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Pedal Point and Quadric Axes

1 Fußpunkt

Consider the following very easy problem. It may be effectively used, by solving it in conventional
and not so conventional ways, to reinforce geometric thinking. Such thinking involves forcing
oneself to visualize the situation as a multi-dimensional mosaic of various properties in order to
select an appropriate combination of these so as to make up a satisfactory solution algorithm.

1.1 Introduction

To establish the distance between given point M{m0 : m1 : m2 : m3} and plane p{P0 : P1 : P2 : P3}
requires point P{p0 : p1 : p2 : p3} on p such that M and P are on line P normal to p. The stage
is set with a descriptive geometric construction, Fig. 1. Notice p is specified by a segment on
given points ABC. What we see there is the line segment PM of P drawn perpendicular to the
horizontal and frontal line segments, BD and AE, respectively, that are constructed on p. The
point P is located on the intersection of P and line segment GJ on p and a plane on M normal
to AE. After drawing the segment of p the entire solution consists of drawing only seven images
of top and front view line projections, i.e.,

BDH , BDF , AEH , AEF , MGJF , GJH , MPH

Coordinates of P can be measured directly in principal top and front views, -H- and -F-,
respectively. The auxiliary view shows the edge of p as BC1 and the line MP in true length. The
distance between M and P can be measured here. A sphere centred on M and tangent to p on P
is constructed and its image is shown in -H- and -F- as well. This sphere is the basis for one of
the three analytical methods to be discussed presently.

• The first makes use of point position vectors, a parametric line equation and the plane
equation.

• The next applies line geometry so as to systematically produce a sequence of essentially
canonical equations in the Plücker coordinates of P and then in the coordinates of P .

• Finally, the third approach starts with the equation of a sphere centred on M and unknown
radius r. The coefficients of the equation are inserted into a symmetric punctual quadric
coefficient matrix and that matrix is converted to its corresponding dual planar equivalent.
Pre-multiplying this with a row vector of the given coefficients (or coordinates) of p and
post-multiplying by the column vector of the same coefficients yields a linear equation in
r2. With the value of r now in hand one merely multiplies the column vector by the planar
matrix. The resulting auto-polar column vector of four elements contains the homogeneous
coordinates of P .
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Figure 1: Normal from Point to Plane

1.2 Parametric Line Equation

The position vector of points M and P are represented by m and p while n is the vector normal
to p. Its elements are three coefficients of the plane equation

P0p0 + P1p1 + P2p2 + P3p3 = 0, n =

 n1

n2

n3

 =

 P1

P2

P3


where the point coordinates of the line we seek have been conveniently inserted. Since we seek
points in Euclidean space the points are M{m0 : m1 : m2 : m3} and P{p0 : p1 : p2 : p3} where
m0 = p0 = 1 so one may write

p = m + kn where k is a scalar constant.
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so the plane equation becomes

P0 + P1(m1 + n1k) + P2(m2 + n2k) + P3(m3 + n3k) = 0

and is solved for k. With k known, P may be determined. With P the length of the line segment
MP can be calculated. Though the procedure is simple, formulation logic swings to and fro.

1.3 Line Normal to Plane

Examining section 1.5.3 we can write conditions that state that a line P on M is normal to p and
intersects it on P . After appropriate substitutions have been made the seven pertinent equations
are

−p23m0 + P3m2 − P2m3 = 0 (1)

−p31m0 − P3m1 + P1m3 = 0 (2)

P1p23 + P2p31 + P3p12 = 0 (3)

p0 = P 2
1 + P 2

2 + P 2
3 (4)

p1 = −P1P0 + p12P2 − p31P3 (5)

−p31p0 − P3p1 + P1p3 = 0 (6)

−p23p0 + P3p2 − P2p3 = 0 (7)

These equations are canonical in the sense that the first three immediately provide the three
unknown moment coordinates of P . The direction is given by n as before. p01

p02

p03

 =

 P1

P2

P3


Note that Eq. 3 is the Plücker condition that states that the line direction vector is normal to
the moment vector. Next, two of four homogeneous coordinates of P , p0 and p1, are given by the
piercing point algorithm. Finally the last two, p2 and p3, appear as the sole unknowns in Eq. 6
and Eq. 7 that state P is on P . As the equations are solved in the sequence given there is but one
linear unknown term in each.

1.4 Sphere Tangent to Plane

Constructing a sphere centred on M and tangent to p produces the tangent point P . Eq. 8 is the
scalar equation of the sphere shown in symmetrical coefficient matrix form.

[p0 p1 p2 p3]


m2

1 + m2
2 + m2

3 −m2
0r

2 −m0m1 −m0m2 −m0m3

−m0m1 m2
0 0 0

−m0m2 0 m2
0 0

−m0m3 0 0 m2
0




p0

p1

p2

p3

 = 0 (8)
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The equation specifies P to be on the sphere. That is obvious but not helpful because sphere
radius r is not known. Taking the adjoint of the matrix allows us to state that p is on the sphere,
i.e., a tangent plane.

[P0 P1 P2 P3]


m2

0 m0m1 m0m2 m0m3

m0m1 m2
1 −m2

0r
2 m1m2 m3m1

m0m2 m1m2 m2 −m2
0r

2 m2m3

m0m3 m3m1 m2m3 m2
3 −m2

0r
2




P0

P1

P2

P3

 = 0 (9)

Eq. 9 is linear in r2. Substituting r2 in the matrix of Eq. 9 and multiplying that by the column
vector on the right yields a point column vector, Eq. 10 containing the homogeneous coordinates
of P , the point polar to the plane p with respect to the sphere.

P :


m2

0P0 + m0m1P1 + m0m2P2 + m0m3P3

m0m1P0 + (m2
1 −m2

0r
2)P1 + m1m2P2 + m3m1P3

m0m2P0 + m1m2P1 + (m2
2 −m2

0r
2)P2 + m2m3P3

m0m3P0 + m3m1P1 + m2m3P2 + (m2
3 −m2

0r
2)P3

 (10)

1.5 Appendix

This might seem redundant. Nevertheless we take the opportunity here to introduce notation
conventions and review the expansion of Grassmanian determinants to provide the coefficients of
plane p on three points using the numerical values assigned to A, B, C as shown in Fig. 1. Then
the algorithms

p = Q∩ A, Pi =
3∑

j=0

Qijaj and P = P ∩ p, pi =
3∑

j=0

pijPj (11)

to find the same plane p given on axial line AB = Q and point A, using Plücker coordinates, and
by dual inference, to similarly find P the point of intersection of radial line MP = P and plane p
are derived in symbolic form. Finally a simple demonstration that the adjoint of a homogeneous
square matrix operator represents the equivalent dualistic transformation will be presented. These
essential topics are recalled here to emphasize the elementary geometric background required to
allow the student to develop ability to “think geometrically” and appreciate the elegant interrela-
tion among the constructive and analytical approaches to finding the shortest distance from point
to plane.

1.5.1 Conventions

• A point is specified by an upper case, unsubscripted letter and its four (three in the plane)
homogeneous coordinates by single subscripted lower case letters, P{p0 : p1 : p2 : p3}.
Ordinary Cartesian point coordinates in Euclidean space appear as P (p1/p0, p2/p0, p3/p0).

• A plane is specified by a lower case unsubscripted letter and its four homogeneous coordinates
(coefficients) by single subscripted upper case letters, p{P0 : P1 : P2 : P3}.

• A line in the plane is specified like a plane but with only three coefficients.
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• A line in space is specified by an unsubscripted script letter and six homogeneous double
subscripted letters representing line or Plücker coordinates, P{p01 : p02 : p03 : p23 : p31 : p12}
or P{P01 : P02 : P03 : P23 : P31 : P12}. Lower case Plücker coordinates indicate a radial line,
i.e., defined on two points while upper case represents an axial line on two planes.

1.5.2 Plane Equation from Three Points

Expanding the following determinant, wherein the top row represents homogeneous coordinates
of any variable point X{x0 : x1 : x2 : x3} that is linearly dependent on the three given points
A, B, C, produces the linear equation of plane p.∣∣∣∣∣∣∣∣∣

x0 x1 x2 x3

1 6 5 −4
1 19 1 −8
1 15 13 −15

∣∣∣∣∣∣∣∣∣ = 431x0 − 76x1 − 107x2 − 140x2 = 0 (12)

1.5.3 Spanning Plane and Piercing Point

The same plane p is now expressed symbolically as Eq. 13 in terms of the same three points
except rather than expanding just on the top row minors and computing four 3× 3 determinants
the job will be done by computing twelve 2 × 2 determinants thus generating the radial Plücker
coordinates of Q = BC while the point A retains its isolated rôle. The conventional spanning
plane algorithm is generated by making a radial to axial Plücker point conversion. Then the
piercing point algorithm may be inferred by dual interchange of “plane” and “point”. It is pointed
out here that if all Pi = 0 then we obtain the condition that A ∈ Q. Furthermore if one evaluated
all qi for the piercing point Q of line Q = BC with the plane p = ABC these would turn out
to be all zero because Q = BC is clearly a line on plane p = ABC. Note that any two of the
four equations for Pi or pi are linearly independent so one may only choose two of the four when
formulating problem constraints. ∣∣∣∣∣∣∣∣∣

x0 x1 x2 x3

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

∣∣∣∣∣∣∣∣∣ = 0 (13)

The expansion gives the following scalar plane equation, still in terms of point coordinates.

[(b2c3 − b3c2)a1 − (b1c3 − b3c1)a2 + (b1c2 − b2c1)a3]x0

−[(b2c3 − b3c2)a0 − (b0c3 − b3c0)a2 + (b0c2 − b2c0)a3]x1

+[(b1c3 − b3c1)a0 − (b0c3 − b3c0)a1 + (b0c1 − b1c0)a3]x2

−[(b1c2 − b2c1)a0 − (b0c2 − b2c0)a2 + (b0c1 − b1c0)a2]x3 = 0 (14)

Converting the differences of products to radial Plücker coordinates first, then to axial gives us
the plane equation coefficients (coordinates).
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P0 = q23a1 + q31a2 + q12a3 = Q01a1 + Q02a2 + Q03a3

P1 = −q23a0 + q03a2 − q02a3 = −Q01a0 + Q12a2 −Q31a3

P2 = −q31a0 − q02a1 + q01a3 = −Q02a0 −Q12a1 + Q23a3

P3 = −q12a0 + q02a1 − q01a2 = −Q03a0 + Q31a1 −Q23a2 (15)

To apply the algorithms as presented literally in Eq. 11 one must observe the conventions Qij =
−Qji and Qij = 0 where i = j.

1.5.4 The Adjoint Matrix Is the Dual of Its Transformation

The three linearly independent points A, B, C form vertices of a triangle with respectively opposite
sides on lines a, b, c. These are specified by planar homogeneous coordinates, thus.

A{a0 : a1 : a2}, B{b0 : b1 : b2}, C{c0 : c1 : c2}, a{A0 : A1 : A2}, b{B0 : B1 : B2}, c{C0 : C1 : C2}

Using a singular, dummy point X{x0 : x1 : x2} successively on a, b, c, the following Grassmannian
top row determinant minor expansions produce the following homogeneous planar line coordinates.

a :

∣∣∣∣∣∣∣
x0 x1 x2

b0 b1 b2

c0 c1 c2

∣∣∣∣∣∣∣ ⇒ {b1c2 − b2c1 : b2c0 − b0c2 : b0c1 − b1c0} ≡ {A0 : A1 : A2}

b :

∣∣∣∣∣∣∣
x0 x1 x2

c0 c1 c2

a0 a1 a2

∣∣∣∣∣∣∣ ⇒ {c1a2 − c2a1 : c2a0 − c0a2 : c0a1 − c1a0} ≡ {B0 : B1 : B2}

c :

∣∣∣∣∣∣∣
x0 x1 x2

a0 a1 a2

b0 b1 b2

∣∣∣∣∣∣∣ ⇒ {a1b2 − a2b1 : a2b0 − a0b2 : a0b1 − a1b0} ≡ {C0 : C1 : C2}

Now examine the nonsingular matrices containing rows of these point and line coordinates. They
are duals of the same figure; a given triangle. The superscripts A and D stand for adjoint and
dual, respectively. The following sequence states this equivalence. a0 a1 a2

b0 b1 b2

c0 c1 c2

A

≡

 a0 a1 a2

b0 b1 b2

c0 c1 c2

D

≡

 A0 A1 A2

B0 B1 B2

C0 C1 C2

 ≡

 b1c2 − b2c1 b2c0 − b0c2 b0c1 − b1c0

c1a2 − c2a1 c2a0 − c0a2 c0a1 − c1a0

a1b2 − a2b1 a2b0 − a0b2 a0b1 − a1b0


Clearly, the last matrix in the sequence is the adjoint in terms of the two on the left populated by
homogeneous point coordinates aj, bj, cj where j = 0, 1, 2, is the column index. A word of caution.
An entirely different triangle is produced if one plots(

A1

A0

,
A2

A0

)
,

(
B1

B0

,
B2

B0

)
,

(
C1

C0

,
C2

C0

)
as point coordinates in the plane.
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2 Principal Axes of a Quadric

Finding principal axes is essentially a matrix diagonalization process presented in a geometrical
context.

2.1 Introduction

A quadric surface in three-dimensional Euclidean space may be specified algebraically in the
following two ways.

• The scalar point or plane equation; the result of an inner product of ten planar and punctual
quadratic forms.

a00x
2
0 + 2a01x0x1 + 2a02x0x2 + 2a03x0x3 + a11x

2
1 + 2a12x1x2

+2a13x1x3 + a22x
2
2 + 2a23x2x3 + a33x

2
3 = 0 (16)

A00X
2
0 + 2A01X0X1 + 2A02X0X2 + 2A03X0X3 + A11X

2
1 + 2A12X1X2

+2A13X1X3 + A22X
2
2 + 2A23X2X3 + A33X

2
3 = 0 (17)

• A symmetric matrix of planar, aij or punctual, Aij, coefficients. The two equations, Eq. 16
and 17, are the result of the following two matrix multiplications.

[x0 x1 x2 x3]


a00 a01 a02 a03

a01 a11 a12 a13

a02 a12 a22 a23

a03 a13 a23 a33




x0

x1

x2

x3

 = 0 (18)

[X0 X1 X2 X3]


A00 A01 A02 A03

A01 A11 A12 A13

A02 A12 A22 A23

A03 A13 A23 A33




X0

X1

X2

X3

 = 0 (19)

These equations state that any point X{x0 : x1 : x2 : x3}, that satisfies Eq. 16 or 18, is on the
quadric surface whose coefficients are aij. Similarly, any plane, whose coordinates, i.e., linear
equation coefficients, are x{X0 : X1 : X2 : X3}, is tangent to the surface whose coefficients are Aij

as given by Eq. 17 or 19. Geometrically, a quadric may be uniquely specified on nine given points or
tangent to nine given planes. Any combination of points and tangent planes, nine in all, constitutes
a unique specification if each plane, if these are the fewer in number, contains one of the points
and vice-versa. If tangent planes are separate from the points, e.g., there are given five points and
four planes to define a quadric but no point is on a plane there are, in general, 34 = 81 possible
solutions. The reason for this is that one must solve equations either for all aij or for all Aij. To
express a linear constraint imposed by a tangent plane one must replace all 16 Aij by minor(aij).
This yields a cubic in aij. If there are four such tangent planes a system of four cubic equations
must be solved. This sort of “mixed specification” of quadrics, although theoretically possible,
seems to be quite impractical. Another geometric specification, quite practical for hyperboloids
of one sheet and hyperbolic paraboloids, is the surface swept by a fourth line that moves so as
to intersect three given skew lines. What is intended here is to demonstrate that the absolute
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conic obtained from the point equation of the hyperboloid, computed systematically using the
procedure outlined in (MECH576)H1S5Bi.mws, is identical to that obtained with the three points
where the three given lines intersect the absolute plane ω and two of the three tangent lines on
ω. Furthermore the three eigenvectors of the absolute conic will be revealed as principal axis lines
whose three absolute points of intersection are on the conic axes that can be determined with
these and the quadric’s centre.

2.2 Quaternion from Unit Cartesian Axis Triads

After finding centre and principal axes of a quadric the task to diagonalize the coefficient matrix
yet remains. Consider the origin centred quadric and examine Fig. 2.

m1

m2

m 3

x

e 1

y

z

e 2e 3

a

d 1

d 2

d 3

O

b 2

b 3

b 1

Figure 2: Rotation Axis and Cartesian Triads

The unit vectors of the Cartesian frame axes are x, y and z.

x =

 1
0
0

 , y =

 0
1
0

 , z =

 0
0
1


Unit vectors in the respective direction of the eigenvectors are obtained as e1, e2 and e3 with
respect to the frame.

(Note that these are lines on the absolute plane so technically it is their three points of intersection that
actually represent absolute points on the three principal quadric axes and the axes themselves are defined
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on the quadric centre and the absolute points. Nevertheless since the absolute lines can be regarded as
mutually orthogonal planes on the centre, using the normalized eigenvectors instead is quite acceptable.
This shortcut may not be satisfactory in the case of quadrics not ruled by real lines.)

To get the quaternion elements we use the displacement vectors di, the rotation axis unit vector
a and the three vectors a cos α, a cos β, and a cos γ, on a so as to locate the normal vectors mi

from the rotation axis to the mid points of di. So we have

d1 =

 1− e1x

−e1y

−e1z

 , d2 =

 −e2x

1− e2y

−e2z

 , d1 =

 −e3x

−e3y

1− e3z


and

a =
1√

a2
x + a2

y + a2
z

 ax

ay

az

 =
d1 × d2

|d1 × d2|
= ± d2 × d3

|d2 × d3|
= ± d3 × d1

|d3 × d1|

Using the first product gives

a =

 e1ye2z + (1− e2y)e1x

e1ze2x + (1− e1x)e2x

(1− e1x)(1− e2y)− e1ye2x


√

a2
x + a2

y + a2
z

Axis direction cosines can be written now.

cos α = a · x = [e1ye2z + (1− e2y)e1x]/
√

a2
x + a2

y + a2
z

cos β = a · y = [e1ze2x + (1− e1x)e2x]/
√

a2
x + a2

y + a2
z

cos γ = a · z = [(1− e1x)(1− e2y)− e1ye2x]/
√

a2
x + a2

y + a2
z (20)

note that b1 = (a · x)a, b2 = (a · y)a, b3 = (a · z)a in Eq. 21, below.

Vectors mi are required before the rotation half-angle φ
2

can de determined.

m1 = e1 +
1

2
d1 − b1, m2 = e2 +

1

2
d2 − b2, m3 = e3 +

1

2
d3 − b3 (21)
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