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1 Geometry in Kinematics

Six topics are introduced here to reveal the intimate connection between engineering kine-
matics and geometric thinking. These include spatial as well as planar displacement, velocity
and acceleration of a rigid body. Motions of such a body are those where the distance be-
tween point pairs on the body remains constant and reflections are prohibited. This means
that the spatial body cannot be turned inside-out and the planar body –imagine a 30◦/60◦

right-triangle– cannot be flipped over. The idea here is not so much to promote graphical
rather than equation-based problem solving but to lead one to appreciate the underlying
geometry that emerges from the principal invariants of kinematics of rigid bodies.

1.1 Velocities of a Planar Body

Consider the translational instantaneous velocities of points on a planar rigid body and how
these relate to the instant centre (point) of zero velocity that lies on the body, or some
extension thereof, and the instantaneous angular velocity. Examine Fig. 1. At any instant an
arbitrary point fixed to a rigid body A may experience (or have assigned to it) an arbitrary
velocity represented by vector vA. Another point B may, at this instant, experience any
velocity vB so long as the component of vB parallel to the line segment AB is identical to
that component of vA.

vA(=) = vB(=) (1)

The relative velocity of B with respect to A is

vB/A = vB − vA = ω × rB/A, rB/A = b− a (2)

where ω is the instantaneous angular velocity. Lines on A and B constructed normal to vA

and vB, respectively, intersect on point C = CI , the instant centre. Note that CI is deemed
to be on the rigid body. If it happens to fall outside some arbitrary outline that is drawn,
one may imagine the body to extend beyond, in fact indefinitely, like some great sheet of
ice in which the finite body is frozen; its motion being taken as the motion of the solid ice
sheet. Now the velocity of any point P can be described as a rotation about C or

vP = ω × rP/C (3)
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Figure 1: Instant Centre of Zero Velocity

1.2 Displacement of a Planar Body

Consider a finite displacement, i.e., two distinct poses of a planar rigid body as shown in
Fig. 2, and its relation to a point on the body, or its extension, that remains fixed. Again the
rigid body introduced in Fig. 1 is shown with the same points A and B. This time however
a second image on the right describes a displacement that has occurred. Arrows depict the
translation vectors of the two points as if they had moved in straight lines. Right bisectors
of the vectors intersect on P = PD, called the displacement pole. Now all points on the rigid
body can be seen to have moved on equiangular circular arcs centred on P . If the body
undergoes a pure translation then the pole is at an indefinitely great distance normal to
the pair of (now) parallel vectors. The instant centre is useful in analyzing motion between
bodies in contact that roll without slipping. Such situations include cases involving wheels,
gears and cams.
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Figure 2: Displacement Pole

1.3 Acceleration and Null Acceleration Point of a Planar Body

In what follows two points, A and B, on a rigid body are considered. The acceleration of
B is given as the acceleration of A plus the relative acceleration of B with respect to A,
abbreviated as subscript B/A. Note a is an acceleration vector, identified by appropriate
subscripts. What was stated above can be expressed as

aB = aA + aB/A (4)

Relative acceleration between two points on a rigid body can be expressed as

aB/A = −ω2rAB + α× rAB (5)

Notice that ω is the angular velocity vector and α is the angular acceleration vector of the
rigid body at this instant while rAB is the relative position vector from A to B. If aB = 0
then B is a point of zero acceleration. Expanding Eq. 5 into Cartesian components produces

 aBx

aBy

aBz

 aAx

aAy

aAz

 +

 αx

αy

αz

×

 rABx

rABy

rABz

− (ω2
x + ω2

y + ω2
z)

 rABx

rABy

rABz

 =

 0
0
0

 (6)

which is equivalent to three simultaneous equations Eq. 7.
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aAx + [αy(bz − az)− αz(by − ay)]− (ω2
x + ω2

y + ω2
z)(bx − ax) = 0

aAy + [αz(bx − ax)− αx(bz − az)]− (ω2
x + ω2

y + ω2
z)(by − ay) = 0

aAz + [αx(by − ay)− αy(bx − ax)]− (ω2
x + ω2

y + ω2
z)(bz − az) = 0 (7)

All problems of this type are solvable for any three unknowns, given all other parameters.
E.g., where is B, i.e., what is rB = [bx by bz]

>? Multiplying out and collecting constants
yields, in this case, the system

k10 + k11bx + k12by + k13bz = 0

k20 + k21by + k22by + k23bz = 0

k30 + k31bx + k32by + k33bz = 0 (8)

1.4 Velocities of a Spatial Body

“Twist” is the spatial equivalent of angular velocity about the instant centre in the plane.
It is composed of an instantaneous axis XY and lead and angular velocities of a rigid body
like that shown in Fig. 3.
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Figure 3: Instantaneous Twist
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Three points A, B, C are shown. A is assigned an arbitrary instantaneous velocity VA. Then
B may have any velocity VB as long as its component parallel to line AB is the same as that
of VA. Point C is constrained to sustain velocity VC such that the component of VC parallel
to line BC is the same as that of VB. Similarly, components of VA and VC along AC are
identical. The only component of VC that may be freely imposed is that normal to plane
ABC. Notice that VA and VB were chosen to be coplanar. This is of course not necessary
but it simplifies construction of the lead velocity vector VL. To do this, top and front views
of all three velocity vectors are plotted to scale, radiating from common point R. Note that
the tips of the three velocity vectors VAF , VBF and VCF fall in a planar line view. That was
the reason for the coplanar velocity simplification; to save an auxiliary construction. Now
the lead velocity VL appears normal to this planar edge. If the points A, B, C are projected
to a view where VL would appear as a point then velocity components VAR, VBR and VCR

are normal to the twist axis whose end view XYR is on normals to VAR, VBR and VCR drawn
respectively on AR, BR, CR. Angular velocity of twist ω can be seen to be righthanded and
its magnitude is determined by dividing, say, VAR by the length of the normal XYR → AR.
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1.5 Displacement of a Spatial Body
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Figure 4: Finite Screw Displacement
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Screw axis, rotational angle and translational lead, given two views of a unit Cartesian axis
triad in an original or “home” pose and one finitely displaced, are constructed as shown in
Fig. 4. These three displacement parameters correspond to the two, viz., displacement pole
and rotation angle, encountered in two dimensional motion and described in Fig. 2. They
are constructed in the following way.

1. Notice the original pose defined on origin O and the tips of the unit axes labelled x, y, z
respectively. In the corresponding displaced pose these become P, u, v, w.

2. Now consider the four displacement vectors O → P , x → u, y → v, z → w. If these
are plotted, below, in two similar top and front views and radiating from a common
point R we see these vector tips labelled as OP , xu, yv and zw.

3. Then examine the triangular plane segment yv zw OP . An edge or line view was
constructed. It is noted with satisfaction that xu also falls in the plane. A normal
to the plane extended from R is shown as a dash-dotted centre line. All four point
displacement vectors project a common component length onto this direction. The
length of this normal is the lead of the screw.

4. If an end or point view of this normal direction is constructed, only those components
of the displacement vectors that are normal to the screw axis project on it. They can
be accounted for by rotation about the axis.

5. The point view construction is accomplished with the line segment labelled A that is
on the axis. But we don’t yet know where it is located. But any line parallel to the
axis will do to obtain a projection in which the axis appears as a point.

6. Once this has been done, right bisectors of the displacement vector projections are
taken. These intersect on the point view of A which can be returned by projection to
the original reference frame of top and front view.

7. Finally each displacement vector in the axial point view projection subtends a chord
of a circular arc of rotation about the screw axis. Note that this has been measured as
φ = 155.85◦ in this example while the lead is l = 2.523.

2 Twist and Screw Axis and Lead (Pitch)

Look at Figs. 3 and 4. The first task is to find the lead vector vL with three point velocities

vA,vB,vC or lead vector
−→
OP with displacement vectors −→xu,−→yv,−→zw. Call the lead vector l

and the three, that project onto it with identical magnitude and sense, a,b, c.

l =

(b− a)× (c− a)

|b− a| |c− a|
·


a
or
b
or
c



 (b− a)× (c− a)

|b− a| |c− a|
(9)
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Now subtract l from each of the three to get the rotational components ar,br, cr, i.e., those
normal to the common lead.

ar = a− l, br = b− l, cr = c− l (10)

Using points A and B, in the case of twist, or x and y at the tips of the undisplaced Cartesian
axis triad –call these both points A and B– place a plane a on A with normal ar and plane b
on B with normal br. A plane c on C with normal cr might be used for intersection checking.
Homogeneous coordinates (coefficients) of planes a and b are presented in Eq. 11.

a{A0 : A1 : A2 : A3} = {A0 : arx : ary : arz}
b{B0 : B1 : B2 : B3} = {B0 : brx : bry : brz}

A0 = −(arxax + aryay + arzaz), B0 = −(brxbx + bryby + brzbz) (11)

The screw or twist axis Xa is given by its axial Plücker or line coordinates by the intersection
of planes a∩ b; a∩ c and b∩ c should give the same result. The appropriate expansion of six
2× 2 array determinants gives the appropriate differences of products, Eq. 12.

∣∣∣∣ A0 A1 A2 A3

B0 B1 B2 B3

∣∣∣∣ → Xa{X01 : X02 : X03 : X23 : X31 : X12}

= {(A0B1 − A1B0) : (A0B2 − A2B0) : (A0B3 − A3B0)

: (A2B3 − A3B2) : (A3B1 − A1B3) : (A1B2 − A2B1)} (12)

Notice the last three elements are the direction numbers of the axis line Xa and the first
three are the moment these numbers exert about the origin.
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