305-261/262 Measurement Laboratory

Experiment V

Stress and Strain

Introduction: strain-gauge system

Strain Gauges are transducers that experience a change of electric resistance when they are strained (deformed). The strain gauge is used in combination with other electrical components to obtain an electric voltage representing tensile, compressive or bending strain used to detect deformations or stresses. 

Many varieties of strain gauges are available, but the most common devices rely on the principle that the change of resistance of a conductor depends on the change of its dimensions. A strain gauge consists of a tiny conducting wire of cross section A (m2), initial length L (m) and specific resistivity m). The resistance R () of the wire changes when the wire is deformed (strained) by an external load (stress). The model that define the resistance R of the wire is:
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The relationship between stress
and strain is one of the most fun-
damental concepts from the study
of mechanics of materials and is of
paramount importance to the stress
analyst. In experimental stress
analysis we apply a given load and
then / measure the strain on in-
dividual members of a structure or
machine. Then-we use the stress-
strain relationships to compute the
stresses in those members to verify
that these stresses remain within
the allowable limits for the par-
ticular materials used.

Strain

When a force is applied to a body,
the body deforms. In the general
case this deformation is called
strain. In this application note we
will be more specific and define the
term STRAIN to mean deformation
per unit length or fractional change
in length and give it the symbol, e.
See Figure 1. This is the strain that
we typically measure with a bonded
resistance strain gage. Strain may
be either tensile (positive) or com-
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Uniaxial force applied

pressive (negative). See Figure 2.
When written in equation form,
e.= AL/L, we see that strain is a
ratio and therefore dimensionless.
To maintain the physical significance
of strain, it is often written with
units of inch/inch. For most metals
the strains measured in experimen-
tal work are typically less than
0.005000 inch/inch. Since practical
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strain values are so small, they are
often expressed - in micro-strain
which is € x 10° (note this is
equivalent to parts per million or
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Figure 2
Cantilever in bending

ppm) and has the symbol, pe. Still
another way to express strain is as
percent strain, which is € x 100. For
example: 0.005 inch/inch = 5000 ue
= 0.5%.

As described to this point, strain is
fractional change in length and is
directly measurable. Strain of this
type is also often referred to as nor-
mal strain.

Shearing Strain

Another type of strain called
SHEARING STRAIN is a measure of
angular distortion. Shearing strain is
also directly measurable but not as
easily as normal strain. If we had a
thick book sitting on a table top and
we applied a force parallel to the
covers, we could see the shear strain
by observing the edges of the pages.
See Figure 3. Shearing strain, . is
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Visualizing Shearing Strain

defined as the angular change in ra-
dians between two line segments
that were orthogonal in the
undeformed state. Since this angle is
very small for most metals, shearing
strain is approximated by the
tangent of the angle.

Poisson Strain

In Figure 4 is a bar with a uniaxial
tensile force applied. like the bar in
Figure 1. The dashed lines show the
shape of the bar after deformation,
pointing out another phenomenon,
that of Poisson strain. The dashed
lines indicate that the bar not only
elongates but that its girth con-
tracts. This contraction is a strain in
the transverse direction due to a
property of the material known as
Poisson’s Ratio. Poisson’s ratio, v, is
defined as the negative ratio of the
strain in the transverse direction to
the strain in the longitudinal direc-
tion. It is interesting to note that no
stress is associated with the Poisson
strain. Referring to Figure 4, the
equation for Poisson's ratio is
v = — ¢/¢€y. Note that p is dimen-
sionless.
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Figure 4
Poisson Strain

Normal Stress

While forces and strains are
measurable quantities used by the
designer and stress analyst, stressis
the term used to compare the
loading applied to a material with its
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In general, to describe the change of resistance of a strain gauge due to the change of length L of the wire, a Gage Factor G is defined as follow:
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where the ratio L/L is the strain of the wire.

 = L/L  (strain) is the change of length with respect to the original length. The unit of strain is in general mm/mm, or inch/inch but it is commonly expressed in microstrain 


 mm/mm or in/in.


Therefore the Gage Factor G is a dimensionless quantity that expresses the ratio of the fractional change in resistance of the gauge to the fractional change in length (strain) along the axis of the gauge. The larger the value of G the more sensitive the strain gauge. It should be noted that the change of resistance with strain is not just due to dimensional changes in the conductor, but that the resistivity of the material also changes with strain.

Transverse Sensitivity
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Strain gage
Courtesy of The Micro-Measurements Division of The Measurements Group,
Raleigh, North Carolina, U.S.A.

transverse sensitivity may be
necessary for short, wide-grid
gages, or where there is con-
siderable misalignment between the
gage axis and the principal axis, or in
rosette analysis where high
transverse strain fields may exist.
Data supplied by the manufacturer
with the gage can be entered into
the computer controlling the in-
strumentation and corrections for-
transverse sensitivity made to the
strain data as it is collected.

Temperature Effects

Ideally we would prefer the strain
gage to change resistance only in
response to the stress-induced
strain in the test specimen. but the
resistivity and the strain sensitivity
of all known strain sensitive
materials vary with temperature. Of
course that means the gage resist-
ance and the gage factor will change
when the temperature changes.
This change in resistance with
temperature for a mounted strain
gage is a function of the difference
in the thermal expansion coeffi-
cients between the gage and the
specimen and of the thermal coeffi-
cient of resistance of the gage alloy.
Self-temperature compensating
gages may be produced for specific
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materials by processing the strain
sensitive alloy such that it has ther-
mal resistance characteristics that
compensate for the effects of the
mismatch in thermal expansion coef-
ficients between the gage and the
specific material. A temperature
compensated gage produced in this
manner is accurately compensated
only when molnted on a material
that has a specific coefficient of

N\

of common materials for which self-
temperature compensated gages
are available.

Approximate Thermal
Expansion Coefficient
Material PPM/°C
Quartz 0.5

Titanium 9
Mild Steel 11
Stainless Steel 16
Aluminum i)
Magnesium 26

| Table 2

| Thermal expansion coefficients of
some common materials for which
temperature compensated strain
gages are available

The compensation is only effective
over a limited temperature range
because of the nonlinear character
of both the thermal coefficients of
expansion and the thermal coeffi-
cient of resistance. The gage
manufacturer supplies information
specifying the accuracy of the
temperature compensation in the
form of an APPARENT STRAIN
curve. See Figure 14. This is a plot of
temperature-induced apparent
strain versus temperature, for the
gage. mounted on a specific material
with a specified coefficient of ther-
mal expansion. e

The equation for this curve can be
obtained from the gage manufac-

thermal expansion. Table 2 is a list turer, by applying curve fitting
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Figure 14
Temperature induced apparent strain and gage factor versus temperature
Courtesy of The Micro-Measurements Division of The Measurements Group,
Carolina, U.S.A.
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If the strain were a single straight length of conductor of small diameter with respect to its length, it would respond to strain along its longitudinal axis and be essentially insensitive to strain transverse (normal) to this axis. However, the conductor is in the form of a grid to reduce the effective gauge length and for this reason there are small amounts of strain sensitive material in the end-loops or turn-arounds that lie transverse to the gauge axis (Fig. 1). This end-loop material gives the gauge  a non-zero sensitivity to strain in the transverse direction. Transverse sensitivity factor Kt is defined as :
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 where GTransverse is the sensitivity of the gauge to transverse strain while the GLongitudinal is the axial sensitivity of the strain gauge to longitudinal deformation. Transverse sensitivity is usually expressed in percent with values that range from 0.1 to 10%.

Measurement of deformation using Strain Gauges

The Gage Factor equation shows that it is the fractional change in resistance the important quantity rather than the absolute change of resistance of the gauge. Lets see just how large this resistance change will be for a common strain gauge with G = 2 and nominal resistance of 120 . The Gage Factor equation tells us that 1 (microstrain) applied to a gauge of resistance R produces a change of resistance:

R = R1G = 120

This means we need to have micro-ohm sensitivity (?!?) in the measuring instrumentation, and we also need to precisely measure the reference unstrained gauge resistance. In practice these difficulties are by-passed by the use of a different technique to measure small resistance changes with the use of the Wheatstone Bridge Circuit.

Wheatstone bridge circuit


The Wheatstone bridge circuit is one of the most frequently used circuits for static strain measurements because of its outstanding sensitivity. The working principle is illustrated in the following diagram.

A fixed regulated voltage V0 is applied across nodes C and D of the bridge. The output voltage is measured across nodes A and B. Once the power supply V0 of the circuit is fixed, the voltage output VOUT is function of the resistance R1, R2, R3, and R4. The current I0, coming from the power supply, reaches node C and splits into two parts I1, and I2. Current I1 flows into the branch of R1 in series with R4, while current I2 flows in the branch that consists of R2 in series with R3. Remember that two resistances are said to be connected in series where the same current flows through. Observe that currents I1 and I2 are not necessarily the same. Let’s calculate these two currents. Voltage V0 is applied to nodes C and D, therefore the current in each branch will be inversely proportional to the resistance of each branch. This last sentence is mathematically written as:
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We want to calculate the voltage output VOUT. Following the diagram we see that the voltage output is the potential difference across nodes A and B. The voltage across A and B can be obtained following two paths: ACB or ADB. In other words, the voltage output can be calculated as:






VOUT = VAB = VAC + VCB  ……………………………..(5)

or




VOUT = VAB = VAD + VDB  …………………………….(6)


Let’s follow the first path (5):

The voltage VAC is the voltage drop across the resistance R1 due to the current I1, however this current goes from C to A  indicating that node C is at higher potential than node A. 

Therefore we have:



VAC = -I1 R1  ……………………………(7)

On the other hand when we calculate the voltage VCB across nodes C an B we observe that it is the voltage drop across resistance R2 due to the current I2. Current I2 flows from node C to node B indicating that node C is at higher potential than B. 

Therefore we have:



VCB = I2 R2   ……………………………(8)

Finally we can calculate the voltage output by combining equations (5), (3), (4), (7), (8):
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Observe that in equation (9), if all resistances are the same (R1=R2=R3=R4=R) then the voltage output is zero and the bridge is said to be balanced. Any small change of one or more of the four resistances will unbalance the bridge and the output voltage will not be zero but proportional to the change of resistance. For this reason the Wheatstone  bridge is used to detect small resistance changes. Imagine you have four equal resistances one of which is actually a strain gauge. When the gauge is not strained by an external load, the bridge is balanced and the voltage output is zero. Any small strain of the gauge will determine a change of its resistance, which will result in a non-zero voltage output. 


In order to improve the sensitivity of the bridge, more than one resistance can be substituted with strain gauges, however, in order to connect more than one strain gauge, the connection has to take into consideration the direction of the change of the resistance (increase or decrease). Strain can be either tensile (positive) or compressive (negative) as in the following example. The cantilever in bending illustrated in the following sketch undergoes tensile strain on the upper surface and compressive strain on the lower surface. A strain gauge glued on the upper surface will increase its resistance while an equal strain gauge symmetrically glued on the lower surface will reduce its resistance. When a load (force F) is applied at one end of the beam as in the sketch, the tensile stress  along the x-axis of the upper surface is gives as:
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where:

· M is the product of the effective length (m) of the beam times the load F (N) applied at the end of the beam.

· c (in this case) is half thickness (t) of the beam (m).

· I is the moment of inertia of the beam. In this case I = (bt3)/12.

· b is the width of the beam.

· t is the thickness of the beam.

Therefore the strain gauge system can be used to determine the deformation of the geometry of the beam. If a strain gauge of initial resistance R is glued on the upper surface of the beam, following the deformation its final resistance will be R+R. Assume that this strain gauge is placed as R4 of the Wheatstone bridge while all other resistances have value R. Substituting in equation (9) will give the following result:
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From equation (2) results         G =(R/R)/

therefore,   
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If a second strain gauge is placed on the lower surface of the cantilever beam, the compressive stress will determine a decrement of the resistance R so that the final resistance will result R-R. If this strain gauge is placed as R1 in the circuit of the Wheatstone bridge while R4 is the strain gauge with final value R+R, substituting in equation (9) will give:

 
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indicating an increase of the sensitivity of the bridge circuit by a factor of two.

Experimental Investigation

Material Provided:

One Digital multimeter (DMM) to measure the output voltage of the bridge.

One Beam provided with two strain gauges glued on the upper and lower surfaces. Connecting wires are already soldered to the strain gauges. Handle this material with particular care. Strain gauges are extremely fragile! The value of the nominal resistance of these gauger is written on the beam.

One block to mount the beam in a cantilever beam configuration.

One support to apply the load to the cantilever beam.

A series of wheights to be used to load the cantilever beam.

One resistance. Between 25K35K
Two resistances of the same value of the gauges (120 or 350).

One 25K  precision potentiometer to balance the bridge.

One Breadboard to build the Wheatstone bridge circuit.

Connecting wires, stripper and screwdriver.

One power supply to provide the exiting voltage V0 to the bridge. Attention! Use the 5V output voltage only!

One table of common material characteristic to find the Modulus of elasticity.

Measure Resistance to find which value you have.

Objectives:

1. To use strain gauges to measure the deformation of a specimen.

2. To build a Wheatstone bridge with balancing circuit.

3. To use Hook’s law to determine the Modulus of elasticity of an unknown material.

Testing Procedure

The following Wheatstone bridge will be mounted on a breadboard. A of the connections of such board is given with these notes. The reason of using a balancing circuit is determined by the fact that it is practically impossible to find four perfectly equal resistances and the bridge would never be balanced. The Balancing circuit consists of a 27Kresistance and a 27K precision potentiometer to be used to adjust the circuit and zero the output when the gages are unstrained. The connections of the potentiometer are marked 1,2,3 where three wires are already soldered to facilitate the connection to the bin board where the other resistances must be connected.   

1. Measuer the actual dimension of the beam. The distance from the load application point to the center of the gauge.

2. Mount the beam in the loading fixture so that the end of the beam is flush with the back of the block. Tighten the bolts.

3. Connect the wires of the strain gauges to the connector placed on the stand of the block. The wires departing from such block will be used to connect the gauges to the rest of the circuit built on the breadboard.

4. Mount the rest of the circuit paying attention at each connection. A sample setup is displayed in the Lab for your reference.

5. Connect the output to the DMM and the input to the 5V power supply. Hang the load holder.

6.  After checking the circuit, turn on the power supply and try to zero the output using the potentiometer. You should be able to reach zero +/- few microVolt. If the offset is higher turn off the power supply and check the circuit.

7. Write down the offset if you have a non zero output. 

8. Now prepare a table where you should write the loads applied to the beam and the corresponding reading of the voltage output.

9. Use the following loads: 20g, 50g, 70g, 100g, 120g, 150g, 170g, 200g, 250g, 300g, 350g, and 400g. Place the loads slowly and carefully!

10. For each load read and write the voltage output on your table. 

11. When you finish disconnect all components and measure precisely the voltage of the power supply.

Data reduction

1. Using equation (13) calculate the strain of the beam for each load. You can do this using excel and inserting the formula. Do not forget to convert the mass load into Force.

2. Calculate the stress for each case using Equation (10).

3. Plot a strain versus stress graph using excel.

4. Calculate the ratio of stress over strain for each case and obtain an average value.

5. Compare this average (Young modulus or modulus of elasticity) value with the table on your desk and try to find the unknown material.

6. Derive equation (13).
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