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Abstract

An evaluation of the accuracy indices is looked at when applied to Parallel Planar
Robots. Planar parallel robot accuracy indices are evaluated because such robots are popular in some industrial applications where quick, precise positioning and alignment are important. Parallel robots are increasingly being used in industry for precise positioning and alignment. They have the advantage of being rigid, quick, and accurate. With their increasing use comes a need to develop a methodology to compare different parallel robot designs. However no simple method exists to adequately compare the accuracy of parallel robots. Certain indices have been used in the past such as dexterity, manipulability and global conditioning index, but none of them works perfectly when a robot has translational and rotational degrees of freedom applied to both translational and rotational motion. In a direct response to these this problems, this thesis presents a simple geometric method for computing the exact local maximum position error and maximum orientation error, given the actuator displacement inaccuracies. This new method gives a clear, quantitative way to evaluate planar parallel robots. This method is shown to works well when applied to for a class of three-degree-of-freedom planar fully-parallel robots, whose legs each have each one passive revolute joint and two prismatic joints. 
Resumé
Cette thèse présente un analyse des indices d'exactitude appliquée aux robots planaires parallèles. Des robots parallèles sont utilisés plus dans l'industrie pour leur précision de position et d’alignement. Les robots parallèles ont l'avantage d'être rigides, rapides, et précis. Avec leur utilisation croissante vient un besoin de développer une méthodologie pour comparer différentes conceptions parallèles de robot. Aucune méthode simple existe pour comparer en proportion l'exactitude des robots parallèles. Certains index ont été employés dans le passé comme tel que la dextérité, le manipulabilityé et l'index de traitement global, mais aucun d'eux ne fonctionne parfaitement quand on l’applique appliquée à un robot qui a des degrés de liberté de translation et de rotation. En réponse direct à ces problèmes, cette thèse présente une méthode géométrique simple pour calculer l'erreur maximum locale exacte de position et l'erreur maximum d'orientation, bases sur des inexactitudes de déclencheur. Cette nouvelle méthode donne une manière claire et quantitative d'évaluer les robots parallèles planaires. Cette méthode fonctionne pour une classe des robots plein-parallèles planaires de trois-degré-de-liberté, dont les jambes ont chacun un joint passif de à roteuil revolute et deux joints à tiroir prismatiques.
Acknowledgements
I would like to thank my two supervisors who have helped me work with through difficult times in preparing this difficult time for my Master’s thesis. It was not easy to find the time to complete do research while working from first part-, then to full-time. It was Prof. Zsombor-Murray who first introduced me to robotics and geometry,. and it was there I wanted to learn about these two subjects. It was Prof. Ilian Bonev who gave me the projects that helped peak piqued my curiosity in this for the subject at hand and he helped me learn how to write papers. It also gave me an opportunity to bridge combine the respective strengths of two schools, that like the two Canadian solitudes are were very different, like Canada itself to work together for a single in my project. Both of My these Professors gave me the complementary tools to make this thesis possible.
I would also like to thank Mr. Luc Bilodeau, the engineer who helped design the prototype final design of our new parallel robot and Mr. Thomas Latraverse for making the connections to make the robot motion move and record on video recording interfaces. Without their efforts contribution I would never see the design of this robot design-to-prototype metamorphosis would not have not come to pass life.
Finally, I’d like to thanks to all my colleagues who have helped me in the CIM labs and the labs at ETS, most notably Yu Jia Yuan who kept my spirits up at CIM and Sultana Ahamed who did the same at ETS.
Table of Contents

Abstract
ii
Resumé
iii
Acknowledgements
iv
Chapter 1
1
Introduction
1
1.1
Thesis Subject development
1
1.2
Thesis Overview
2
Chapter 2
4
Parallel Robot Designs
4
2.1
ETS Parallel Robot
4
Figure 2.1 ETS Parallel Robot
6
2.2
Hephaist Parallel Robot
6
Figure 2.2 Hephaist Robot commercially available
7
2.3
Star Triangle Parallel Robot
7
Figure 2.3 Star Triangle Robot
8
Chapter 3
9
Direct and Inverse Kinematics
9
Figure 3.1-3.2 ETS and Hephaist Planar Robot Geometric Representations
9
Figure 3.3 Star Triangle Geometric Representation
9
3.1 ÉTS Parallel Robot
11
3.2
Hephaist’s Parallel Robot
12
3.3
Star-Triangle Parallel Robot
13
Figure 3.4 Star Triangle Direct Kinematics, the Fermat point
14
3.1.1
Alternate Method for Calculating Inverse Kinematics
16
Figure 3.5 Alternate Method for Inverse Kinematics Calculation
16
Chapter 4
19
The Jacobian
19
4.1
ETS Parallel Robot
19
4.2
Hephaist Parallel Robot
20
4.3
Star Triangle Parallel Robot
20
Chapter 5
22
Dexterity Analysis
22
Figure 5.1-5.3 Dexterity Plots of the ETS, Hephaist and Star Triangle Robots
23
Chapter 6
26
Constant-Orientation Workspace Analysis
26
Figure 6.1-6.2 Workspace Limits of the ETS and Hephaist robot
27
Figure 6.3 Workspace of the Star Triangle Robots
28
Chapter 7
29
Geometric Error Analysis
29
7.1
ÉTS Parallel Robot
29
Figure 7.1 Geometric Error Analysis of the ETS robot
29
7.1.1
Maximum Orientation Error
29
Figure 7.2 Orientation Error Analysis of the ETS robot
30
Figure 7.3 Orientation Error Vs. Orientation Angle ETS Robot
31
7.1.2
Maximum Position Error
31
Figure 7.4 Maximal Error vs Orientation Angle
33
7.2
Hephaist’s Parallel Robot
33
7.2.1
Maximum Orientation Error
33
7.2.2
Maximum Position Error
33
Figure 7.5 Maximal Positional Error of the Hephaist Parallel Robot
34
Fig. 7.6: Contour Plots of the Maximum Position Error of Hephaist’s Parallel Robot for (a) 
[image: image1.wmf]0

q

=°

 and (b) 
[image: image2.wmf]15

q

=°

.
35
7.3
Star-Triangle Parallel Robot
35
7.3.1
Maximum Orientation Error
35
Figure 7.7 Orientation and Maximal Position Error of the Star Triangle Robot
36
7.3.2
Maximum Position Error
37
Fig. 7.8: Contour Plots of the Maximum Position Error of the Star-Triangle Parallel Robot for (a) 
[image: image3.wmf]0

q

=°

 and (b) 
[image: image4.wmf]15

q

=°

.
38
Chapter 8
39
Conclusion
39
References
40





Chapter 1

_______________________________________________________________________
Introduction

This thesis is the an investigation of various indices, such as dexterity index, methods used for evaluating the to evaluate accuracy of parallel planar robots, such as the dexterity index. An analysis of the dexterity index, when applied to parallel planar robots, leads led to the conclusion that it is not well suited to this purpose. of its deficiencies when applied to this type of robot. Thus a new geometric error analysis method was devised, and implemented. and its Results in this thesis shown it to be a superior way as an applicable method to calculate the quantify accuracy of planar parallel robots. The method was tested on three basic typical PRP parallel robots. Note that P=prismatic and R=revolute joint while, e.g, P indicates an actuated joint.
1.1 Thesis Subject development
Optimization of robots has been researched for some time. since In1991, by Prof. J. Angeles and Prof. C. Gosselin [1], as a devised means to evaluate different architectures and to try to optimise its designs.  This led to the dexterity index and the global conditioning index for evaluating robots as reported show in [2].  Such an index has indices have been used exclusively on serial robots, rather than planar parallel ones.
However since planar parallel robots have been playing an expandeding role in industry and are an active subject of investigation in the academic field there needs to be needed an evaluation of these methods when applied to Planar Parallel Robots.  Only as recently as since 2005 hasve papers investigators looked seriously at the subject of dexterity indices and planar parallel robots, e.g., [5,6,9]. Such an Evaluations continued in 2006 with J.P. Merlett’s contribution [5], which discussed the drawbacks of applying these indices onto parallel robots. This was further explored by actually applying the dexterity index to three very comparable similar parallel robot architectures shown in [4]. This evaluation showed that the dexterity indicexs number could not accurately show the dexterity as stated previously this property was defined in [5].

With this in mind a new method for evaluating the inaccuracy of planar parallel robots was devised using geometric modeling to find the maximum positional and orientation error for a given actuator inaccuracy. The development of this new method will hopefully gives meaningful evaluation criteria to compare different robot architectures of robots. This can be used to help designers either optimise their designs, or to compare existing ones evaluate different robot architectures.
1.2 Thesis Overview

In Chapter 2 the three planar robots that are investigated in this paper will be introduced including a small section on the design of each of them robots.

In Chapter 3 observes describes the direct and inverse kinematics analysis of these robots.
In Chapter 4 introduces the velocity analysis and the Jacobian Matrix. In is These are then applied to the three robots under investigation.

In Chapter 5 applies dexterity index analysis to each of these robotic system. Its and results are will be displayed.

Chapter 6 introduces workspace analysis which wais the basis of this our new method

Chapter 7 Displays shows that our geometric error analysis method is as a valid way to analyze method of analyzing the accuracies of planar robots.

Chapter 8 contains conclusions drawn from and proposed extensions to the research reported in this thesis. will conclude the thesis and mention any more works in the future.
Chapter 2
________________________________________________________________________
Parallel Robot Designs

2.1 ETS Parallel Robot

The proposed architecture is a parallel robot with two PRP legs and one PPR leg (P and R stand for passive prismatic and revolute joints, respectively, while P stands for an actuated prismatic joint). The directions of the actuators in the PRP leg are parallel to the y axis, while the direction of the actuator in the PPR leg is parallel to the x axis. The two passive prismatic joints on the mobile platform have parallel directions and the centers of the three revolute joints are collinear. The directions of the two prismatic joints in the PPR leg are normal. Consequently, if as shown in Fig. 3., It comprises three linear guides obtained from LinTech (two are from 130 series and one from the 100 series). Each guide is screw-driven with a repeatability of 2.5 (m. The two LinTech 130 series linear guides will be elevated are supported on steel blocks to allow the LinTech 100 series linear guide to run below them. Each of the two 130 series linear guides will have a pivoting block attached onto the carriage. A steel rod will be is rigidly attached to one of the two pivoting blocks and, through a linear bearing, to the other pivoting block. The mobile platform will slides along this rod though another linear bearing. The carriage of a monorail guide will be is attached to the carriage of the LinTech 100 series linear guide, so that the two guides are perpendicular. The monorail guide will be is fixed to the tapered block, which holds a large bearing that is attached to the mobile platform.

Note that the LinTech 100 series linear guide has a wider carriage and a much higher loading capacity (1400 kg compared to 90 kg, for the 130 series), minimizing the deflection that would occur when the mobile platform is at its extreme position in y. Overall, this mechanical design provides high rigidity in all directions and particularly in the z direction (normal to the plane of motion).
The motors that will drive the linear guides are three identical Danaher Motion AKM22G servo motors, NEMA 23 size. Servo motors were chosen because they have excellent stiffness capabilities, to allowing for quick starts and stops. Servo motors also respond quickly have quick responses to control signals, making it them ideal for this sort of application. No gears but boxes will be used, since we will use Acme precision (5.08 mm lead) ball screws of 0.2 in lead are used. The drives that will be used are Elmo 4A Harmonica.

Finally, the 100 series and the two 130 series linear guides will have can travel lengths of 203.2 mm 8 in and 304.8 mm12 in, respectively. The distance s, as defined in Fig. 2a, is about 320 mm17 in. As a result, the mobile platform can rotate up to ±35º and translate within inside a rectangle rectangular area of 8 in by 12 in 200(300 mm (when at 0º). The mobile platform is 6.5(6.5 in 165(165 mm and the bottom plate is 20(20 in 500(500 mm.

This particular design also has the advantage of being partially-decoupled in addition to offering great providing firm support to the mobile platform. The advantage of being partially decoupled is that the mobile (…… ???). 
[image: image5.jpg]



Figure 2.1 ETS Parallel Robot
2.2 Hephaist Parallel Robot

Hephaist Seiko, a company in Japan, has opted for a parallel robot solution for micro-positioning (Fig. 1). The company has made an innovative positioning table that utilizes a 3-PRP parallel architecture that allows all of its linear actuators to be base-mounted (P and R stand for prismatic and revolute joints, respectively, and an underline indicates which joint is actuated). The resulting positioning table is very rigid since the mobile platform is directly supported by the actuators base actuated. However, this design has the problem of being highly is fully coupled,. meaning that tTo move in certain directions all three actuators must work in conjunction move.
[image: image6.png]



Figure 2.2 Commercially Available Hephaist Robot
2.3 Star Triangle Parallel Robot

The Star-Triangle parallel robot, another 3-PRP parallel robot designed at LIRMM in France, that is very similar to the Double Triangular parallel manipulator introduced found in [6]. The configuration of this planar parallel robot can be classified as a Star-Triangle configuration was shown to be which they proved superior to the Double Triangular version in [6]. This improved architecture was devised in accordance to the following constraint:

· Equialangular spacing between the guideways on the base and the travelling plate.

3 Three planar actuators are placed to form a “fixed triangle” as the base. The end effector is composed of a travelling plate which is formed in a star configuration formation whose joints form a unique PRP connection.
This design is also as highly coupled as the Hephaist model. as iIt can be seen, that to move in certain directions, here too all actuators must move work in conjunction. 

[image: image7.jpg]



Figure 2.3 Star Triangle Robot
Chapter 3

_______________________________________________________________________
Direct and Inverse Kinematics
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Figure 3.1-3.2 ETS and Hephaist Planar Robot Geometric Representations
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Figure 3.3 Star Triangle Geometric Representation
Referring to Figs. 3.1-3.3, a base reference frame Oxy is fixed to the ground and defines a plane of motion for each planar parallel mechanism. Similarly, a mobile moving reference frame Cx’y’ is fixed to the mobile platform and in the same plane as Oxy. Let Ai be a point on the axis of the revolute joint of leg i (in this paper, i = 1,2,3) and in the plane of Oxy.

Referring to Figs. 3.1-3.2 the base y axis is chosen along the path of motion of point A2, while the mobile x ’ axis is chosen along the line A2A3. In Fig. 3.1, the origin C coincides with point A1, while in Fig. 3.2, the origin C is placed so that point A1 moves along the y ’ axis. For both robots, s is the distance between the parallel paths of points A2 and A3, while in the Hephaist’s alignment stage, h is the distance between the base x axis and the path of point A1.
Referring to Fig. 3.3, let points Oi be located at the vertices of an equilateral triangle fixed in the base. Let the origin O of the base frame coincide with O1, and let the base x axis be along the line O1O2. Let also the origin C be at the intersection of the three concurrent lines in the mobile platform, along which points Ai move. These three lines make up are at equal angles. Finally, the mobile y ’ axis is chosen along the line A1C.
Let 
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 be the active-joint variables representing directed distances, defined (Either italicize E in ETS as before and include the accent  É everywhere or not. Be consistent.)
 as follows. For the ÉTS robot and Hephaist’s alignment stage (Fig. 3.1 and 3.2), 
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 is the directed distance from the base y axis to point A1, while 
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 are the directed distances from the base x axis to points A2 and A3, respectively. Finally, for the Star-Triangle robot (Fig. 3c), 
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 is the directed distance from Oi to Ai minus, a constant positive offset d. Indeed, in the Start-Triangle robot, no mechanical design would allow point Ai to reach point Oi.

3.1 ÉTS Parallel Robot

Given the active-joint variables, it is straightforward to uniquely define the position and orientation of the mobile platform. The orientation angle is easily obtained as
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while the position of the mobile platform is given by
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As one can observe, the direct kinematics of the ÉTS parallel are very simple and partially decoupled.

The inverse kinematic analysis is also trivial. Given the position and orientation of the mobile platform, the active-joint variables are obtained as
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Obviously, the ÉTS parallel robot has no singularities (provided that s is non-zero).

3.2 Hephaist’s Parallel Robot

Given the active-joint variables, it is simple to uniquely define the position and orientation of the mobile platform. The equation of the orientation angle is the same as Eq. (3.1.1). The position of the mobile platform is the intersection between line A2A3 and the line passing through point A1 and normal to A2A3. The resulting equations for x and y are therefore: 
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As one can observe, the direct kinematics of Hephaist’s parallel robot are more complex and highly coupled.

The inverse kinematics are easier to solve for. Given the position and orientation of the mobile platform, the active-joint variables are obtained as
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Since Eqs. (7–11) are always defined (assuming 
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), it is evident that this parallel robot too has no singularities. Note, that this is quite an advantage over most planar parallel robots, which usually have many more singularities within their workspace.
3.3  Star-Triangle Parallel Robot
Given the active-joint variables, we are able to uniquely define the position and orientation of the mobile platform through this direct kinematic method used in [3.2.8]. Referring to Fig. 4, the position of C can be easily obtained through the following geometric construction based on the notion of the first Fermat point, defined below (and the fact that for the given joint limits, (….. ???) 
Since in triangle A1A2A3, none of the angles is greater that 120° (because points Ai cannot move outside the sides of triangle O1O2O3), equilateral triangles are drawn externally outside of it. The outermost vertices of these triangles are denoted as Qi (see Fig. 4). Then lines QiAi make 120° angles and intersect at one point, the so-called first Fermat point. This point is the mobile frame’s origin at C.

While there is only one solution for the position of the mobile platform, there are two possibilities for the orientation angle ((  and ( +180°). Obviously, however, only one of these two solutions is feasible (the one for which  
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Figure 3.4 Star Triangle Direct Kinematics, the Fermat point

To find the coordinates of point C and the orientation angle θ, the following simple calculations need to be performed. Let 
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 is the vector connecting point O to point Ai. Therefore, it can be easily shown that vector 
[image: image32.wmf]i

q

 can be written as:
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where
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and (i, j, k) = (1, 2, 3) or (2, 3, 1) or (3, 1, 2). Now, taking lines A1Q1 and A2Q2 for example, their intersection point is C and has the following coordinates:
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The orientation of the mobile platform can be found by measuring the angle between line A1C and the base y axis:
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The inverse kinematics of this device is also easily solved for. Let 
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 be the vector connecting the base origin O to the mobile frame origin C, bi be the unit length along OiAi and pi be the unit length along CAi. Then, it can be easily shown that
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where d is the offset between the vertices of triangle O1O2O3 and the initial positions of the corresponding linear actuators (see Fig. 3.4).
3.1.1 Alternate method for calculating inverse kinematics
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Figure 3.5 Alternate method for inverse kinematics calculation
This alternate method makes use of the techniques discussed in [17], using screw theory to determine a robot’s inverse kinematics. This method is well suited for coding as opposed to a direct geometric method. Referring to Figure [3.5], Oi  is the coordinates of the fixed triangle.
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 is the vector connecting the fixed triangle (O) and C, the end effector. 
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is the orientation angle of the actuators on the fixed and moving triangles respectively. 
In the Double Triangular case only one directional moment exists, because all other moments pass through the point of rotation resulting in their value being 0. 
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Wwhere L is the maximum length the actuator can travel. Also in this case
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From here it can be stated for the general case:
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Aand
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Solving these two equations yields the following:
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and
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With equation 3.3.23 a solution for ρ can be found uniquely.
Chapter 4

_______________________________________________________________________
The Jacobian
The vVelocity equations are essential for determining the precision of a  positioning device, even if the velocity of the mobile platform is not needed. These equations define invoke the Jacobian matrix which can be used to find useful information such as local and global dexterity. The Jacobian matrix is defined as follows: (Fix up rho-dot and q-dot in (4.1.24).)
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where
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4.1 ETS Parallel Robot

By differentiating the inverse kinematic equations of ETS robot (3.1.4-3.16), the following is obtained for its Jacobian:
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Note that the Jacobian of our robot is dependant on only θ and x. That is due to the fact the robot is partially-decoupled.

4.2  Hephaist Parallel Robot

By differentiating the inverse kinematic equations of Hephaist’s robot (3.2.9–3.2.11), the following is obtained for its Jacobian:
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4.3  Star Triangle Parallel Robot

The Star Triangle Parallel Robot will introduce a different method to calculate the Jacobian. While one could take the derivative of the inverse kinematic equation found above the result will be quite involved. Instead by finding the derivative of the kinematic equations for the general case of PRP manipulators an alternate method was used to find the Jacobian. This method was demonstrated in [8], [17] and uses the variables defined in chapter 3.3.2. The general equation for velocity [16] is defined as:
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Using the screw method and defining ω as the angular velocity of see the following is obtained:
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If this equation is written in matrix form the following is obtained:



[image: image57.wmf]()

i

BBBOO

iACiiii

x

y

q

ppppr

^^

éù

êú

éù

-=

êú

ëû

êú

ëû

r

&

&

&

&


(4.3. AUTONUM  \* Arabic )
Wwhere
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Aand
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Wwhich can be written as: 
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Wwith
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Thus a contour plot can be generated calculated by finding the Z and ζ, by substituting values for x, y, and θ into the above equations.

Chapter 5
_______________________________________________________________________
Dexterity Analysis
Dexterity analysis can be applied to the system using with the Jacobian matrix. Dexterity is defined as the capability of the robot to make accurate movements and is a measure of its kinematic accuracy [2]. To characterize the accuracy of a robot’s dexterity a performance index was established based on the Jacobian matrix. The Jacobian matrix is used because it is the linear transformation between Cartesian and actuator velocities. The local dexterity is the quality of that trans-formation. Dexterity index will be defined as:
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where
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It is well known, that the dexterity index defined in the above this way is not frame invariant since it depends on both position and orientation parameters. Even for purposes of comparison, this index will give varied inconsistent results even Iif the same physical design parameters dimensions are applied to a in Hephaist’s, Star-Triangle and or our ÉTS parallel robot. Namely I.e., we use using s = 700mm, h = 500mm (Use a space 500 mm or not. Be consistent.) and pre-sent consider the two typical dexterity plots in Figs. 5.1-5.3, with θ =0.
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Figure 5.1-5.3 Dexterity plots of the ETS, Hephaist and Star Triangle Robots
According to this index it is clearly showns that the Star-Triangle device is superior to both the Hephaist and ETS robots, however the index should not be used in this fashion. When the authors designed a new three-degree-of-freedom (3-DOF) planar parallel robot, they compared it to a similar design using the dexterity index [4]. This comparison was somewhat fair, because the designs allow the use of identical dimensions. The Star Triangle device is not of similar design (though they are similar kinematically), to that of Hephaist and the ETS robots. The values do and can change with the magnitude of the units used (e.g., from cm to mm). The orientation angle also affects numbers within the index exponentially. The index also varies exponentially with orientation angle.(?) 
The dexterity indices are very sensitive to parameter and dimension both the type of units used and their magnitudes because of their dependence on the Jacobian matrix. This matrix also mixes non-invariant functions such as translational and rotational capabilities. A possible solution to this problem is the addition of condition numbers, however with each condition number there are particular problems as described in [1].

The global conditioning index (GCI) can be used to evaluate a robot throughout over its own workspace, which and so it can be used for the optimal design of a specific robot. However, there remain two problems with this index. Firstly, it is still dependant on a condition number whose problems were outlined in [1]. Secondly, it is computationally intensive. Thirdly this conditioning index is not practical when applied to industrial robots, because its their efficiency efficacy should be evaluated in general case and not in a under certain conditions as shown in the one does when applying dexterity analysis.
Obviously, the best accuracy measure for industrial parallel robots would be the local maximum position and maximum orientation errors, given actuator inaccuracies or some generalization of this (e.g., mean value and variance of the errors over a specific workspace). A general method for calculating these errors based on interval analysis was proposed recently in [5]. However, this method is computationally-intensive and gives no kinematic insight into the problem of optimal design.

In contrast, the next chapter in this paper thesis presents a simple geometric method for computing the exact local maximum position and maximum orientation errors for a class of three-degree-of-freedom planar fully-parallel robots, whose legs have each one passive revolute joint and two prismatic joints. This class of robots is arguably the best candidate for micro-positioning over a relatively large workspace. The proposed method is not only faster than any other method (for the this particular class of parallel robots) but also brings valuable kinematic insight.
Chapter 6

_______________________________________________________________________
Constant-Orientation Workspace Analysis
There exists a simple geometric method for computing the constant-orientation (position) workspace of planar parallel robots [9]. Although, calculating the constant-orientation workspace for the all three robots is not necessary for computing the accuracy of these robots, this workspace analysis shows that there is no simple relationship between accuracy and workspace shape and dimensions.

 To allow for fair comparison, it will be assumed that the only limits restraining that constrain the workspace of the robots are the actuator limits. Under these conditions, the constant-orientation workspaces for all three planar parallel robots can be easily obtained geometrically, as shown in Fig. 6.1-6,2, where the constant-orientation workspaces for a given orientation are shown as the hatched regions.
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Figure 6.1-6.2 Workspace limits of the ETS and Hephaist robot
From here, it is obvious that the constant-orientation workspace of the ÉTS parallel robot is greater than the constant-orientation workspace of the Hephaist’s robot, for any non-zero orientation. Furthermore, the constant-orientation workspace of the ÉTS parallel robot is always centered between actuators 2 and 3, while the location of the constant-orientation workspace of Hephaist’s robot is highly operational point position dependent, e.g., the clearly visible rigid connection on the T-Link or some other convenient or task-dictated point on the end effector. hugely varying. This means that the region in which each point is accessible with at least one orientation in a given range,
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, is much larger for the ÉTS parallel robot. However, the so-called maximal workspace (the set of all attainable positions) is much greater for the Hephaist’s parallel robot. 
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Figure 6.3 Workspace of the Star Triangle Robots
Unfortunately, Fig. 6.3 does not show clearly whether the constant-orientation workspace of the Star-Triangle parallel robot is larger than that for the other two robots, because the orientation is not the same, nor are the limits of the actuators. In fact, for the zero orientation, the constant-orientation workspace of the ÉTS parallel robot is larger than that of the Star-Triangle parallel robot, but beyond some orientation angle, the situation is reversed. However, it is clear that the maximal workspace of the Star-Triangle parallel robot is greater than that of the ÉTS parallel robot (which is a square whose sides are defined by is the actuators travel).

Intuitively, the larger is the maximal workspace of a robot is, the smaller is its positioning accuracy. But if only maximum position errors are considered (as done in the case of this paper thesis), then it is not the area of the maximal workspace that defines accuracy but its extreme dimensions, as it will be seen in the next section.
Chapter 7

_______________________________________________________________________
Geometric Error Analysis
7.1 ÉTS Parallel Robot
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Figure 7.1Geometric Error Analysis of the ETS robot
7.1.1 Maximum Orientation Error
Referring to Fig. 7.1, it is obvious that the maximum orientation error does not depend on the nominal position of the mobile platform and occurs when actuators 2 and 3 are at 
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Figure 7.2 Orientation Error Analysis of the ETS robot
analytically for the orientation error, a simple system of similar right triangles should can  be analyzed. The triangles are derived from two situations, where 



[image: image74.wmf]1

32

1

tan

s

e

rere

qq

-

-±

æö

=-

ç÷

èø

m

. 
(7.1. AUTONUM  \* Arabic )

iIt can be shown that the maximum orientation angle is
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where (  is the nominal orientation angle.
Fig. 7.3 shows a plot of the maximum orientation error of the ÉTS parallel robot as a function of nominal orientation. Obviously, it shows clearly that when 
[image: image76.wmf]q

 increases, 
[image: image77.wmf]e

q

decreases.
[image: image78.emf]0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3



 





e

 (10

-

3



)


Figure 7.3 Orientation Error Vvs. Orientation Angle ETS Robot
7.1.2 Maximum Position Error
Referring again to Fig. 7.1, the hatched area is the maximal workspace for the considered ranges of the active-joint variables: 
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. Indeed, this is the region where point C can be located. Its geometric computation [9] is fairly simple for 3-DOF parallel robots whose legs have two prismatic joints and one revolute joint. The boundaries of the maximal workspace are the curves described by point C, when two actuators are at a their limit. Note that for a general 3-DOF planar parallel robot, the boundaries of the maximal workspace may also include the curves for which a leg is at a singularity, which complicates the computation. Fortunately, however, none of the legs of all three parallel robots considered in this paper can be singular (without i.e., requiring disassemblying of the robot).

To find the maximum position error, the maximum distance between the nominal position and the boundary of the maximum workspace should be found. This would be very difficult to do analytically for a general 3-DOF planar parallel robot, where the boundaries of the maximal workspace could be segments of ellipses or even sextics curves. However, for 3-DOF planar parallel robots whose legs have two prismatic joints and one revolute joint, the boundaries are circles (or even lines). And sSince the centers of thisese circles are obviously outside the maximal workspace (ε is very small compared to the actuators’ stroke), the maximal position error occurs at one of the corners of the maximal workspace, i.e., when three actuators are at a their limit. Therefore, only eight possibilities (eight corners) should be checked for each nominal position and orientation of the mobile platform. 

For the ÉTS parallel robot, however, the maximal workspace is a parallelogram, and the maximum position error δmax is half its larger diagonal as shown in figure 7.1. Therefore, the following simple equation holds for the maximal position error of the ÉTS parallel robot:
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Note that the maximum position error of the ÉTS parallel robot does not depend on the dimensions of the robot (the actuators’ stroke and the distance s). A plot of this error as a function of 
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 is shown in Fig 7.4.
[image: image82.emf]0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

70

71

72

73

74

75

76

77

78

79

80

81

82



 



Error (



m)


Figure 7.4 Maximal Error vs Orientation Angle

7.2  Hephaist’s Parallel Robot
7.2.1 Maximum Orientation Error
The analytic expression for the maximum orientation angle of the Hephaist’s parallel robot is obviously the same as the one for the ÉTS parallel robot, i.e., Eq. (7.1.37).
7.2.2 Maximum Position Error
The boundaries of the maximal workspace of the Hephaist’s parallel robot are arcs from of four circles and segments from of two lines (Fig. 7.5). It can be observed that the maximum position error occurs when a maximum orientation error is present. Therefore, it is easy to see that only two configurations need to be tested to find the maximum position error: 
[image: image83.wmf]1

re

-

, 
[image: image84.wmf]2

re

+

, 
[image: image85.wmf]3

re

-

 and 
[image: image86.wmf]1

re

+

, 

[image: image87.emf]δ

m

a

x

s

ε

ε

ε

ε

ε

ε


Figure 7.5 Maximal Positional Error of the Hephaist Parallel Robot
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. Upon further analysis it was determined that if ( is positive, then the maximum position error occurs at 
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. Essentially, only one computation is needed to find the maximum position error of the Hephaist’s parallel robot for a given nominal position and orientation of the mobile platform.

Though an analytic expression for this maximum position error can be found easily, it will not be derived here. For a given nominal position and orientation, one need only to solve the direct kinematics for the right appropriate combination of active-joint variables and calculate the distance between the nominal position and the new position. Using this procedure, a contour plot for the maximal positional error versus nominal position and for two given constant orientations can be obtained (Fig. 7.6).

[image: image94.emf]55

55

60

60

60

65

65

65

65

70

70

70

70

75

75 75

75

80

80

80

80

85

85 85

85

90

90 90

90

95

95

95

95

100

100

100

105

105

105

110

110

110

115

115

115

120

120

120

125 125

x (mm)

y (mm)

0 100 200 300 400 500 600 700

0

100

200

300

400

500


[image: image95.emf]50 50 55

55

55 60

60

60

60

65

65

65

65

70

70

70

70

75

75 75

75

80

80

80

80

85

85

85

85

90

90

90

90

95

95 95

95

100

100

100

105

105

105

110

110

110

115

115

115

120

120

x (mm)

y (mm)

0 100 200 300 400 500 600 700

0

100

200

300

400

500



(a)
(b)

Fig. 7.6: Contour Plots of the Maximum Position error of Hephaist’s Parallel Robot for (a) 
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Figure 7.6 clearly shows that as the mobile platform of the Hephaist’s parallel robot moves away from its maximum y-distance height, the maximum position error increases significantly. It is also evident that, overall, the Hephaist’s parallel robot has a larger maximum position error thant the ÉTS parallel robot.
7.3  Star-Triangle Parallel Robot

7.3.1 Maximum Orientation Error
Intuitively, the maximum orientation error occurs for 
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Numerical analysis shows that within the workspace of the Star-Triangle parallel robot, the maximum orientation error is nearly the same, for any nominal position and orientation. Therefore, instead of showing a contour plot, or even a curve, only the mean value and the variance are given here for the maximal orientation error:
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Note that it is quite possible that the (You don’t state the imposed actuator error tolerance here. Shouldn’t it be stated? Do you mention it elsewhere? Is there some way to conveniently non-dimensionalize it, e.g., say, some % of some maximum dimension? Maybe actuator stroke or angle –in the case of an actuated revolute joint- would be appropriate.) maximum orientation error is only a function of the nominal orientation angle 
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, which would explain the virtually zero why variance is negligible. Further analysis is needed to verify this interesting hypothesis, which would greatly simplify enormously the computation of the maximum orientation angle.

It should be noted that the maximum orientation error for the Star-Triangle parallel robot is almost double the maximum orientation error of the other two parallel robots.
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Figure 7.7 Orientation and Maximal Position Error of the Star Triangle Robot

7.3.2 Maximum Position Error
As already mentioned, the maximum position error would occur when all actuators are at extreme positions (the corners of the maximal workspace, as shown in Fig. 7.7). While probably there might be a way to discard some of the eight possible configurations, one can simply test all of them, without much worrying about incurring much computation time. Indeed, for each of the eight configurations, the corresponding position is obtained through the trivial direct kinematic equations (3.3.17). Then the distance between this position and the nominal position is calculated, and the greatest of all eight distances is the maximal position error.

The contour plots for the maximal position error of the Star-Triangle robot (Fig. 7.8) clearly show that its average maximal position error is similar to that of the ÉTS parallel robot. This, however, is not what the dexterity plots in Fig. 5.1 -5.3 suggest, which illustrates how dexterity is inadequate as a measure for accuracy.
Clearly, a more detailed comparison should be based on the mean value and variance of the maximum positioning and maximum orientation angles, over a specific workspace. Since these devices robots are most probably aimed at used for  micro-electronic silicon wafer alignment, such a relevant workspace may be a circular area of diameter 300 mm in which any orientation in the range ±5° is possible. However, this is not the subject of this paper thesis so it will not be pursued further and will not be presented here. 
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Fig. 7.8: Contour plots of the maximum position error of the Star-Triangle parallel robot for (a) 
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Chapter 8

_______________________________________________________________________
Conclusion

This paper is in direct response to the failure perceived deficiencies of classical accuracy indices, such as the various local dexterity indices, in dealing with parallel robots with translational and orientational degrees of freedom, in the context of optimum design or comparison. Instead of using non-physical notions such as dexterity, this thesis proposes a simple geometric method for determining the exact maximum position error and maximum orientation angle caused by actuator inaccuracies, at a given nominal position and orientation. Obviously, this method can also provide the maximal linear velocity and the maximal rotational velocity.

This method is applicable works only for to three-degree-of-freedom planar fully-parallel robots, whose legs are each configured with made of one passive revolute joint and two prismatic joints each. However, this class of robots is certainly the best candidate for micro-positioning and alignment. The authors illustrates the proposed geometric method with to three particular designs, one of which is being commercially available. A simple comparison reveals its major disadvantages. for of the commercially availably design.
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