion of the moving platform. CPM has

two actuation options, linear actuation and rotary actuation. Its kinematic structure

is reproduced as shown in Fig. 6.1.

Now we start to solve kinematic problems of CPM with linear actuation.

6.1.1. Linear Actuation. For the linear actuation, a linear actuator drives

the prismatic joint in each leg, while all revolute joints are passive. Notice that the

jth (j=1,2,3) leg only moves in the plane defined by links AjMj and MjBj, as shown

in Fig. 6.1, and the prismatic actuators provide motion normal to their respective

planes.



6.6.1 KINEMATIC ANALYSIS OF TSAI’S CPM

Figure 6.1. Kinematic architecture of Kim and Tsai’s CPM (2003).

For the inverse kinematics, one can define each plane AjMjBj by its normal

and any incident point P . The normal has the same direction as the translation of

points provided by each prismatic joint, and the point P is given a-priori. Then,

the intersection of each plane and its corresponding line, which is directed along the

motion of the linear actuator, gives the solution of the IKP.

For the direct kinematics, each plane is defined by the normal and the position

of each slider. The intersection of three planes determines the position of point P ,

the solution of the DKP.

Actually, due to the special structure of Tsai’s CPM, its kinematics for linear

actuation is trivial and it admits a one-to-one correspondence between the positions

of the actuators and that of EE, like the serial x-y-z table of a milling machine.
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6.6.1 KINEMATIC ANALYSIS OF TSAI’S CPM

6.1.2. Rotary Actuation. If rotary actuation is chosen, three rotary actua-

tors drive the revolute joints located at A1, A2 and A3, with all other joints remaining

passive.

For the IKP, as introduced in Subsection 6.1.1, when the position of the EE is

given, say the coordinates of point P , we can determine the position of some point

on the moving element of each prismatic joint, namely the coordinates of point Aj,

as the intersection of the plane and the actuator piston centre line,

A1 : (px, 0, 0)

A2 : (0, py, 0)

A3 : (x0, y0, pz)

where (px, py, pz) are the coordinates of point P , and x0 and y0 are the coordinates

of the projection of axis Z3 on X-Y plane; therefore, they are constants.

Moreover, the coordinates of point Bj are obtained as

B1 : (px, py + b1, pz)

B2 : (px + b2, py, pz)

B3 : (px + b3, py, pz)

where bj(j = 1, 2, 3) is the offset between the positions of points P and Bj.

For the jth leg, we obtain two circles, centred at points Aj and Bj, with radii lj1

and lj2, respectively, as shown in Fig. 6.2.

Taking the first leg as an example, the two circle equations are obtained as





y2 + z2 = l211

x = px





(y − px − b1)
2 + (z − pz)

2 = l212

x = px
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Figure 6.2. Geometric representations for one leg.

The two circles intersect at two points, denoted by coordinates (px, y1, z1) and

(px, y2, z2).

Then, the actuation angles are derived as

θ11 = arctan(
z1

y1

)

θ12 = arctan(
z2

y2

)

For each leg, there are two possible solutions for the IKP. Therefore, with rotary

actuation, Tsai’s CPM admits at most eight inverse-kinematics solutions.

For the direct kinematics, the actuation angles are given, and the position of point

P is sought. In the case at hand, point Aj can be located anywhere on the actuator

axis due to the motion of the prismatic joint. Therefore, we can only determine the

position of point Mj on a line parallel to its corresponding actuator axis with a dis-

tance lj1, and the orientation of the perpendicular of the two lines can be determined

by the actuator joint angle. Due to the kinematic characteristic of the EE, we move

point Mj horizontally inward to point Nj, with a distance bj, the positional offset of

points Bj and P , as shown in Fig. 6.3. Consequently, the three points B1, B2 and

B3 converge at point P .
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Figure 6.3. Displaced rotating axes and convergence on point P .

Now if we take the line Lj as the axis of rotation, and the link length lj2 as

the radius, we obtain three cylinders of revolution, whose intersection determines the

position of the EE. Since a cylinder of revolution is a quadric, intersecting three of

them admits at most eight distinct real solutions. In practice, some pairs may turn

out to be complex. Therefore, eight different configurations are theoretically possible

for the direct kinematics of this TPM. The same results were also reported by Kim

and Tsai (2003).

6.2. Applicability Investigation

Again, as stated in Section 4.1, by employing joint replacements we can obtain

a class of TPMs with different structures. Table 6.1 shows some possible combina-

tions of P , R and Π joints to form the leg architecture of a three-legged symmetrical

TPM. The corresponding kinematic geometry representations are summarized in the

same table. For the class of TPMs listed in Table 6.1, the corresponding leg archi-

tectures are shown in Fig. 6.4. Note that in Table 6.1, cylinder stands for cylinder of

revolution; (1) and (2) represent linear actuation and rotary actuation, respectively.
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Table 6.1. Geometric representations and the maximum number of solu-

tions for a class of TPMs.

IKP DKP

Leg architecture
Geometry elements No. of Sols Geometry elements No. of Sols

P R Π R Sphere & Line 8 Spheres 2

P Π R R Circle & Cylinder 8 Bohemian domes 64

P R R R (1) Plane & Line 1 Planes 1

P R R R (2) Circle & Circle 8 Cylinders 8

P Π Π R Plane & Line 1 Plane 1

R R Π R Sphere & Circle 8 Spheres 2

R Π R R Circle & Sphere 8 Bohemian domes 64

R Π Π R Plane & Plane 1 Planes 1

Here the Bohemian dome (Bonev, 2002) is introduced as follows. Given a circle

C1 and plane E perpendicular to the plane of C1, we move a second circle C2 through

space so that the centre of C2 always lies on the circumference of C1, and C2 remains

parallel to E. Then C2 sweeps out the Bohemian dome. A Bohemian dome differs

from a torus in that the rotating circle of a torus changes its orientation in a turn;

however, the orientation of the rotating circle of a Bohemian dome remains fixed.

Figure 6.5 depicts the lower half of a Bohemian dome, which is a fourth-order surface.

Therefore, an intersection of three Bohemian domes with arbitrarily skewed axes may,

in theory, yields a maximum of 64 solutions for PΠRR and RΠRR leg architectures.

From the examples listed in Table 6.1, it is clear that by using geometric elements

to denote the workspace of different links, one can find all possible kinematics solutions

by intersecting the related spatial surfaces. This geometric thinking provides an

effective and fast way to comprehensively analyze the inverse and direct kinematics

of three-legged symmetrical TPMs.
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Figure 6.4. Leg architectures for the class of TPMs listed in Table 6.1.

Figure 6.5. The lower half of a Bohemian dome surface.
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CHAPTER 7

Conclusions

7.1. Conclusions

In this thesis, a comprehensive analysis of three-legged TPMs was presented,

including both type synthesis and inverse and direct kinematics.

For the TPM type synthesis, DGT is the theoretical basis. With twelve dis-

placement subgroups, the synthesis procedure is carried out in two steps: first, leg-

architecture synthesis; second, constructing the entire TPM. Based on the correct

synthesis formula, type synthesis of TPMs can be simplified to a permutation and

combination problem. Finally, the whole family of three-legged symmetrical TPMs

composed of prismatic and revolute joints, as well as some three-legged asymmetrical

TPMs, are proposed. To the author’s knowledge, this work is original in systemati-

cally synthesizing TPM architectures with DGT.

For the TPM kinematic analysis with geometric graphs, a specific three-legged

symmetrical TPM with PRΠR leg architecture was analyzed. By using spheres and

lines to denote the workspace of its leg links for the inverse kinematics, and using three

spheres to denote that for the direct kinematics, the kinematics solutions are obtained

by intersecting the corresponding geometric graphs. Finally, the applicability of this

approach was examined by applying it to a class of TPMs with joint replacements.

When the kinematics problem is solved by finding geometric representations of the



7.7.2 SUGGESTIONS FOR FUTURE RESEARCH

workspace of leg links, it is easy to formulate a set of constraint equations that greatly

simplify the solution procedure.

7.2. Suggestions for Future Research

Besides TPMs, there are many PKMs, and mechanical systems in general which

can be synthesized based on DGT. If the synthesis of a mechanism is performed by

considering its motion characteristics and finding the corresponding subgroup repre-

sentations, fast and comprehensive results may be obtained.

The kinematic analysis approach using geometric graphs can be further investi-

gated for the whole family of TPMs, as synthesized in this thesis. It will be a lengthy

but straightforward procedure. The idea of denoting link workspace with geometric

graphs can be extended to other problems related to kinematics and dynamics of

mechanical systems as well.
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Hervé, J. M., 1999, “The Lie Group of Rigid Body Displacements, a Fundamental

Tool for Mechanisms Design”, Mechanism and Machine Theory, Vol. 34, No. 5,

pp. 719-730.

Kim, H. S. and Tsai, L. W., 2003, “Design Optimization of a Cartesian Parallel Ma-

nipulator”, ASME Journal of Mechanical Design, Vol. 125, pp. 43-51.

Kohli, D., Lee, S. H., Tsai, K. Y., and Sandor, G. N., 1988, “Manipulator Configura-

tions Based on Rotary-Linear (r-l) Actuators and Their Direct and Inverse Kinemat-

ics”, ASME Journal of Mechanisms, Transmissions, and Automation in Design,

Vol. 110, pp. 397-404.

Kong, X. and Gosselin, C. M., 2002, “Kinematics and Singularity Analysis of 3-

CRR 3-DOF Translational Parallel Manipulators”, The International Journal of

Robotics Research, Vol. 21, No. 9, pp. 791-798.

Kong, X. and Gosselin, C. M., 2004, “Type Synthesis of 3-DOF Translational Paral-

lel Manipulators Based on Screw Theory”, ASME Journal of Mechanical Design,

Vol. 126, pp. 83-92.

Kong, X. and Gosselin, C. M., 2004, “Type Synthesis of 3-DOF Translational Parallel

Manipulators Based on Screw Theory and a Virtual Joint”, Proc. of Romansy 2004,

54



REFERENCES

Montreal, Quebec, Canada, June 14-18.
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