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Abstract—We present a method for inferring the topology
of a sensor network given non-discriminating observations of

activity in the monitored region. This is accomplished based —
on no prior knowledge of the relative locations of the sensors e‘@

and weak assumptions regarding environmental conditions. Our e
approach employs a two-level reasoning system made up of a L @ @ @
stochastic Expectation Maximization algorithm and a higher level "
search strategy employing the principle of Occam’s Razor to @

look for the simplest solution explaining the data. The result (a) (b)

of the algorithm is a Markov model describing the behaviour
of agents in the system and the underlying traffic patterns.
Numerical simulations and experimental assessment conducted
on a real sensor network suggest that the technique could have
promising real world applications in the area of sensor network
self-configuration.

Fig. 1. An example of a sensor network which we wish to caléra) The
original ad-hoc deployment. b) The desired topological eatimity map of
the network.

It is recognized that self-calibration and other more gaher
self-configuration algorithms are important issues forhbot
. o multi-robot systems and for sensor networks [1], [2]. The
In this paper we address the self-calibration problem gfain point is that a network must operate autonomously in an
inferring thetopology, or inter-node connectivity, of a SeNsolgynamic environment. It should be capable of re-organizing
network given non-discriminating observations of acyivit  jiself to handle network changes such as individual node
the environment. We are interested in recovering a repigjures or changes in communication range.
sentation of the network that identifies physical inters&n A |4t of work has focused on the issue of sensor network

connect'ivity from thg point of' vie\{v of an .agen.t navigatingse”_ca"bratiom especially in regards to metric selfdbization
the environment. This topological information differs rfnca [3], [4], although there have also been past efforts to recov
metric representation which identifies the relative lamadi of topological inter-sensor relationships [5], [6], [7]. Therk

the sensors but does not provide_informqti(_)n _about the layQi)nqucted by Ellis, Makris, and Black [7] [6] on topology
of the region, or olbstructmg objects within ,'t' We aSSUMfaterence for camera-networks attempts to solve a similar
that we have no prior knowledge of the relative locations Qfiohlem to the one we consider in this work. Their technique
the sensors and that we have only a limited knowledge Qijies on exploiting temporal correlation in observatiasfs
the type _of activity present in the environment. We must USRjent movements throughout the environment by employing
observational data returned from our sensors to understafigh eshold technique that looks for peaks in the temporal
the motion of agents present in the environment. By inferingsyription of travel times between entrance-exit pairsjear
undgrlylng patterns in their motions we can then recover t'ﬂ%ak suggesting that a correspondence exists. The présente
relationships between the sensors of our network. results from a six camera network that suggest their approac
Our approach employs a two-level reasoning system. TR, .4 be used to efficiently produce an approximate network

first level is made up of our fundamental topology inferencg,nnectivity graph but when the network dynamics are com-
algorithm that takes the sensor observations and enviro@ine e, or the traffic distribution exhibits substantial vaida, it

assumptions as inputs and returns the network parametgrs, g appear the technique will have difficulty.
This algorithm is formulated using Monte Carlo Expectation

Maximization (MCEM), but it depends on fixed values for

certain numerical parameters that represgmiori knowledge Il. PROBLEM DESCRIPTION
regarding traffic patterns in the environment. The secowel le

searches over the input parameter space of the first Ieme‘
algorithm to find a global solution that optimizes a mor

I. INTRODUCTION

n this work, our goal is to exploit the motion of agents
the environment in order to recover the connectivity pa-
Pameters of a sensor network. Specifically, we want to learn
Mhe inter-node transition likelihood$ and the inter-node delay
Rime distributionsD. This information will be a product of the
environment, the placement of the individual network nodes
and the behaviour of the agents within the system.

10ccam’s Razor is the principle enunciated by William of Ocdhuat the For example, let us assume that the network show in
simplest explanation is the best. Figure 1(a) has been deployed for some purpose such as

Razor. ' The final output of the two-level approach is
probabilistic model of the sensor network connectivitypdra
and the underlying traffic trends.



surveillance and requires knowledge of the inter-node con-1) The E-Sep: which calculates the expected log likelihood
nectivity in order to fulfill its function. During some indl of the complete data given the current parameter guess:
calibration period the network collects observations afrag Q(e,g(ifl)) = E|logp(O, Z@)|O,9(i1>TwhereO is

passing by each sensor. The problem we are trying to solve  tne vector of binary observations collected by each sen-
is how to use these collected observations to construct the  sor andz represents the hidden variable that determines

topological description of the network shown in Figure 1(b) the data correspondence between the observations and
We further restrict the problem by allowing observations  agents moving throughout the system.

collected at each of the nodes to indicate only the present oR) The M-Step: which then updates our current parameter

absence of motion. In other words, we assume that the sensors guess with a value that maximizes the expected log

are non-discriminating and are capable of reporting ondit th likelihood: §) = argmax, Q (0,00~ 1)

they have detected something, but are not capable of prayidi

a description or signature of what they have detected.
Formally, we describe the prot_)lem of tc_JpoIogy inference_i er the high dimensional data correspondences.

terms of the inference of a weighted directed graph whic

captures the spatial relationships between the positidns oAt every iteration we obtainl/ samples of the ownership
P P P P vector L, which are then used to re-estimate the connectivity

the sensors’ nodes. The motion of multiple agents movin rameted) (the M-Step). At every iteration of the algorithm
asynchronously through a sensor network embedded reg RY likelihood of the ownership vector increases, and the

can be modeled as a semi-Markov process. The network oF : . . ) .
. . . process is terminated when subsequent iterations resusyn
sensors is described as a directed grépk- (V, E), where .
. : small changes to our current belief of the network pararseter
the verticeslV = v, represent the locations where sensors are .
The second level of our approach treats the topology in-

deployed, and-the edgds = e, ; represent the ConneCt'.V.'tyference algorithm as a ‘black box’ and attempts to search
between them; an edgg ; denotes a path from the position o . :
' over its input parameter space to find reasonable solutions.

of sensory; to the position of sensar;. The motion of some . . . L
posit J . ) e construct a heuristic evaluation function that quativitdy
numberN agents in this graph can be described in terms ¢ ; . L
. ., I assesses a potential solution based on the principle off@sca
their transition probability across each of the edgks = Razor

{a;;}. The goal of our work is to estimate the parameters The first level topol inf lqorithm takes the fol
describing this semi-Markov process given the observatiop he Tirst fevel topology nference aigonthm takes the fol-
: owing inputs: the observation®; the assumed number of
O and the verticed/. . ,
agents in the environmenV; and a second parameter that
determines the probability (in the framework of our algumi)

I1l. A PPROACH at which a particular observational data point is considene

Our approach employs a two-level reasoning system. TAEtlier and is discarded. The oquuts of the algori.thm aee th
first level is made up of a topology inference algorithnfR€twork parameterg and theratio Rai, Of data incorpo-
based on random sampling. The algorithm takes the sen&d€d into the parameter updates. Different input valussire
observations and some assumptions regarding the envirann{@ different environmental assumptions and, hence, preduc
as inputs and returns the inferred network parameters. T#Eerent outputs.
second level searches over the input parameter space of thé/e create a metric that attempts to assess the validity of a
first level algorithm to find a global solution. solutign by mak_ing the assumption that a good soluti(_)n both

The first level algorithm attempts to learn the networRXPlains the majority of the data and is ssiple as possible.
topology by dividing the problem into two inter-dependentNis principle, known as Occam’s razor, states, “if present
sub-problems: first, inferring the association betweersen With a choice between indifferent alternatives, then onghou
observations and motion sources (agents) moving though fReS€lect the simplest one.” The concept is a common theme
environment, and second, inferring the network connegtivilm computer science and underlies a number of approaches in
parameters that best describe these inter-node trarssition Al; €. hypothesis selection in decision trees and Bayesian

In the sampling portion of the problem, we selakta Cclassifiers [9]. o o
associations that match up each detection event observed at aOUr SImpI|C|ty_metr|c Incorporates a measure of the s|mp||c
particular sensor with one of the agents assumed to be moviRigOf the transition matrix and the amount of data explained
through the environment. We refer to an individual sample 8 the solution:
this data association as awnership vector. By assigning each K A
observation to a specific agent, an ownership vector esdlgnti Qsimp = ( Z (ai)z) (Radj)
constructs a trajectory through the environment for eaenig

believed to be present. We then use these samples of the . . .
ownership vector to re-estimate our connectivity pararsete wrhere/s and ) reflect the relative weights assigned to the two

We formulate the problem as a stochastic version of ﬂg)é)rtlons.

Expectation Maximization algorithm and simultaneousliveo

both the correct observation data correspondences and the IV. RESULTS
correct network parameters. We iterate over the followimg t

steps:

We employ Monte Carlo Expectation Maximization [8] to
calculate the E-Step because of the intractability of sumgmi

a; EA



Fig. 2. a) Complete setup and, b) close up of a deployed phttmrsed
sensor constructed out of a flashlight and a Crossbow wiralessor. (Plastic
containers were used as protective covering during expatane

(b)

A
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of activity in the monitored region. Our technique recovers

Fig. 3. The layout of the nine senor (heterogeneous) netweedd for the the netwqu 90””90“‘{“3_’ inform?tion opportun!sticallyd)ugh
experiment. Labeled triangles represent vision-basedoserusitions (A-F) the exploitation of existing motion. This task is accomipdid
and labeled rectangles represent low-powered photo-tsasesbrs (G-I). The pased on no prior knowledge of the relative locations of the
circle represents the location of the central server. . .
sensors and only a limited knowledge of the type of activity
present in the environment.
) ) ) - ~ Results from both simulations and experiments have shown
Results from numerical simulations verified the feasibik,e ability of our algorithm to generate accurate resultgeun
ity our approach. A simulator modeling the problem waggngitions of sensor noise and complex traffic patterns. The
constructed, and the technique was tested on hundredsiefynique compares favorably to related approaches ard cou
random networks of different sizes and under a number Qe promising real world applications in the area of sensor
different conditions. The technique demonstrated a higjiee otwork calibration and self-configuration.
of accuracy and was both robust to noise and to complex
traffic patterns. It appeared that the results obtained by ou
method compared favorably to related work by Ediisal. [6], _ _ . o
[7], although their approach was much less computationa[ N. Bulusu, D. Estrin, L. Girod, and J. Heidemann, “Scagabbordination
! for wireless sensor networks: self-configuring localiaatisystems,” in

intensive. Sixth International Symposium on Communication Theory and Applica-
Our approach was then further examined with experiments tions (ISCTA-01), Ambleside, Lake District, UK, July 2001.

; ; 1 N. Correal and N. Patwari, “Wireless sensor networksak@&mges and
carried out using a heterogeneous sensor network. The rietwd opportunities.” inMPRGirgina Tech Wirdless Symposum, 2001,

was constructed using two types of sensors: vision-baggfp. Moore, J. Leonard, D. Rus, and S. Teller, “Robust distied network
sensors using PC hardware and webcams, and photocell-basetbcalization with noisy range measurements,” Pnoc. of the Second

sensors using low-powered MICA2 devices (Figure 2). ’Q‘;ﬁ?m%"r’;fe’,ﬁgﬁir?{ﬁ,ff?ggied Networked Sensor Systems (SenSys'04),
Data collected under these real world conditions varied co@; p. Niculescu and B. Nath, “Ad hoc positioning system (ARSing AoA,"

siderably from data generated by the simulator. The impgrfe  in Proc. of INFOCOM, San Francisco, CA., 2003.

; ; ; O. Javed, Z. Rasheed, K. Shafique, and M. Shan, “Trackicrpsa
hardware Implemented’ Sensors were occasmnally sub;ecl[Sﬂ multiple cameras with disjoint views,” iithe Ninth IEEE International

both missing and spurious observations. These errors often conference on Computer Vision, Nice, France, 2003.
occurred in an unpredictable manner. Additionally, theqrats [6] D. Makris, T. Ellis, and J. Black, “Bridging the gaps beten cameras,”

: ; ; in IEEE Conference on Computer Vision and Pattern Recognition CVPR
of motion through the environment were complex and did not 2004, Washington DC, June 2004,

consist of only ‘through traffic’. However, the performances T giiis, D. Makris, and J. Black, “Learning a multicamerpblogy,” in
of our technique on the experimental data was satisfying. Joint IEEE International Workshop on Visual Surveillance and Perfor-

The inferred results closely matched analytically detesdi ~ ance pEF‘)’a'l“g‘gf;‘;f Tracking and Surveillance, Nice, France, October
‘ground truth’ values and were consistent with empiricab] G. wei and M. Tanner, “A monte-carlo implementation of the EM
assessments (Figure 3, Figure 4). algorithm and the poor man’s data augmentation algorithrmjtnal

of the American Satistical Association, vol. 85(411), pp. 699-704, 1990.
[9] T. M. Michell, Machine Learning. Boston: McGraw-Hill, 1997.

Fig. 4. Topological maps of the environment that were: a) ditaly
determined based on the layout; b) inferred by the algorithm;
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V. CONCLUSION

We have presented a method for inferring the topology
of a sensor network given non-discriminating observations



