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Abstract – This paper describes an underwater walking 
robotic system being developed under the name AQUA, the 
goals of the AQUA project, the overall hardware and 
software design, the basic hardware and sensor packages that 
have been developed, and some initial experiments.  The 
robot is based on the RHex hexapod robot and uses a suite of 
sensing technologies, primarily based on computer vision and 
INS, to allow it to navigate and map clear shallow-water 
environments.  The sensor-based navigation and mapping 
algorithms are based on the use of both artificial floating 
visual and acoustic landmarks as well as on naturally 
occurring underwater landmarks and trinocular stereo. 
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I.  INTRODUCTION 
Mobile robotics is frequently cited as being most 

appropriate for application domains that are costly, 
inconvenient, or inhospitable for humans to work in. The 
aquatic domain is an almost perfect fit. The environment is 
dangerous, and many tasks require long-term operation 
and significant depth. Mobile robotics is particularly well 
suited to underwater applications such as reef or pipeline 
inspection, fish stock surveillance, marine life observation 
and environmental disaster assessment.  

 
Many of these applications involve stationary 

observation. That is, although mobility is required to get 
the vehicle to the close proximity of the task, the task itself 
relies on the vehicle to maintain a constant pose (often 
near or on solid objects in the environment). Unlike the 
terrestrial domain, in which station keeping may be as 
simple as powering down the locomotion system, in the 
aquatic domain station keeping is a complex task. A 
thruster-driven aquatic robot must actively and continually 
control its thrusters and buoyancy in order to maintain its 
pose. In addition to the obvious energy consumption issue 
associated with this active station keeping, thrusters 
operated near the sea bottom may disturb sand and other 
debris, reducing the ability of sensors.  

A second issue with thruster-based aquatic vehicles is 
that these vehicles can only operate in the water. That is, 

they must be deployed and recovered from sufficiently 
deep water for the vehicle to be able to maneuver. 
Surveying/inspection in shallow water, or deploying the 
vehicle from the beach is not possible for traditional 
aquatic vehicles. 

 
In order to address these issues, we are developing an 

aquatic walking robot -- AQUA. Through an appropriate 
design of limbs for the vehicle, the vehicle’s legs can be 
used for both traditional walking locomotion strategies 
(either on land, or along the bottom of the aquatic 
environment), as well as to propel the vehicle through the 
water by swimming. 
  

Developing a walking aquatic robot requires the 
solutions to fundamental issues related to locomotion, 
sensing, navigation and reasoning. Many existing 
approaches to these classic robotic tasks are not directly 
applicable to the aquatic walking environment and some 
applicable techniques entail important new challenges in 
the aquatic domain.  

 
This paper describes the basic approaches that are being 

taken within the AQUA project to develop a fully 
autonomous walking aquatic vehicle. It describes the basic 
design of the locomotive and sensing hardware, and 
describes initial results in terms of vehicle locomotion and 
sensing. 

 

II. THE SASR TASK 
This Site Acquisition and Scene Re-inspection (SASR) 
task is fundamental to many underwater robotic tasks. A 
typical scenario in a SASR task is as follows. A robot is 
deployed near the site, in our case on a nearby beach. 
Under operator control or supervision, the robot walks out 
into the water and is controlled or directed to a particular 
location on the seabed where sensor measurements are to 
be made. (This may be the supposed location of some 
environmental incident, the location of known fish stocks 
that must be inspected periodically, or some similar task.) 



Once near the required site, the robot navigates to the 
selected location, where it utilizes its ability to move as a 
walking vehicle to achieve an appropriate pose from which 
to undertake extensive sensor readings over an extended 
time period. Once measurements are made, the robot then 
returns home autonomously. Later, the robot actively 
guides – and potentially controls – its motion to the 
previously visited site in order to collect additional data. 
One key target application we are examining relates to the 
regular inspection and monitoring of fragile marine 
ecosystems where unobtrusive observation over substantial 
time periods is appropriate. 
 

Solving the SASR task requires solutions to a number 
of scientific and engineering questions including problems 
of position and pose estimation in unstructured 
environments, underwater landmark recognition, robotic 
navigation, motion control, path planning, vehicle design, 
environment modeling and scene reconstruction, 3D 
environment exploration and autonomous and teleoperated 
control of an aquatic legged vehicle.  Here we describe 
some of the results to date in the search for solutions to 
these problems. 

 

III. THE HARDWARE 

A. The Vehicle 
AQUA is an aquatic robot capable of both legged and 

swimming motion (see Figure 1(a)). AQUA is based on 
RHex, a terrestrial six-legged robot developed in part by 
the Ambulatory Robotics Lab at McGill in collaboration 
with the University of Michigan, the University of 
California at Berkeley and Carnegie Mellon University [1] 
(see figure 1(b)). AQUA’s required capabilities are surface 
and underwater swimming, diving to a depth of 10m, 
station keeping and crawling at the bottom of the sea. For 
propulsion, the vehicle does not use thrusters, as do most 
underwater vehicles. Instead it uses six paddles, which also 
act as control surfaces during swimming, and as legs when 
walking. The paddle configuration gives the robot direct 

control over five of the six degrees of freedom that it has: 
surge (back and forth), heave (up and down), pitch, roll 
and yaw. An inclinometer and a compass onboard are used 
in the control of the robot’s motion underwater. 
The robot is approximately 65 cm long, 50 cm wide (at the 
fins), and 13cm high. It has an aluminum waterproof shell 
and displaces about 18 kg of water. A buoyancy control 
system is currently being developed, making the robot 
negatively, neutrally or positively buoyant. Even without 
active buoyancy control, vertical motions and adjustments, 
which have similar effects to buoyancy adjustments, can 
be accomplished using appropriate adjustments to the 
gaits. The robot is also equipped with a rail on which can 
be mounted the trinocular sensor package or the acoustic 
localization system (described below). The robot is power 
autonomous. Two onboard NiMH batteries provide over 
two hours of continuous operation. Signals from cameras 
mounted within the AQUA vehicle itself, from the sensor 
systems mounted on the robot, as well as the command and 
control output, are brought to a floating platform at the 
surface via a fiber optic tether. A wireless link exists 
between the platform and a shore-based operator.  The 
operator uses the information from the onboard cameras 
and from the command interface to control the robot by 
means of a game pad joystick. Presently, the robot is not 
fully autonomous, but partial autonomy is planned for the 
immediate future. 
 

B. Trinocular Sensor Package 
Due to the inherent physical properties of the marine 

environment, vision systems for aquatic robots must cope 
with a host of geometrical distortions: colour distortions, 
dynamic lighting conditions and suspended particles 
(known as 'marine snow'). The unique nature of the aquatic 
environment invalidates many of the assumptions of 
classic vision algorithms, and solutions to even simple 
problems -- such as stereo surface recovery in the presence 
of suspended marine particles -- are not yet known.  

 

(a) The robot at sea (b) Sketch of the robot with legs (c) Robot with diver 
Figure 1. The AQUA robot. (a) shows the robot swimming over a coral reef. The vehicle has six fins (or legs), which can 
be independently controlled. Here the vehicle is swimming up towards the surface while being tethered to an external 
operator. (b) shows the arrangement of internal components, and treaded legs for use in walking on shore and/or on the 
bottom. (c) shows the robot with a diver for scale. 



A fundamental problem with visual sensing in the 
aquatic robotic domain is that it is not possible to assume 
that the sensor only moves when commanded to. The 
aquatic medium is in constant (and in general 
unpredictable) motion, and this motion complicates 
already difficult problems in time varying image 
understanding. One mechanism to simplify vision 
processing is to monitor the true motion of the sensor 
independently of its commanded motion. Inertial 
navigation systems (INS) have found applications in 
various autonomous systems for the determination of the 
relative pose of a vehicle over time. INS make 
measurements of the physical forces applied to them and 
thus under normal conditions they provide 
independent measurements of relative motion. 
Unfortunately these systems drift, and thus typically they 
are employed with some secondary sensing system in 
order to counteract this effect. Here we utilize trinocular 
vision as this associated sensor. Real time trinocular stereo 
sensors permit the recovery of 3D surfaces. Integrating an 
inertial 6DOF navigation system with a trinocular stereo 
sensor simplifies the registration process by providing 
relative motion information between frames. With this 
initial estimate of the camera pose, few features must be 
used to refine the registration to the global coordinate 
system. 
 

Figure 2(a) shows the trinocular sensor module and its 
aquatic housing. The module consists of three Firewire 
CCD cameras, and an INS. The INS serial signal is 
converted to a USB signal and is coupled with a 
pushbutton switch for local control of the device. The 
combined USB signal and the Firewire signal are 
converted to an optical signal for transmission via optical 
fiber to the surface. An onboard 12V battery provides 
power to the trinocular unit. Figure 2(b) shows raw data 
obtained with the sensor during recent field trials near 
Barbados. 

C. Acoustic Sensor Package 
The acoustic localization component consists of arrays 

of commercially available omni-directional hydrophones 
attached under a surface-floating buoy, whose absolute 
position can be measured via a combination of GPS, 
compass, inclinometers and inertial sensors. The 
underwater sensor unit is equipped with a transducer 
generating impulsive sound in the audio frequency range. 
Localization is carried out in two steps, (a) direction of 
arrival estimation at each array, and (b) estimation of the 
intersection of the direction lines. Time-delay estimation at 
each array allows the estimation of direction of arrival at 
that array [4]. The minimum number of microphones 
required is three, leading to a system of three linear and 
one quadratic equation in the coordinates of the direction 
vector. With more than three microphones, a least mean 
squares approach is used. 

 

IV. SOFTWARE TASKS 
A number of different software tasks of the robot are 
currently being explored. By combining the best results of 
these capabilities, a system will be developed that is 
capable of completing the SASR scenario. 
 

A. Environmental Modelling  
When the robot is in place making observations, it is 

often desirable to construct a 3D model of the object being 
studied. This object may be a pipe that is leaking, or a 
coral growth that is being monitored. We have developed 
two complementary (but mutually supportive) 
methodologies for doing this, one based on stereo and one 
based on probabilistic extrapolation.  In either event, in 
order to reconstruct a continuous model of the 
environment, the depth data from the trinocular stereo 
system must be registered into a global coordinate system 

 

 

 
(a) The Sensor  (b) Raw Aquatic footage 

 
Figure 2. The Trinocular sensor package: (a) The sensor shown partially removed from its aquatic housing, the sensor 
package consists of three firewire CCD cameras, and an IMU. Data from the CCD cameras and the IMU are encoded 
onto an optical fiber cable and transmitted to the surface via an optical fiber cable.  A 12V onboard battery provides 
power. (b) Raw trinocular data from the sensor (shown here in black and white). 



since each depth image is independently computed. 
Current approaches (e.g. [5,6]) to this problem typically 
use only depth data to minimize an error function for 
registering multiple point clouds. These approaches are 
limited by the fact that they rely heavily on small motion 
between point clouds and thus they overlap. If a large 
motion were to occur due to underwater currents affecting 
the sensor package, then these types of algorithms would 
fail to produce a continuous 3D surface reconstruction of 
the environment. Using an inertial sensing system, this 
problem can be alleviated by providing a good initial guess 
to the registration. When registering the point clouds, the 
inertial data is used to align the data sets and other Bundle 
Adjustment [7] and ICP [8] algorithms are used to refine 
the estimate if an overlap occurs. If there is no overlap, the 
integrated pose from the inertial data is the best estimate of 
the sensor's motion. The inertial data can only be trusted 
for several seconds due to accumulating errors in the 
integration of the rotational rates and accelerations.   
 

Figure 4 shows the INS in action. Raw video data from 
the camera is rendered along the edge of a cylinder based 
on the rotation of the camera as obtained by the INS. The 
INS maintains a very accurate estimate of orientation 
although its positional accuracy is quite poor. An 
integrated process that combines both vision and INS data 
is required. 
 

B. Acoustic-based Vehicle Localization 
In order to complete the SASR scenario, a critical 

capability of the vehicle is to be able to revisit a previously 
visited position. Maintenance of pose with respect to a 
global coordinate system is key.  Under the AQUA project 
a number of acoustic and vision-based localization 
processes are being explored. 

 
Estimation of sound source position as the intersection 

of direction lines. Suppose that the vehicle is augmented 
with an acoustic source. The position of this acoustic 
source can be estimated by using an acoustic array 
mounted at a known position under water. The position of 

the sound source is estimated through considering multiple 
lines in 3D space emanating from the reference points of 
the microphone arrays and along the direction of arrival 
vectors. The Sound source position is estimated as the 
intersection of these lines. Computationally, the optimal 
estimate of the source position is the point that has 
minimal overall distance from these lines.  The overall 
distance to the unknown source position P(x,y,z) is a 
quadratic function of the unknowns x,y,z, leading to a 
linear system of equations in x,y,z that can be solved for 
using standard techniques. 

 
Signal processing for time delay estimation. In order to 
calculate reliable time delays between the arrivals of the 
sound signals, two channels of audio data from two 
different hydrophones are correlated.  Peaks of the 
correlation function are identified. The location of the peak 
corresponds to the time-delay estimate. Before correlation, 
filtering is carried out to reduce noise, and then a signal 
variance test is performed to check the presence of a sound 
source [3]. The audio frequency region of interest is (200 - 
4000 Hz) so as to eliminate high frequency noise as well as 
the common 60Hz electric interference and its second 
harmonic at 120Hz, extracted using a band pass digital FIR 
filter described in [2]. The variance of a source signal is 
typically greater than the variance of the background noise, 
because the signal changes between a level above the 
background noise and silence. The design of source signals 
with distinct spectral signatures so that they can be 
detected in low signal-to-noise-ratios is in progress. Since 
the maximum time delay between two microphones can be 
calculated through the length of the baseline divided by the 
speed of sound, it would be required that the time delay of 
the maximum peak of the correlation function is inside a 
range defined by the maximum delays. This has the effect 
of reducing the likelihood of false peaks. The final step for 
the time delay estimation is to cluster the time delays 

 
Figure 4. INS-based imagery recovery. The figure shows
raw data collected from the sensor in the lab arranged
based on the rotational estimate returned by the INS.
There is very little drift in terms of orientation, although
absolute distance information drifts quite quickly. 

 
Figure 3. The Acoustic sensor hardware 



estimated from a number of consecutive and non-
overlapping signal time windows [3]. We discard outliers 
and compute the mean value over the remaining as the 
final time delay estimate. 

 
Experimental Results: Besides simulations, we have 

performed experiments in a pool using hydrophones and in 
the air using microphones with a similar geometry to that 
of the pool (scaled to account for the different sound 
propagation speeds in the two media). In the experiments, 
we generated impulsive sound by hitting a metal appliance 
once per second. The problem of designing a transducer 
for the underwater robot remains to be addressed. The 
water experiments were carried out in a pool (25.0m long, 
20.0m wide, and 4.3m deep at the flat part of the deep 
end). The listening apparatus consists of four 
DolphinEar/PRO omni directional hydrophones, which are 
attached at the corners of a square buoy of size 1.0 x 1.0m, 
shown in Fig. 3. Sampling frequency was 44100 Hz, signal 
resolution 16 bits, sample size 2048 samples. 

 

C. Vision-based vehicle localization 
An alternative to audio-based localization is to utilize 

imagery captured from a camera onboard the vehicle to aid 
in localization. Two approaches are being developed: one 
based on the use of natural underwater features, and a 
second based on manually inserted surface-based visual 
beacons.  The use of natural landmarks entails 
simultaneous localization and mapping (SLAM) while the 
use of manual landmarks uses beacons with known 
positions.  The beacon-based approach uses an upward-
looking camera on the underwater robot to observe a set of 
(control) points of a known extended rigid buoy at the 
surface. The buoy itself is localized with respect to a 
global coordinate system using a combination of GPS, 
compass, inclinometers and inertial sensors.  The problem 
can be stated formally as follows: Given a set of m control 
points Pi, i=1,2...m whose 3-dimensional coordinates (xi, yi, 
zi) are known in some global coordinate system, and given 
an image (taken by a calibrated camera) in which the m 
control points are visible, determine the location (relative 
to the coordinate system of the control points) of the 
camera from which the image was obtained. 
 

Let the coordinates of control point Pi in the camera-
centered coordinate system be (xi', yi', zi') and let the image 
coordinates of point i be (ui, vi). Assuming perspective 
projection, we obtain: 
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The global coordinate system and the camera coordinate 
system are related by a rotation R and a translation T. The 
3D coordinates of a control point in the two coordinate 
systems Pi and Pi' respectively are by: 
 

′ P i = RPi + T 
 

The goal in camera viewpoint recovery is to determine R 
and T, knowing the m correspondences between image 
points and control points. The problem of camera 
viewpoint recovery is solved in two steps. First, the control 
point coordinates in the camera-centered coordinate 
system are derived from the camera model and geometric 
constraints on pairs of points in the two coordinate 
systems. Second, the transformation between the two 
coordinate systems is found based on the correspondences 
between the two coordinate sets of the same points. 
 

Each image point provides two constraints on the three 
camera-based coordinates for each control point. 
Furthermore, since (xi',yi',zi') and (xi,yi,zi) represent the 
same point in 3D space, the distance between the pairs of 
points is the same in the two coordinate systems, giving 
three constraints, one for each pair of control points.  Thus, 
with three control points, there are enough constraints to 
solve for the unknown camera-based coordinates of the 
control points. With m control points, where m > 3, we 
have 2m perspective projection equations, and m(m-1)/2 
pair wise distance constraints, i.e. an over-determined 
problem. To solve it, we minimize the total squared 
difference between pair wise distances. If we express xi',yi' 
in terms of zi', we obtain an unconstrained optimization 
problem in terms of zi', where the objective function is a 
polynomial of degree 4. 
 

After estimating the coordinates of the points Pi in the 
camera coordinate system, the remaining problem is to 
identify the transformation between the camera and the 
global coordinate system. This requires the solution of 
another least squares optimization problem. 

 

D. Vision-based Mapping and Localization (VSLAM) 
Our approach to vision-based mapping and localization is 
based on appearance-based features that are learned from 
the environment, and is derived from terrestrial techniques 
examined previously [9].  The process is based on 3 
distinct computational processes: detection of potential 
visual landmarks, landmark matching and tracking, and 
landmark estimation.  The key principle is that landmarks 
are defined in the appearance domain -- that is from video 
data -- without an attempt to recover 3D structure. This 
allows for the use of visual features even in situations 
where 3D recovery is problematic, and hence provides for 
a pose estimation mechanism that is complementary to the 
other processes use to navigate the vehicle.  Further, since 
the landmarks are learned in the underwater environment 
at hand, the method avoids a dependency on particular 
predetermined attributes of the environment.  Finally, since 
reliability of each visual feature is explicitly modeled, 
partial pose estimation cases occur even when the features 
are too impoverished to allow for accurate estimation of all 
degrees of freedom. 



Prototype natural landmarks are detected by an interest 
operator, which selects regions of the image that should be 
detectable in subsequent views (several interest operators 
have been considered in this context [10]).  Models for 
these landmarks are incrementally constructed as a 
function of both their visual appearance and position, and 
possible landmarks that prove unstable are discarded. This 
allows the system to learn domain-specific features for use 
in localization and to estimate how useful each landmark is 
for various aspects of pose estimation and for various 
positions.  Finally, features that are reliably recognized, are 
modeled statistically and used for pose estimation using a 
voting scheme that robustly combines the estimates from 
each landmark (see Fig. 4). 

 

E. Statistical depth recovery from monocular data 
In order to build more reliable models of the underwater 

environment, we are also developing techniques for 
monocular shape estimation from video data augmented by 
partial range estimates.  The approach is based on 
extrapolation of the depth map given some initial set of 
depth estimates.  These depth estimates are extrapolated 
using the video (intensity) data under the assumption that 
the combination of intensity and depth at each point in an 
image can be modeled as a Markov Random Field, as 
described in [11].   That is, given an augmented depth map 

),( ZIV =      
where I is an image  

}{ ,yxiI =  
and Z, a depth map, 

}{ ,yxzZ =  
we estimate the probability P() of an augmented depth 
value from its intensity and neighboring values 

)),(,|(max(arg ,,, yxNinvizPz yxyxyx =  
where N(x,y) is set of augmented depth values in the 
neighborhood of (x,y).  This expresses the dependence of 
the depth estimate at a point of the neighboring depth and 
intensity values, and on the intensity at that point.  This 
probabilistic dependence is precisely the transition 
function of the Markov random field. 

Given that this is the case, the transition function for the 
MRF is computed from whatever partial data is available 
initially (for example as extracted from the stereo head).  
These transition probabilities are then used to compute the 
depth component of the image where measurements are 
absent, using the intensity component as a constraint. 
Conceptually, the approach has some relationship to 
shape-from-shading although without any dependence on a 
prior knowledge of the scene reflectance function, nor on a 
uniform albedo.  While such extrapolation from either 
depth alone, or from intensity alone, appears to be 
exceedingly difficult, the combination of intensity data 
with constraints from sparse depth estimates seems to 
make the problem tractable. Preliminary tests in terrestrial 

environments suggest that the approach is effective, 
although validation in the target environment remains to be 
carried out. 

In recent sea trials of the robot, we have observed that 
this technique may be useful not only for monocular depth 
recovery, but also for deblurring and removal of scattering 
artifacts. 
 

V. DISCUSSION AND FUTURE WORK 
In recent sea trials, the physical robot, trinocular vision 
system and other components were tested in the Caribbean 
Sea up to a depth of about 23 feet.  Once the buoyancy was 
manually adjusted to compensate for the salinity where the 
test was conducted, the robot performed well using nearly 
neutral buoyancy.  Gait control was accomplished 
manually but controlling the robot using only the forward-
mounted cameras proved to be a challenge.  In ongoing 
work we will be adding both an inclinometer readout and 
tele-robotic control modes to improve manual 
controllability.  In addition, we are also developing 
automated control modes. 
 

One of the key challenges of the project is the extension 
of the SLAM philosophy (Simultaneous Localization and 
Mapping) into motion in three dimensions, with robot pose 
depending on six degrees of freedom. Much of the SLAM 
research so far has been restricted to three-dimensional 
manifolds, either planar or topographic surfaces, with 
robot pose depending on three degrees of freedom. 
Odometry information of the same nature as in terrestrial 
robots is difficult to obtain in the underwater domain, so 
one has to rely instead on an accurate dynamic model of 
the underwater robot combined with inertial sensors and 
sensors of external fields (gravity, earth's magnetic field) 
to come up with differential position estimates for 
mapping. Furthermore, GPS information, which is 
available to outdoor robots, is not available underwater, so 
the absolute position of the underwater robot needs to be 
constrained by its relative position with respect to surface 
vessels with access to GPS signals. The key sensing 
modality for mapping in this project is vision, aiming 
towards smaller scale mapping than that based on sidescan 
sonar. 
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