
Adaptive Parameter EXploration (APEX): Adaptation of Robot
Autonomy from Human Participation

Anqi Xu, Arnold Kalmbach, and Gregory Dudek

Abstract— The problem of Adaptation from Participation
(AfP) aims to improve the efficiency of a human-robot team by
adapting a robot’s autonomous systems and behaviors based on
command-level input from a human supervisor. As a solution
to AfP, the Adaptive Parameter EXploration (APEX) algorithm
continuously explores the space of all possible parameter
configurations for the robot’s autonomous system in an online
and anytime manner. Guided by information deduced from
the human’s latest intervening commands, APEX is capable
of adapting an arbitrary robot system to dynamic changes in
task objectives and conditions during a session. We explore this
framework within visual navigation contexts where the human-
robot team is tasked with covering or patrolling over multiple
terrain boundaries such as coastlines and roads. We present
empirical evaluations of two separate APEX-enabled systems:
the first, deployed on an aerial robot within a controlled
environment, and the second, on a wheeled robot operating
within a challenging university campus setting.

I. INTRODUCTION

We define Adaptation from Participation (AfP) for a
human-robot team as the problem of dynamically adjusting
configuration parameters of an autonomous robot system
(henceforth referred to as a robot autonomy) with the aim
of maximizing the team’s overall efficiency in terms of
improved task performance and reduced human workload.
We propose an online and anytime solution to AfP called
Adaptive Parameter EXploration (APEX), which uses mul-
tiple competing parameter hypotheses that we refer to as
particles to simultaneously explore the parameter space of
the robot autonomy. Particles optimize their hypotheses using
information from the human’s latest intervening commands
to search for configuration settings that can effectively handle
the evolving task objectives and environmental conditions
that occur during a session. We evaluate two APEX-enabled
autonomies for terrestrial and aerial visual navigation tasks
wherein human operators and autonomous robots collaborate
to sequentially cover or patrol through different terrain
boundaries such as shorelines and roadsides.

Human-robot teams have the potential to solve very chal-
lenging tasks as they combine the heightened dexterity and
comprehensive planning capabilities of autonomous robots
with the keen instincts and creative problem solving skills
of humans. A key concern, however, is that it is often difficult
for the operator to configure the robot autonomy by hand,
e.g. when tuning controller gains, adjusting learning rates,
etc. Such manual adjustments are especially challenging to
perform during an active task session and also for systems

The authors are with the School of Computer Science, McGill
University, 3480 University Street, Montréal, QC, Canada H3A 2A7
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Fig. 1. Robot operator (left) collaborating with autonomous vehicle
during boundary patrol field trial, supervised by experimenter (right). Inset:
robot autonomy’s camera view (not shown during field trial), overlaid with
detected boundary (blue line), autonomy’s steering command (blue arrow),
and operator’s intervening command (green arrow).

whose parameters interact with one another. AfP serves as a
powerful interaction paradigm by allowing non-expert users
to train robots through mere participation in the team, thereby
reducing the need to have designer-level grasp of the robot’s
internal workings.

As an online solution to AfP, APEX is especially useful
when task conditions and goals evolve over time. This is
because the human’s sole duty is to issue intervening com-
mands when the robot misbehaves or when task objectives
change. The robot can then learn from these interventions
and adapt to match its behaviors to the evolving task on
a moment-to-moment basis. In addition, APEX can also re-
configure the robot autonomy automatically after its physical
configuration has been perturbed, for instance when its
camera is re-positioned by an external agent.

Our contributions are centered around the novel problem
of Adaptation from Participation (AfP), as well as our algo-
rithmic solution, Adaptive Parameter EXploration (APEX).
Sec. II begins with a brief survey on related research, which
is followed by formulations of AfP (in Sec. III) and APEX
(in Sec. IV). Sec. V describes two separate APEX-enabled
robot autonomies, built on our prior work for visual naviga-
tion applications [1]. These systems provide the capability of
performing boundary tracking tasks to both a wheeled robot
and an aerial robot, each with distinct sensing capabilities.
Sec. VI and VII present empirical evaluations comparing
the efficiency of APEX-enabled autonomies against other
common human-robot team setups through both a controlled
user study and a series of field trials in a challenging
university campus environment (see Fig. 1). Finally, our work
is summarized in Sec. VIII.
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II. RELATED WORK

Adaptation from Participation (AfP) is closely related
to the problem of Learning from Demonstration (LfD), in
that the objective of LfD is for a robot to learn behaviors
from demonstrations provided by a human or another robot
expert with superior task knowledge [2]. LfD has been
studied extensively in the literature, and is also commonly
referred to as Inverse Reinforcement Learning [3], Appren-
ticeship Learning [4], Robot Programming by Demonstration
(PbD) [5], and imitation learning [4], [6].

Abbeel and Ng [4] presented a solution to imitation
learning using the framework of Markov Decision Process
without Rewards (MDP\R), and demonstrated the ability
for a robot to acquire complex behaviors such as highway
driving by observing humans. This approach does not require
the user to specify explicitly the rewards or penalties of each
particular action towards being a competent driver, which is
similar to the goal for AfP of removing the need for operators
to manually configure parameters of a robot autonomy.

Billard et al. [5] provided a survey of different solutions
and systems for Robot Programming by Demonstration. The
authors indicated that a key motivation for PbD is to elim-
inate the tedious task of manually programming behaviors
for robots, akin to the goals of AfP addressed in this work.

AfP also builds on previous research in the domain of
shared autonomy, which refers to the shared control of
a robotic platform between a human operator and an au-
tonomous agent. Human-robot teams using shared autonomy
control have been empirically shown to achieve better task
performance than both a fully tele-operated system and a
fully autonomous one [7], [8]. AfP aims to further increase
the efficiency of shared autonomy systems by enabling the
robot to adapt its behaviors based on the human’s participa-
tion, similar to the interaction method used in LfD.

Dogged Learning (DL) [9] is a closely related interaction
paradigm that also aims to combine concepts from LfD and
shared autonomy. DL builds an autonomous robotic agent
using an online LfD approach, and then arbitrates between
commands from this agent, from the human demonstrator,
and optionally from a reactive controller, through a common
measure of confidence. A main focus of this work is to de-
velop a generic algorithm that learns a mapping from sensor
inputs to control outputs in a task-independent manner. In
contrast, AfP aims to improve the cumulative efficiency of
an existing task-specific robot system by repeatedly adjusting
its parameters.

Dragan and Srinivasa [10] established a unifying formal-
ism of policy blending for shared autonomy systems, where
action policies from a human expert and a planning algorithm
are combined to produce optimal behaviors. Using policy
blending, the authors developed a robot manipulator planner
that generates trajectories by estimating the intent of human-
demonstrated motions. Our APEX algorithm similarly aims
to adapt to the task intents conveyed through a sequence of
human interventions, while ignoring the effects of moment-
to-moment noise found within individual command signals.

APEX’s parameter adaptation approach bears similarities
to the works of Vanier and Bower [11], who investigated the
performance of several optimization methods for automat-
ically training Artificial Neural Networks (ANN). Bergstra
and Bengio [12] also studied the problem of hyper-parameter
optimization for ANNs, and showed that a random search
method is more efficient at finding static optimal hyper-
parameters, compared to both grid-based exhaustive search
and manual tuning by experts. APEX extends the scope of the
parameter optimization problem to the broader case where
the robot’s optimal parameter settings change over time.

Fig. 2. Block diagram for a supervisor-worker human-robot team, including
our solution to Adaptation from Participation (AfP), namely the Adaptive
Parameter EXploration (APEX) module (shown in dashed lines).

III. FORMALISM

In this section we characterize the main elements of our
human-robot interaction (HRI) framework, which forms the
basis for the formulation of the Adaptation from Participation
(AfP) interaction paradigm and computational problem.

A. Interaction Context

We are interested in HRI scenarios where an autonomous
robot works in tandem with a human operator towards an
assigned task. In this context, the “robot autonomy” consists
of sensing, planning, and control modules responsible for
producing autonomous behaviors for the robot. Under normal
operations, the robot autonomy is responsible for handling
the bulk of the work while the human supervises the task
progress. In contrast, when a challenging scenario causes the
robot to misbehave, the supervisor can choose to take over
control and correct these mistakes, until the robot is capable
of performing on its own again. Given this supervisor-worker
relationship, we assume that the human’s commands will
always supersede those generated by the robot autonomy.

The main constituents of our HRI setting are shown
in Fig. 2. The robot autonomy A repeatedly senses and
processes the state of the world x in order to generate
command outputs yr. For our visual navigation contexts, the
output is in the form of a heading command y ∈ [0◦,360◦).
These commands are also affected by the current system
parameter settings θ , and furthermore the internal state of
the autonomy s may be modified in the process; therefore the
robot autonomy can be viewed as yr, s ← A(x, θ , s). Sepa-
rately, the human supervisor can issue intervening commands
yh at any time to the robot’s actuators directly; commands
generated by the robot autonomy yr are only sent to the
actuators when the supervisor is not intervening, i.e. yh =∅.
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B. Adaptation from Participation

A common shortcoming among human-robot teams is that
in challenging scenarios where the robot repeatedly makes
mistakes, the human’s interactions degenerate from high-
level supervision to full-time tele-operation. The Adaptation
from Participation (AfP) paradigm addresses this concern
by re-tuning the robot autonomy during periods of human
interventions in order to improve the robot’s task perfor-
mance over time and alleviate the need for constant human
intervention. Also, when task requirements change during
a session, AfP enables the robot to dynamically adjust its
settings and behaviors to match the updated conditions.

Before formalizing AfP as a computational problem, we
first assume that efficiency metrics for task performance P
and for human intervention I are available. Whereas the
former metrics are typically application-specific, a standard
measure for human intervention given our interaction context
is to compute the fraction of time instances where the human
is not intervening.

The objective of AfP is to optimize the robot autonomy’s
parameters θ throughout periods of constant human interven-
tions towards greater team efficiency by simultaneously im-
proving the task performance P and reducing the frequency
of human interventions I. Conceptually, we assume that for
any given task there exists a set of optimal parameter values{

θ ∗
}

that can result in the best possible robot behaviors.
These optimal parameter values, however, are usually unob-
served, and furthermore can be altered by changes in the
world or to the robot’s configuration. By assuming that the
human supervisor can react to these changes, AfP aims to
maintain an up-to-date θ ∗ by deducing from the supervisor’s
intervening commands yh.

To solve the AfP problem, we must balance between the
optimization objectives P and I. In certain domains, the cost
of human interventions naturally translates into an equivalent
penalty for task performance; for example, both autonomous
productivity and manual interventions can be quantified in
terms of monetary gains and losses in a manufacturing
setting. Our empirical evaluations in Sec. VI and VII address
this multi-objective issue in a statistical manner.

Despite their many similarities, AfP differs from Learn-
ing from Demonstration (LfD) in some key aspects that
highlight its novelty. Firstly, AfP is designed for highly
dynamic situations where task objectives and conditions
change unpredictably and repeatedly over the course of a
single session; in contrast, each LfD system has a single,
stationary task objective that it is trying to learn from the
human’s demonstrations. In addition, the purpose of LfD is
for a robot agent to learn a novel set of task behaviors,
whereas AfP instead aims to improve the performance of
an existing robot autonomy by adaptively toggling between
its range of behaviors. Although AfP does not extend the
behavioral capabilities of an existing autonomy, it can be
used to augment a sophisticated autonomous robot system
and be readily deployed to solve challenging, real-world
tasks.

IV. ADAPTIVE PARAMETER EXPLORATION

We now present Adaptive Parameter EXploration (APEX):
an online and anytime algorithm for adapting a robot auton-
omy’s parameters during periods of interaction where the
human supervisor is constantly issuing commands. APEX
continuously searches the parameter space of the robot au-
tonomy for better configurations using a multi-hypothesis ap-
proach, where each evolving parameter hypothesis is referred
to as a particle. In the time between two consecutive sensor
updates, each particle optimizes its parameter values based
on training exemplars consisting of matched pairs of sensor
readings and the human’s intervening commands, within a
recent period of time. The results of this optimization process
on their own are short-sighted and susceptible to noise, there-
fore when adopting the winning particle’s hypothesis APEX
uses several measures to enforce temporal consistency and
account for the long-term history of parameter evolutions.

A. Applicability and Prerequisites

APEX is capable of tuning parameters for a wide variety
of different autonomous systems. An important characteristic
of a subset of these systems is the ability to analytically com-
pute the inverse autonomy mapping θ ∗ =A−1(x, s, y∗), i.e. a
separate program for computing the exact parameter settings
θ ∗ matching a desired output command y∗, sensory inputs x,
and the autonomy’s prior state s. In most setups, the robot
autonomy is sufficiently complex such that obtaining A−1

is infeasible, or even ill-posed. We refer to systems without
an inverse autonomy mapping as black-box autonomies, and
those with an accessible A−1 as white-box autonomies.

APEX’s generic design allows it to optimize different
parameter types, including bounded continuous parameters,
ordinal discrete parameters, and categorical parameters. It is
important to provide sensible parameter ranges when deploy-
ing APEX, especially to ensure that the autonomy’s outputs
do not saturate for nearby parameter values. Nevertheless,
system designers are free to specify loose parameter ranges
that satisfy the above condition, since APEX’s particles are
designed to lock onto optimal regions in the parameter space.

B. APEX Algorithm

The main pipeline loop of APEX adds routines both before
and after processing the latest sensor data x through the
robot autonomy A, as illustrated by Algorithm 1. Each APEX
particle i has an associated long-term cost Ci, which keeps
track of the consistency of the performance of its searched
parameter results over time. Whenever a new piece of sensor
data becomes available, APEX first pauses the optimization
process for all particles, updates Ci based on the quality of
each particle’s latest hypothesis, and incorporates parameter
values from the lowest-cost, winning particle back into the
main pipeline. Next, the robot autonomy A processes the
sensor input x using the updated parameter settings θ to
produce a new control command yr. Finally, during periods
of manual interventions the particles are resumed to search
for better parameter values; otherwise, they are reset during
periods of autonomous control.
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Algorithm 1 APEX’s main pipeline loop
1: Ci← 0 ∀ i
2: loop
3: wait for incoming sensor update x
4: if particles are optimizing parameters θi then
5: for all particles i do
6: pause optimization
7: update long-term cost Ci
8: end for
9: i∗← argmaxi (Ci) // choose winning particle

10: update main pipeline’s parameters θ with θi∗

11: end if
12: s′← s // save prior autonomy state
13: yr,s← A(x, θ , s′)
14: if yh 6=∅ then
15: store latest exemplars {x, s′, yh}
16: resume optimization for all particles
17: else
18: Ci← 0 ∀ i
19: end if
20: end loop

Between two sensor updates, each particle i continuously
optimizes its parameter hypothesis θi using a sequence of the
W most recent training exemplars {xw,s′w,yh,w}w=1..W . Each
exemplar consists of a sensor state x, a prior state for the
robot autonomy s′, and a command from the supervisor yh.
The following mean squared cost objective is used:

cost
(
θi
)
=

1
W

W

∑
w=1

∥∥yh,w−A
(
xw, θi, s′w

)∥∥2

For black-box autonomies, particles perform numerical opti-
mization by repeatedly querying copies of the autonomy A
using different hypotheses θi each time. On the other hand,
particles interacting with a white-box autonomy can directly
solve for the best parameter values θ ∗ using A−1, through a
single-step least squares formulation.

Since APEX is an anytime algorithm [13], it can update
the autonomy’s parameter settings whenever new sensor data
becomes available, by integrating the hypothesis from the
winning particle i∗ at those time instances. Unfortunately, it
would be short-sighted to choose the winning particle by the
cost

(
θi
)

of its latest hypothesis directly, since these costs
are measured against the W most recent training exemplars
only. Instead, these momentary costs are updated into the
particles’ long-term cost attributes Ci, which are then used to
identify the winning particle i∗ based on its historical success
at consistently finding low-cost configurations in the past:

Ci← γ Ci + cost
(
θi
)

This enforces temporal consistency and reduces the likeli-
hood of oscillating between different winning particles in
successive iterations, which can lead to undesired and dis-
continuous control. When updating Ci, the hyper-parameter
γ ∈ [0,1] discounts previously accumulated costs, and its
value reflects how much historical consistency matters for
a given application context.

Once the winning particle i∗ is determined, its optimized
hypothesis is used to update the parameter values for the
main pipeline. Whereas discrete parameters are assigned val-
ues from the winning particle directly, continuous parameters
θ c are smoothed using a learning rate α ∈ (0,1]:

θ c← θ c +α
(
θ c

i∗ −θ c
)

This hyper-parameter also mitigates the short-sightedness of
optimizing based on the W latest training exemplars only.

C. Particle Types

APEX uses a combination of four different types of
particles to effectively explore the parameter space:
• local search particles employ a gradient-based search

method to iteratively find numerical approximations to
locally optimal parameter values;

• random restart search particles randomly sample initial
values within the specified parameter ranges, and then
perform iterative local search;

• inverse optimal search particles use the inverse auton-
omy mapping A−1 to solve for optimal parameter values
directly through an analytical least squares formulation;

• persistence particles duplicate the winning particle from
the previous loop iteration, and do not perform any
further parameter optimizations.

For black-box autonomies, we prescribe a combination of
local search particles and random restart search particles
to solve for globally optimal parameter settings. Each local
search particle randomly samples its local parameter neigh-
borhood for a promising gradient direction, and then explores
along this gradient in order to find configurations that mini-
mize cost

(
θi
)
. These local search efforts are complemented

by non-local explorations in the parameter space through the
use of random restart search particles. In contrast, white-box
autonomies are paired with inverse optimal search particles
to find the best parameter settings directly, without having to
perform iterative numerical optimization. Finally, both black-
box and white-box autonomies use a persistence particle to
enforce temporal consistency by ensuring that the winning
particle’s parameter hypothesis in the current loop iteration
is at least as good as the previous iteration’s settings.

The search methods described above are designed specif-
ically to optimize continuous or ordinal parameters. APEX
uses a separate strategy to search amongst categorical param-
eters by instantiating one search particle for each combina-
tion of all discrete parameter values. This way, the optimal
categorical parameter settings are determined automatically
when selecting the winning particle on each iteration.

V. SYSTEMS

In this section we present two autonomous systems for
boundary tracking tasks, targeting an aerial vehicle as well
as a wheeled robot. Both autonomies are equipped to iden-
tify terrain boundaries from camera frames, although the
controllers that translate detected boundaries into steering
commands are distinct on each system. Both the aerial
and wheeled robots operate at fixed velocities, therefore
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the robot autonomy and the human supervisor are solely
responsible for regulating each vehicle’s heading direction. In
both setups, the supervisor intervenes by holding the analog
joystick on a gamepad towards a desired heading, and returns
control back to the robot autonomy by releasing the joystick.

A. Autonomous Boundary Tracker
Vision-based navigation tasks are appealing for human-

robot teams because humans are naturally inclined to solve
them robustly and without effort, whereas they also neces-
sitate sophisticated autonomous solutions (e.g. [14], [15]).
Our boundary tracking algorithm is an extension of previous
work [1], which was originally deployed on a fixed-wing
aerial vehicle equipped with a downward-facing camera.

Our boundary tracking algorithm has two key parameters
that allow it to detect and follow diverse classes of terrain
boundaries. The boundary type Tb ∈{Edge, Strip} parameter
can be configured to track edge-like boundaries such as
coastlines, or strip-like boundaries such as roads. In addition,
different image features can be employed to segment terrain
patches within camera frames by adjusting the clustering type
parameter Tc ∈ {Hue, Grayscale, HSV}. Further details on
the image processing algorithm are discussed in [1].

B. Aerial Boundary Tracker System
For the aerial vehicle, the boundary tracker’s output is

connected to a Proportional-Derivative (PD) controller. This
allows the system to cope with aggressive steering needs
in situations where the boundary frequently changes shape.
We deployed this aerial robot autonomy on a simulated
platform that generates downward-looking camera view from
a holonomic aerial robot, based on static satellite footage.

During a task session, the user is presented with a graph-
ical interface showing real-time camera feed from the aerial
vehicle. As depicted by the inset of Fig. 1, the latest tracked
boundary line and steering command generated by the auton-
omy are overlaid on each camera frame, in order to provide
feedback of the autonomy’s internal state. This feedback is
useful even during periods of manual intervention, since the
operator can visually gauge when the robot is capable of
resuming the boundary tracking task.

We employed APEX to adapt the boundary tracking
algorithm’s discrete parameters Tb and Tc, as well as the
coefficients of the PD controller Kp and Kd . We also provided
loosely estimated ranges for the latter parameters in order to
allow the autonomy to adapt to different steering styles.

C. Terrestrial Boundary Tracker System
Our boundary tracking algorithm was also extended to

control a wheeled platform with a tilted, front-facing camera,
which can be seen in Fig. 1. When using a tilted camera,
the detected boundary line in a given frame no longer maps
directly onto a heading command. Instead, we compute the
intersection χ between the boundary line and the bottom of
the image, as well as the slope φ of the line, and prescribe
the following parametric mapping for generating headings:

yr = M1χ +M2φ +M3

This mapping represents a linear approximation of the
projected boundary position on the vehicle’s ground plane,
and includes two scaling factors M1,M2 for the boundary
line’s intercept and slope terms. In addition, the additive
parameter M3 relates to the desired distance to follow a given
side boundary. This mapping is best suited for when the
image contains only the ground plane and not the horizon,
thus we remove the top H0 percentage of each camera frame
prior to running through the boundary tracking algorithm.

In contrast to the aerial boundary tracker setup, the human
supervisor operates alongside the wheeled autonomous robot,
without a graphical display for feedback. The user has greater
situational awareness from this third-person view, although
the autonomy’s state is also less transparent. Anecdotally, we
observed that users adopted a greater tendency to switch to
tele-operation when the robot misbehaved momentarily.

For this terrestrial system, we configured APEX to adapt
the pre-processing image cutoff parameter, H0, the boundary
tracker’s discrete parameters, Tb and Tc, as well as the various
mapping parameters M1, M2, and M3. Sensible ranges for all
parameters were estimated empirically.

VI. CONTROLLED USER STUDY

We carried out a user study to evaluate the efficiency
of our aerial boundary tracking robot within a controlled
setting. The study is structured as a coverage game, where
the objective is to fly over as much of a designated boundary
course as possible within a fixed 3-minute time limit.

A. User Study Setup

This evaluation aims to compare the efficiency of adaptive
robot autonomies using APEX against other common types
of human-robot teams. Specifically, the study entails four
coverage sessions with the following autonomy settings:
• APEX BB: a black-box APEX-enabled autonomy that

employs 6 local search particles, one for each combi-
nation of discrete parameter values, as well as 2 random
restart search particles and a persistence particle;

• APEX WB: a white-box APEX-enabled boundary
tracker that uses 6 inverse optimal search particles and
a persistence particle to adapt parameters;

• CONST: a non-adaptive tracker with empirically-tuned
parameter values by an expert designer;

• MANUAL: a baseline setting where the boundary tracking
algorithm is disabled, and where the supervisor must
rely solely on tele-operation.

In addition to being a baseline, MANUAL also reflects extreme
circumstances where the robot autonomy constantly fails.

The study begins with a brief tutorial that explains the
setup, properties of the adaptive autonomous systems being
evaluated, and the study procedure. This is followed by an
extended practice coverage session to familiarize users with
the interface and with the interaction process of collaborating
with an adaptive boundary tracking robot. The data collection
phase of the study consists of 4 coverage sessions of 3
minutes each, using the aforementioned robot autonomies
in a random order following a counterbalanced design.
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Fig. 3. Average rate of change for discrete parameters (a) and for continuous parameters (b), aggregated over 2 expert users’ data. The rate of change
for discrete parameters is correlated to the discount factor γ , whereas the rate of change for continuous parameters is correlated to the learning rate α .

Participants are provided with a graphical interface that
integrates the aerial robot’s camera view, a separate mini-map
displaying the vehicle’s position and the designated coverage
course, as well as the current session’s coverage score and
remaining time. The mini-map allows users to monitor their
coverage task progress, although the zoomed view of the
camera feed is necessary to adequately steer the robot.1

The designated flight trajectory incorporates three different
terrain boundaries, comprising of a wide Highway section
with many potential boundaries visible at any given time,
a narrow Forest Path with significant tree cover, and a
highly curved Coastline segment. The Coastline section is
particularly difficult for both the human users and the robot
autonomy to track, since it requires aggressively reactive
steering in order to accommodate to the changing and varied
forms of many small inlets and peninsulas.

B. Evaluation Metrics

This study employs multiple metrics to evaluate the task
efficiency of each robot autonomy setting. The coverage
score corresponds to the amount of the designated course
covered by the aerial robot’s camera view, and thus quan-
tifies the aggregated task performance within the boundary
segments throughout each session. Since participants were
informed about the exact trajectory of boundaries to follow,
the mean distance to ground truth pose reflects moment-
to-moment task progress. Separately, the AI failure ratio
measures the fraction of time steps where the autonomy
encountered an exceptional clause internally and terminated
without producing a sensible command, for instance when
the segmentation sub-module failed to identify any bound-
aries in the image. This metric quantifies the reliability and
robustness of each robot autonomy configuration. Similarly,
the supervisor intervention ratio records the fraction of time
steps having intervening commands present, and captures
the amount of active human workload incurred during each
boundary segment and each coverage session. Finally, we

1Please refer to the video accompaniment for visual illustrations of user
interface and coverage course. (HD version: bit.ly/ICRA2014APEX)

solicit user preference ratings through a bounded numer-
ical scale after each coverage session, in order to gauge
participants’ subjective assessments on the efficiency and
adaptability of the various robot autonomy settings.

The aforementioned metrics quantify distinct aspects of
the efficiency in our human-robot teams, and are all essential
in forming a sufficient evaluation of APEX with respect to
the objectives of AfP. Unfortunately, it is very challenging to
combine these quantities together into a single score without
performing additional empirical analyses to determine the
per-metric normalization constants and the relative weight-
ings of each metric. We address this concern by instead
computing qualitative orderings of the four robot autonomy
settings, separately for each metric and for each user. These
orderings are then aggregated statistically using the Kemeny-
Young voting method [16], which computed the optimal ag-
gregated ranking based on the frequency of pairwise ranking
comparisons across different robot autonomy settings.

C. Selection of APEX’s Hyper-parameters

The rate of adaptation for APEX-enabled autonomies are
regulated by the learning rate α and the discount factor γ

hyper-parameters. To ensure that APEX adapts the autonomy
at an adequate rate, values for these hyper-parameters were
computed from empirical analyses by two expert operators
prior to the user study. Concretely, the experts completed
coverage sessions using the APEX BB setting for a {5×5}
sampling of the hyper-parameter values. The resulting metric
scores were then aggregated statistically to reveal α = 0.4
and γ = 0.4 as the highest ranked hyper-parameter setting.

Fig. 3 shows that α and γ independently control the rates
of adaptation for the continuous and discrete parameters of
the aerial boundary tracking system. The association between
γ and the adaptation rate of discrete parameters is due to the
instantiation of individual particles for each combination of
discrete parameter values. Since γ regulates the importance
of each particle’s historical search performance, smaller
values will result in myopic selections with more frequent
changes in the discrete parameters’ values.

3320



TABLE I
AGGREGATED RANKINGS OF DIFFERENT ROBOT AUTONOMY SETTINGS

FOR COVERAGE SESSIONS IN CONTROLLED USER STUDY

Segment Best Second Third Worst
Session-wide CONST APEX BB APEX WB MANUAL

Highway CONST APEX WB APEX BB MANUAL
Forest Path CONST APEX WB APEX BB MANUAL

Coastline APEX WB APEX BB CONST MANUAL

D. User Study Results

We recruited 15 participants for this controlled study,
comprising of graduate students, researchers, and professors
working on robotics research, at the School of Computer
Science at McGill University. Metric scores were computed
for each coverage session, and also for each of the three
boundary segments individually. These scores were then
aggregated as rankings to establish the overall ordering of
the four robot autonomy settings, as shown in Table I.

During the segments of Highway and Forest Path, the au-
tonomy with static parameters, CONST, out-performed both
adaptive systems. Since the parameters of the aerial boundary
tracker were sufficiently straight-forward to conceptualize
and tune, it is not surprising that the static, hand-optimized
settings used by CONST resulted in performance comparable
to the adaptive variants for relatively simple environments.
In contrast, the CONST robot autonomy failed to adapt to the
dynamic boundary conditions during the Coastline segment,
and resulted in worse performance than either of the two
APEX-enabled autonomies.

These results also show that APEX WB out-ranked APEX
BB within each of the three boundary segments. This can
be attributed to the fact that APEX BB uses gradient-based
numerical solvers to iteratively find better parameter values,
whereas APEX WB can compute the exact best parameter
values for the least squares inverse optimal solution, thus
producing higher quality configurations overall. Neverthe-
less, APEX BB is favored over APEX WB on the session-
wide scale, which suggests that the adaptive performance
of the two robot autonomies were comparable in general.
Finally, although certain expert participants achieved higher
task performance using manual tele-operation, MANUAL was
statistically the least preferred setting across all segments and
at the session-wide scale among our study’s population.

In summary, our results empirically demonstrated that
APEX is capable of properly adapting system parameters of
an aerial boundary tracking robot based on commands from
users with minimal knowledge of the autonomy’s internal
logic. In addition, the efficiency of APEX-enabled adaptive
autonomies were comparable to, and sometimes even out-
performed, a boundary tracking configuration with efficient
static parameters that were painstakingly hand-tuned.

VII. FIELD ASSESSMENT
In addition to the controlled evaluation of our APEX-

enabled adaptive aerial robot, we also assessed our adaptive
terrestrial boundary following autonomy in a field deploy-
ment setting. Participants in this field study were asked to
interact with a wheeled robot having a tilted front-facing

camera, and to complete boundary patrolling tasks on McGill
University’s busy downtown campus.

A. Field Study Setup
This field assessment compares the efficiency of our APEX

BB adaptive autonomy to an expert-tuned static boundary
tracker, CONST, as well as a fully tele-operated setup, MAN-
UAL. APEX WB was omitted because continuous parameters
of this autonomy are intertwined with its discrete parameters,
which prevents the inverse optimal search particles from ana-
lytically computing exact solutions for continuous parameter
settings.

Following a briefing on the field study and a free-roam
practice session, participants performed boundary patrol
sessions through a fixed-length course while collaborating
with the three different robot autonomy settings following
a counterbalanced design. The specified course involved
patrolling three distinct boundaries at different distances, and
comprised specifically of a Footpath, a Grass-side sidewalk,
and the Curb of a long and curved stretch of road.

We empirically tuned the two hyper-parameters of the
APEX algorithm starting from the user study’s settings, to
reflect the slower pace of our wheeled robot. The final hyper-
parameter values were chosen as α = 0.2 and γ = 0.7.

B. Evaluation Metrics
Since our wheeled robot lacked an accurate outdoor lo-

calization system, we modified the mean distance to ground
truth metric to represent the average angular distance be-
tween the recorded per-frame headings and ground truth
values. These ground truth headings were generated post-
hoc using optimized parameter values that were computed
from hand-chosen exemplar frames for each patrol segment.
In addition, the total durations for each fixed-length patrol
segment and session were computed to assess the overall
task performance for this setup. Similar to the user study,
further evaluation metrics included the AI failure ratio, the
supervisor intervention ratio, and the user preference ratings.
The aggregated rankings were once again computed using the
Kemeny-Young voting scheme.

C. Field Study Results
We recruited 7 participants for the field evaluation of our

APEX-enabled wheeled robot. All of the participants had
previously completed our controlled user study, and therefore
were accustomed to the process of sharing vehicular control
with our autonomous boundary tracking system.

Results in table II reveal that the APEX BB adaptive system
consistently out-ranked the two other human-robot teams in
all three patrol segments, as well as on the session-wide
scale. In addition, the individual session-wide metric scores
in Fig. 4 show that APEX BB scored highest for nearly
all metrics and users. Furthermore, the relative preferences
between the CONST and MANUAL sessions alternated under
different metrics, which resulted in the reversal of their ranks
on the session-wide scale.

In particular, the AI failure ratio and supervisor inter-
vention ratio metrics ranked APEX BB consistently higher
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TABLE II
AGGREGATED RANKINGS OF DIFFERENT ROBOT AUTONOMY SETTINGS

FOR PATROL SESSIONS IN FIELD STUDY

Segment Best Second Worst
Session-wide APEX BB MANUAL CONST

Footpath (@ 1.5 ft) APEX BB CONST MANUAL
Grass-side (@ 1.0 ft) APEX BB CONST MANUAL

Curb (@ 0.5 ft) APEX BB CONST MANUAL

Metric scores for APEX BB, CONST, MANUAL
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Fig. 4. Individual session-wide results in the field study, showing scores
for the total duration (TotDur), mean distance to ground truth (DistGT),
AI failure ratio (AIFail), supervisor intervention ratio (SupInt), and user
preference (UsrPrf) metrics. Smaller scores are preferred on all metrics
except for UsrPrf. Bars in each subplot are ordered by autonomy settings:
APEX BB (green), CONST (blue), and MANUAL (red).

than CONST for our terrestrial boundary tracking system.
The reduced efficiency of the statically-configured autonomy
in CONST was primarily due to its sub-optimal parameter
values given difficulties in conceptualizing the mapping
parameters M1,M2,M3, and also due to the inherent necessity
for adaptive parameters to accommodate the different patrol
distances. Both of these concerns were addressed by the
automated parameter adaptation solution in APEX BB.

In summary, the empirical findings for both the controlled
user study and the field study indicate that our Adaptive
Parameter EXploration algorithm enabled efficient interac-
tions between human supervisors and adaptive robot au-
tonomies, for two distinct systems with different parameters.
Results further demonstrated that APEX-enabled autonomies
out-performed both expert-tuned statically-configured au-
tonomies, as well as fully tele-operated setups.

VIII. CONCLUSION

In this work, we introduced Adaptation from Participa-
tion (AfP), both as a streamlined interaction paradigm for
collaborative human-robot teams, as well as a computational
problem. AfP shares many commonalities with the related
problem of Learning from Demonstration, yet its distinc-
tiveness arises due to the formulation of human-assisted,
online parameter adaptation to changing task objectives
and conditions. We implemented AfP using the Adaptive
Parameter EXploration (APEX) algorithm, and described
instantiations of APEX on two distinct robot autonomies

within both aerial and terrestrial contexts. We also presented
empirical evaluations of these APEX-enabled autonomies,
which demonstrated higher team efficiency through increased
performance and reduced user interventions. These multi-
domain findings revealed that APEX consistently outper-
formed tele-operated setups, and further resulted in compet-
itive task efficiency among non-expert users when compared
to expert-tuned non-adaptive robot autonomies.

We are actively expanding our investigations on the gen-
eralizability of APEX-enabled human-robot teams within
diverse applications. We also seek to improve this method’s
scalability for large numbers of discrete parameters. Finally,
we plan to characterize in further depth the performance
differences between the deployment of APEX on black-box
autonomies and on white-box autonomies.
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