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Abstract— We present a method for inferring the topology
of a sensor network given non-discriminating observations of
activity in the monitored region. This is accomplished based
on no prior knowledge of the relative locations of the sensors
and weak assumptions regarding environmental conditions. Our
approach employs a two-level reasoning system made up of a
stochastic Expectation Maximization algorithm and a higher level
search strategy employing the principle of Occam’s Razor to
look for the simplest solution explaining the data. The result
of the algorithm is a Markov model describing the behaviour
of agents in the system and the underlying traffic patterns.
Numerical simulations and experimental assessment conducted
on a real sensor network suggest that the technique could have
promising real world applications in the area of sensor network
self-configuration.

I. I NTRODUCTION

In this paper we address the self-calibration problem of
inferring thetopology, or inter-node connectivity, of a sensor
network given non-discriminating observations of activity in
the environment. We are interested in recovering a repre-
sentation of the network that identifies physical inter-sensor
connectivity from the point of view of an agent navigating
the environment. This topological information differs from a
metric representation which identifies the relative locations of
the sensors but does not provide information about the layout
of the region, or obstructing objects within it. We assume
that we have no prior knowledge of the relative locations of
the sensors and that we have only a limited knowledge of
the type of activity present in the environment. We must use
observational data returned from our sensors to understand
the motion of agents present in the environment. By infering
underlying patterns in their motions we can then recover the
relationships between the sensors of our network.

Our approach employs a two-level reasoning system. The
first level is made up of our fundamental topology inference
algorithm that takes the sensor observations and environmental
assumptions as inputs and returns the network parameters.
This algorithm is formulated using Monte Carlo Expectation
Maximization (MCEM), but it depends on fixed values for
certain numerical parameters that representa priori knowledge
regarding traffic patterns in the environment. The second level
searches over the input parameter space of the first level
algorithm to find a global solution that optimizes a more
abstract objective function based on the principle of Occam’s
Razor. 1 The final output of the two-level approach is a
probabilistic model of the sensor network connectivity graph
and the underlying traffic trends.

1Occam’s Razor is the principle enunciated by William of Occamthat the
simplest explanation is the best.
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Fig. 1. An example of a sensor network which we wish to calibrate. a) The
original ad-hoc deployment. b) The desired topological connectivity map of
the network.

It is recognized that self-calibration and other more general
self-configuration algorithms are important issues for both
multi-robot systems and for sensor networks [1], [2]. The
main point is that a network must operate autonomously in an
dynamic environment. It should be capable of re-organizing
itself to handle network changes such as individual node
failures or changes in communication range.

A lot of work has focused on the issue of sensor network
self-calibration, especially in regards to metric self-localization
[3], [4], although there have also been past efforts to recover
topological inter-sensor relationships [5], [6], [7]. Thework
conducted by Ellis, Makris, and Black [7] [6] on topology
inference for camera-networks attempts to solve a similar
problem to the one we consider in this work. Their technique
relies on exploiting temporal correlation in observationsof
agent movements throughout the environment by employing
a threshold technique that looks for peaks in the temporal
distribution of travel times between entrance-exit pairs;a clear
peak suggesting that a correspondence exists. The presented
results from a six camera network that suggest their approach
could be used to efficiently produce an approximate network
connectivity graph but when the network dynamics are com-
plex or the traffic distribution exhibits substantial variation, it
would appear the technique will have difficulty.

II. PROBLEM DESCRIPTION

In this work, our goal is to exploit the motion of agents
in the environment in order to recover the connectivity pa-
rameters of a sensor network. Specifically, we want to learn
the inter-node transition likelihoodsA and the inter-node delay
time distributionsD. This information will be a product of the
environment, the placement of the individual network nodes,
and the behaviour of the agents within the system.

For example, let us assume that the network show in
Figure 1(a) has been deployed for some purpose such as
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surveillance and requires knowledge of the inter-node con-
nectivity in order to fulfill its function. During some initial
calibration period the network collects observations of agents
passing by each sensor. The problem we are trying to solve
is how to use these collected observations to construct the
topological description of the network shown in Figure 1(b).

We further restrict the problem by allowing observations
collected at each of the nodes to indicate only the present or
absence of motion. In other words, we assume that the sensors
are non-discriminating and are capable of reporting only that
they have detected something, but are not capable of providing
a description or signature of what they have detected.

Formally, we describe the problem of topology inference in
terms of the inference of a weighted directed graph which
captures the spatial relationships between the positions of
the sensors’ nodes. The motion of multiple agents moving
asynchronously through a sensor network embedded region
can be modeled as a semi-Markov process. The network of
sensors is described as a directed graphG = (V,E), where
the verticesV = vi represent the locations where sensors are
deployed, and the edgesE = ei,j represent the connectivity
between them; an edgeei,j denotes a path from the position
of sensorvi to the position of sensorvj . The motion of some
numberN agents in this graph can be described in terms of
their transition probability across each of the edgesAn =
{aij}. The goal of our work is to estimate the parameters
describing this semi-Markov process given the observations
O and the verticesV .

III. A PPROACH

Our approach employs a two-level reasoning system. The
first level is made up of a topology inference algorithm
based on random sampling. The algorithm takes the sensor
observations and some assumptions regarding the environment
as inputs and returns the inferred network parameters. The
second level searches over the input parameter space of the
first level algorithm to find a global solution.

The first level algorithm attempts to learn the network
topology by dividing the problem into two inter-dependent
sub-problems: first, inferring the association between sensor
observations and motion sources (agents) moving though the
environment, and second, inferring the network connectivity
parameters that best describe these inter-node transitions.

In the sampling portion of the problem, we selectdata
associations that match up each detection event observed at a
particular sensor with one of the agents assumed to be moving
through the environment. We refer to an individual sample of
this data association as anownership vector. By assigning each
observation to a specific agent, an ownership vector essentially
constructs a trajectory through the environment for each agent
believed to be present. We then use these samples of the
ownership vector to re-estimate our connectivity parameters.

We formulate the problem as a stochastic version of the
Expectation Maximization algorithm and simultaneously solve
both the correct observation data correspondences and the
correct network parameters. We iterate over the following two
steps:

1) The E-Step: which calculates the expected log likelihood
of the complete data given the current parameter guess:
Q

(

θ, θ(i−1)
)

= E
[

log p(O,Z|θ)|O, θ(i−1)
]

whereO is
the vector of binary observations collected by each sen-
sor, andZ represents the hidden variable that determines
the data correspondence between the observations and
agents moving throughout the system.

2) The M-Step: which then updates our current parameter
guess with a value that maximizes the expected log
likelihood: θ(i) = argmaxθ Q

(

θ, θ(i−1)
)

We employ Monte Carlo Expectation Maximization [8] to
calculate the E-Step because of the intractability of summing
over the high dimensional data correspondences.

At every iteration we obtainM samples of the ownership
vectorL, which are then used to re-estimate the connectivity
parameterθ (the M-Step). At every iteration of the algorithm
the likelihood of the ownership vector increases, and the
process is terminated when subsequent iterations result invery
small changes to our current belief of the network parameters.

The second level of our approach treats the topology in-
ference algorithm as a ‘black box’ and attempts to search
over its input parameter space to find reasonable solutions.
We construct a heuristic evaluation function that quantitatively
assesses a potential solution based on the principle of Occam’s
Razor.

The first level topology inference algorithm takes the fol-
lowing inputs: the observationsO; the assumed number of
agents in the environmentN ; and a second parameter that
determines the probability (in the framework of our algorithm)
at which a particular observational data point is considered an
outlier and is discarded. The outputs of the algorithm are the
network parametersθ and theratio Rdata of data incorpo-
rated into the parameter updates. Different input values result
in different environmental assumptions and, hence, produce
different outputs.

We create a metric that attempts to assess the validity of a
solution by making the assumption that a good solution both
explains the majority of the data and is assimple as possible.
This principle, known as Occam’s razor, states, “if presented
with a choice between indifferent alternatives, then one ought
to select the simplest one.” The concept is a common theme
in computer science and underlies a number of approaches in
AI; e.g. hypothesis selection in decision trees and Bayesian
classifiers [9].

Our simplicity metric incorporates a measure of the simplic-
ity of the transition matrix and the amount of data explained
by the solution:

Qsimp =

(

∑

ai∈A

(ai)
2

)κ(

Radj

)λ

whereκ andλ reflect the relative weights assigned to the two
portions.

IV. RESULTS
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Fig. 2. a) Complete setup and, b) close up of a deployed photocell-based
sensor constructed out of a flashlight and a Crossbow wireless sensor. (Plastic
containers were used as protective covering during experiments.)
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Fig. 3. The layout of the nine senor (heterogeneous) networkused for the
experiment. Labeled triangles represent vision-based sensor positions (A-F)
and labeled rectangles represent low-powered photo-basedsensors (G-I). The
circle represents the location of the central server.

Results from numerical simulations verified the feasibil-
ity our approach. A simulator modeling the problem was
constructed, and the technique was tested on hundreds of
random networks of different sizes and under a number of
different conditions. The technique demonstrated a high degree
of accuracy and was both robust to noise and to complex
traffic patterns. It appeared that the results obtained by our
method compared favorably to related work by Elliset al. [6],
[7], although their approach was much less computationally
intensive.

Our approach was then further examined with experiments
carried out using a heterogeneous sensor network. The network
was constructed using two types of sensors: vision-based
sensors using PC hardware and webcams, and photocell-based
sensors using low-powered MICA2 devices (Figure 2).

Data collected under these real world conditions varied con-
siderably from data generated by the simulator. The imperfect,
hardware implemented, sensors were occasionally subject to
both missing and spurious observations. These errors often
occurred in an unpredictable manner. Additionally, the patterns
of motion through the environment were complex and did not
consist of only ‘through traffic’. However, the performance
of our technique on the experimental data was satisfying.
The inferred results closely matched analytically determined
‘ground truth’ values and were consistent with empirical
assessments (Figure 3, Figure 4).

V. CONCLUSION

We have presented a method for inferring the topology
of a sensor network given non-discriminating observations
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Fig. 4. Topological maps of the environment that were: a) analytically
determined based on the layout; b) inferred by the algorithm;

of activity in the monitored region. Our technique recovers
the network connectivity information opportunistically through
the exploitation of existing motion. This task is accomplished
based on no prior knowledge of the relative locations of the
sensors and only a limited knowledge of the type of activity
present in the environment.

Results from both simulations and experiments have shown
the ability of our algorithm to generate accurate results under
conditions of sensor noise and complex traffic patterns. The
technique compares favorably to related approaches and could
have promising real world applications in the area of sensor
network calibration and self-configuration.
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