
An Overview ofKALI: a System to Program
and Control Cooperative Manipulators

Vincent Hayward
Laeeque Daneshmend

McGill Research Center for Intelligent Machines
3480 lTniversity Street, Montreal, Quebec Canada H3A 2A 7

Samad Hayati

Jet Propulsion Laboratory, Robotics and Teleoperators group
4800 Oak Grove Drive, Pasadena, California 91109, U.S.A.

Summary

A software and hardware system, called Kali, for programming and controlling coop­
erative manipulators is described. It has been designed at McGill University in a col­
laborative effort with the Jet Propulsion Laboratory. A set of programming primitives
which permit a programmer, human or automated, to specify cooperative tasks are first
outlined. In the context of cooperative robots, trajectory generation issues are discussed
and our implementation briefly described. Software engineering for system integration
is also discussed. Finally, the paper describes the allocation of various computational
tasks among the elements of a multi-processor computer. Target applications presently
envisioned include space robotics, power line maintenance, and other resource industry
applications.

1 Introd uction

Since the earliest attempts,l the goal of designing a well structured robot programming
language with accurate semantics has always eluded researchers. Robot languages must
account for a hierarchy of models and abstractions.2,3 A possible decomposition is out­
lined here. At the highest level, the system and its task can be described in terms of
formal logic, for which a grain size at which such a description is appropriate must
be chosen. At a lower level of abstraction, it is possible to use automata models, in
which robot tasks are described in terms of state changes. At an even lower level, robot
systems can be described in terms of processes which have a finite life time and which
explicitly deal with the notion of time. At the lowest levels, descriptions can be made
in terms of continuous functions (i.e. kinematics) and feed-back control. Thus, many
representations, some of them of a geometric nature, must be explicitly or implicitly

In Hindu mythology, Kali the Divine Mother, is often represented as a creature with many arms.

Fourth International Conference on Advanced Robotics.

K. J. Waldron (ed.), Advanced Robotics: 1989
© Springer-Verlag Berlin Heidelberg 1989

548

included in robot programs. This multiplicity of representations, and the need to inte­
grate various types of sensing and acting modalities, has hindered the development of
general purpose robot programming languages.

The programming and control of multiple cooperative robot manipulators represents a
significant step in complexity and computational requirements in comparison to that.
of a single robot. Even though the essence of the problem remains the same. some
wncepts developed in the context of a single manipulator which fail to extend to the
ca~e of several manipulators clearly show their weaknesses. The development. of Kali is
helping t.o pinpoint. some of these concepts.

In view of these considerations, we have designed a robot controller to conduct research
in robot languages which can handle multiple manipulat.ors, and which is based on
an open architect.ure, both from t.he software and the hardware point of view. Kali
addresses t.he lowests levels of representation hierarchy outlined above: feedback control,
processes, and st.ate changes.

The implementation of this controller is in its final stage. It is taking place simulta­
neously at McGill University and at the Jet Propulsion Laboratory. A portion of the
design is based on the ReeL system,4,5 which now has led to numerous projects,6,7,8,9
or inspired others.10 The design philosophy of Kali is different from industrial systems
specifically designed for off-line programming,ll in that we insist on implementing on­
line control methods to provide for experimental sensor integration and provide a base
for advanced telerobotic systems.1 2

The open architecture concept allows us to treat questions such as the user interface,
tasks simulators, and programming aids as applications and not motivations of our
software.

In this paper, we shall present the basic algorithms that we have implemented to achieve
programming of coordinated multiple manipulators, the software structure that embod­
ies them, and the hardware configuration that runs them.

2 Algorithms

Instead of designing a robot control language, we provide the user, human or automated,
a collection of algorithms accessible through a standard interface. At the present time,
as in ReeL, this interface consists of a set of functions and global variables. Another
interface for future development will consist of a set "objects" in the sense of object­
oriented computer programs implemented using Smalltalk, for example.

Several basic algorithms concerned with the abstract notion of "motion system" form
the core of Kali. A motion system is an instance of a collection of actuated joints and
links with known dynamic and kinematic properties whose behavior can be described
by a motion descriptor specifying a number of constraints such as: velocity, time of
arrival, maximum wander, etc ...

It is up to the programmer to decide what constitutes a motion system. Most of the
time, motion systems will be such that their overall kinematic mobility is six. For
example one manipulator, or two manipulators rigidly connected through a common
load. Of course, this is always a matter of appreciation. It is not easy to tell the
mobility of system if one accounts for flexibility. It also depends on the nature and the
capabilities of the underlying feed-back control.

A motion system can also have a mobility smaller than six. Such a case occurs, for
example, when a manipulator is controlled to perform a compliant motion. In this

549

case, it is possible to consider that the manipulator looses some degrees of mobility
due to natural constraints. This case is handled in Kali by including in the geometric
description of the motion a representation of the "difference" between the ideal motion
and the actual one. A similar case occurs when the controlled mechanism becomes
kinematically singular.

\\'e also need to consider the case when a mot.ion systems has more than six mechanical
freedoms. It. is legitimate to consider a "redundant manipulator" as a single motion
:;y:;tem: If sOllle implicit wnstraint is given to re:;olve the kinematic redundaucy, the
property of redundancy is then hidden from the programmer.

The consideration of all the constraints contributing to the execution of a task must lead
to the decision of what constitute a mot.ion system. to a certain extent, independently
from the available control algorithms. For example, consider the task of carrying a
common load with t.wo manipulators. It is clear, according to the above definition, that
when the two manipulators reach for the grasp position, they must be considered as
independent motion systems. At grasping time. as well as when the load is lifted from its
support, the topology of the mechanical system varies, and if the grasps are sufficiently
rigid, we will probably choose to merge the two manipulators and their load into a single
motion system to which task constraints can be applied. It should be noted that these
abstractions can be made independent from the servo-control algorithms which can be
employed t.o achieve correct behavior.

It is the objective of Kali to capture these abstractions at geometric and trajectory level
and to provide sufficient computing power to implement advanced control methods. We
consider it convenient to classify the constraints which contribute to the execution of a
task into three groups:

• The task constraints are objectives which have to met for the task to execut.e
satisfactorily: to be (or not to be) at a place at a given time, with a given velocity,
or exerting a given force, etc ...)

• The manipulator constraints depend on the properties of the mechanism (reach,
dexterity, manipulability, etc ...)

• Design constraints are imposed by the designer to enforce some kind of performance.
They usually concern optimality criteria such as: minimum time motions, minimum
energy, minimum struct.ural stress caused by accelerations and jerk, etc ...

As appropriate to a particular case, motion systems can include one manipulator,
several manipulators, or other types of equipment such as grippers, hands or micro­
manipulators as commented in a previous paper.13

2.1 Spatial Relationships

We observed that the essence of manipulator programming consists of specifying time­
varying kinematic relationships designed to satisfy various types of constraints.

Positions are conveniently described by frame transformation graphs. As in RCCL, those
graphs adopt a ring structure (see figure 1). Graphs have two kind of nodes: input nodes
and output nodes. Input nodes take their values from information contained wit.hin the
programming system or from sensor data. Output nodes specify the nominal position
of a controlled set of joints and links. It can be shown that no matter how complex the
kinematic loops are, their associated graphs must have the following properties to be
proper:

550

• Being connected;

• All nodes must belong to at least. one closed path;

• Each output. node must be solvable, that is belong to a closed pat.h cont.aining only
input nodes. or output nodes which are also solvable;

• There is ilO dosed pat h with no output node.

III fad. allY proper grapll call be t.ransformed int.o an equivalent. set. of closed pat hs.
called 'rings'. if the nodes are duplicated but. share the same values.

The graph shown figure 1 is equivalent t.o the following equation:

M T D C = Ident.ity

where M represents the "manipulator transform" (an output node), T the t.ransforma­
tion from the manipulat.or's last link to the cont.rolled frame. the "tool transform" (an
input node), and C the coordinate transformat.ion from where the tool should reach, to
where t.he robot. is located. The t.ransform D or "drive transform" (an input node) has
an initial value that reflects the position of the arm before the motion begins, and is
interpolated toward the unit transform in order to produce the desired motion. Such a
graph is set up by one position making primitive.

Fig. 1

For example, with two manipulators, the rings may share common transformation
frames (see figure 2). The transform C represents the transformation relating the base
of one manipulator to the other. This illustrate the case of having two manipulators
rigidly connected alld moving independently.

Fig. 2

On figure 3, which illustrat.es the case of manipulators sharing a load, MJ and M2
are manipulator t~ansforms, D is the "drive transform" which is unity upon motion
termination, such that both position equations are satisfied.

551

Fig. 3

All loops must mult.iply out. as the identit.y transforms. Of course, because of the
uncert.ainty in the models and the servo errors, it is unlikely that a loop cont.aining both
manipulators will have tIlis property. Therefore we int.roduce the transforms, AJ and
A~. in order t.o take into account the discrepancies. During accommodation (regardless
on how it is achieved), the values of Al and A2 will yary slightly. Accommodation can
be perlOrmed while both arms are position servoed by yarying the values until mutual
forces are canceled. Their values can also result. from the readings of t.he positions of
the manipulat.ors if t.he servo algorithm is able t.o self adapt. hI the latter case, the
procedure is analogous to compliant motion.

The next example illustrate the case of a manipulator attached to the end of anot.her one
(Figure 4). A position is specified by indicating which of the frames is the "controlled
frame" and to which applies t.he motion constraints. The total number of position
controlled degrees of freedom remains always six. The various transforms are evaluated
and contribute to the nominal values of the manipulator transforms. Arbitrary graphs
can be creat.ed by means of several loops. The nodes of several loops may point to the
same transform, in order to express mutual relationships.

I­
I

I

c

/
/

Fig. 4

The order of evaluation of the functions bound to the transforms is specifiable by the
user. The normal order is:. sensor-based functions, path-planning functions, and update
of the manipulator transforms.

2.2 Basic Path Planning

A trajectory is viewed as a string of path segments connected by transitions. It is
assumed that the velocity of the controlled frame is the variable of concern during the
traversal of path segments. Accelerations are supposed to be small because the direction
of the velocity should not change abruptly. On the other hand, during transitions, the
acceleration is the variable of concern because of the velocity change. As a consequence

552

the path must be allowed to wander off the ideal trajectory or the manipulator brought
to a stop.

We have developed a transition computation method based on the blending of suc­
cessive path segments. The type of blend is controlled by two factors. The preview
factor conveys the amount of look ahead the system must perform before a transition
and control the shape of the wander. The acceleration factor conveys the amount of
admissible t.rajectory wander. These two factors, and the knowledge of the dynamics
of the system lead to t.he automatic det.ermination of the transition time. A smaller
wander will lead to a longer acceleration period. This method is quite robust and is
not affected by ill-defined trajectories, such as those produced by tracking sensory data,
since it does not rely on boundary conditions in position, velocity, and acceleration.14

The int.erpolation of rotations relies on quat.ernion algebra.

Of course, this method does not produce "optimal" trajectories, but provide a realistic
account of what is needed for general purpose manipulation.

2.3 Advanced 'frajectory Planning

The purpose of an accommodation or optimization procedure is to modify the nominal
linear Cartesian coordinates trajectory in order to better suit the manipulators or the
tasks, according to some design criterion. This may be achieved in two different and
possibly combined ways. Either interpolation along the path is produced by using
a non-linear time scale factor, causing the manipulator to accelerate and decelerate
by demand. or the path is modified. In most cases, we shall attempt to satisfy the
manipulator constraints: actuator torque and range bounds, or obtain motions that
minimize energy, consumption, wear, etc ... A variety indexes can be exploited.

In the first case, the user has the possibility to specify an arbitrary time scale function.
In the second case, the transform equations describing the motions can be written as
follows:

Mi Oi Ti C i = Identity.

In these equations, the Oi'S stand for path modifiers.

As far as the basic path planning process is concerned, the only requirement is that the
quasi-linearity hypothesis remains valid, i.e., the path modifications are not too drastic.
A simple example of an optimizer module would be a process to calculate the deviation
such that the joint variables vary linearly. This method produces "joint mode" motions
while not requiring the handling of special cases in the trajectory generation code. This
is particularly useful in the context of multi-manipulator systems for which the notion
of joint interpolated motions breaks down.

Similarly, during compliant motions, such accommodation procedure have the purpose
to take into account t.he discrepancies between the programmed trajectory and the
actual trajectory as a result of the geometrical constraints.

This procedure can also be used t.o handle singularities. For example, the configuration
of the manipulator may be observed from a kinematic view point. If the manipulator
moves next to or close to a singular point, the concerned joint or joints is or are brought
to rest. The resulting path discrepancy is then included in the position equation. Thus
this procedure allows the arm to move gracefully through points of singularity. Simi­
larly, collision avoidance algorithms can be incorporated into the system in a structured
fashion.

553

2.4 Synchronization

Motions are treated as processes, they are created, go through a sequence of stat.es, and
are eliminated from the system after a while.

Each motion is associated t.o an identification number (id = move (...)) which allows
t.he controlling program to perform furt.her references t.o t.his part.icular motion (such
as: suspend(id)). Since motions are treated as individual processes, synchronization
bet.weell mutiom t.hemselves is also easy t.u achieve t.hrough t.he combined use of mot.ion
control flags and motion parameters such as velocity or time of arrival.l5

As in ReeL, "robot programs" are encoded in a 'user process' which runs asyn­
chronously wit.h respect to t.he actual arm motions. This process is provided with all
the means necessary to synchronize itself with the motions, or the motions with itself.

2.5 Control

At the present time, several schemes are under consideration. Among those, hybrid
control schemes with feed-forward dynamic decoupling will be evaluated.l6 Possible
methods for computing the robot dynamics and kinematics are provided in the McGill
implementation. 17 , 18

Adaptive control is believed to provide us with a means to cope with the difficulty in
the modeling of such a complex system as several cooperating manipulators.l9 Hybrid
force/position control is an essential attribute for true cooperative manipulation. 20 ,21,22
Force control is necessary even for the case of the pure transport problem, where the
object being manipulated is unconstrained by the environment, since internal forces
need to be regulat.ed.

Under ideal conditions, i.e.

o structurally accurate dynamic and kinematic models of the manipulators, the object
to be manipulated, and the environment which constrains motion (if any),

o accurate measures of model parameters;

o rigid body dynamics for all components of the system, and rigid contact between
the manipulators and the object,

the dynamic decoupling scheme of Hayati16 can be shown (in theoretical analysis and
simulation) to provide stable decoupled task space control.

We have formulated a discrete-time single-input/single-output (8180) adaptive control
scheme to cope with sensor compliance and non-rigid body dynamics of the manipulators
and load. The scheme relies upon dynamic decoupling of the task-space dynamics
using a feed-forward model. This scheme has performed well in simulation studies.l9

The 8ISO nature of the adaptive controller lends itself to superposition on a multiple
coordinated manipulator control scheme, and to parallel implementation in the KALI
multi-processor environment.

Practical aspects of this adaptive scheme requiring experimental investigation include:
noise-filtering of force measurements, "jacketing" software to initiate and terminate
the adaptive loop and choose initial parameter estimates, and the effect of actuator
bandwidth limitations.

554

3 Software

The design goal of the software is to create an extensible collection of algorithms pro­
viding a true research tool. New algorithms can be designed to replace existing ones
or to augment them. Programs, coded in the C language, are grouped int.o several
utility libraries in a modular fashion. The very st.ructure of the software design permits
implementors t.o interchange such complex functions as trajectory generat.ors.

Not counting t.he real-time operat.ing system level, the software is divided in roughly
five layers which may consist each of several libraries. Note that these layers do not
necessarily reflect the control layers.

The first layer, known as MUX (McGill U. Extensions) runs on top of a commercial
real time multi-processor operating system called VxWorks. * The function of this soft­
ware layer is to establish an environment suitable for running various synchronous and
asynchronous processes. This operating system interface is a set of functions and global
varia bles that represent, in a generic fashion, the system services necessary to run robot
control code: shared memory management, and a "wall-clock" facility.23

The second software layer is also a support layer and is independent from the operating
system. It consists of several small utility libraries. Currently there is a library for
buffered input and output of data, useful for debugging and dumping data into files. The
'geo' library is a set of functions for geometrical computations on vectors, transforms,
and quaternions. This layer also includes kinematic and dynamic models for our Puma
robots.

The third software layer implements the servo control code and uses the above layers.

The fourth layer is the heart of Kali. It consists of two libraries. The 'rings' library
contain code to maintain and update in real time kinematics loops. As discussed earlier,
loops are oriented graphs whose nodes point to transformation values. Each node is
attached to a function which specifies the 'method' to update the value. Provision is
made for the same function to be attached to several nodes. Also, if a value is shared
by several loops, the update will take place only once. Intermediate values, results of
transform multiplies, are stored into an internal hash table in order to avoid redundant
computations. There is no need to keep track explicitly of the fact that the same
kinematic relationship may be used several times. The other library, the 'emotion'
library, contains the 'method' to compute smooth interpolated Cartesian coordinate
trajectories according to a variety of constraints specified in a 'motion record'. Robot
programs using the 'emotion' library can be extremely verbose.

Each motion is treated as a process. As it is common practice in software engineering,
a process, when created, is represented as a record which remains in existence for an
extended length of time in the system by means of a ring buffer.

The fifth layer is application dependent. It may consist of user level functions to simplify
task descriptions. For example, functions specific to dual-arm control can be developed
at this level. It may also consist of communication software to make the Kali primitives
accessible from a host machine running more advanced software development tools.

4 Run Time Structure

The run-time task structure has been devised in such a way that few and simple task
synchronization mechanisms are needed because efficiency considerations prevail. These

* A trademark of Wind Rivers Systems Inc.

555

mechanisms are easily implemented using most general purpose real-time operating
systems.

The run-time structure consists of a set of processes, some of which are high priority
synchronous processes, some others are low priority and may execute asynchronously.
The processors are distributed over an array of processors connected b~' a bus.

The task allocat ion reflects the attempt to minimize bus traffic, and synchronized illt er­
process cOlllIllUnications. Short delays are paramount. to obtain adf'<juatf' control. In
many 01 her proposed architectures, pipelining is seen as a method for improving cont rol
by augmenting the computational through-put. Unfortunately, this approach fails to
take into account that the benefits of high rates are often lost in the computations delays
spent in the stages of a pipelined architecture which cause the correction signals to be
computed on stale data.

To improve the control rate, we adopt a different approach based on the consideration
of t.he physics of the plant to be controlled, on the structure of the control algorithm,24
.17 and t.he evolution of t.oday's computing technology. First, rapidly changing quan­
tities (control error, for example) are updated more often than slowly changing ones
(inertia characteristics, for example). Second, parallelism is achieved by observing that
certain computations, within one sample period, can be performed independently from
others, and by allocating them on a limited number of concurrently running processors.
Although it has been observed that a great deal of parallelism can be achieved in this
fashion at the cost of great hardware complexity, we have preferred to make use make
a limited use of it in favor of simplicity. Finally, the technology of processors is rapidly
improving performance and we base our design on conservative projections.

4.1 Synchronous Processes

As in RCeL. there exists a main synchronous process whose task is to compute nominal
set-points for the manipulators. The main function calls n instances of a function called
switcherO, one per motion system with their associated environment. The user's
monitor functions are invoked first, then the motion queue is examined and book keeping
operations pertaining to the state of the active motions are performed. Finally, a call
to the function valuateO is made in order to invoke, in the requested order, all the
functions bound to active kinematic loops. Of course, among them, there will be the
Cartesian motion generator and manipulator motion generators.

Others synchronous processes implement the servo control algorithm. There is also also
a synchronous I; 0 process which runs at the same frequency as the servo process. This
process is in charge of gathering sensor information: joint position, current, wrist force
readings, etc. .. and post them in a shared area of memory.

4.2 Asynchronous processes

The main asynchronous process is the so-called 'user process'. It is the process that
cont.ains the 'robot program'. Its mains functions are: presetting the transformation
values, setting up the kinematic loops, issuing the motion requests, synchronizing itself
with the task execution, and performing I/O with the external world.

The other asynchronous processes are related to the dynamic computations. These
processes can run asynchronously because the performance of the system will degrade
only slowly if the data they produce is a little bit '0Id'.25 Four of these processes are

556

needed per robot. The first one computes three sets of forces created by the velocit.y
terms under various conditions: before and after a potential transit.ion, and for the
current set-point. The second one compute the current. gravit.y terms. The t.hird one
updates the inertia matrix. One ot.her comput.e t.he maximum force the robot can
produce.

5 Hardware

\,ye select ed five Heurikon single board computers wit h the Motorola MC68020 and
floating point coprocessor bot.h running at 20 MHz and 1 Mbyte of static no wait
state operation. These processors communicate over a common VME backplane. The
development is done in C and programs are created on a SUN workst.at.ion under Unix*
connected t.o the VME backplane via Ethernet. To furt her off load VME bus traffic
we have selected a system which features t.he VSB secondary bus. The VSB bus serves
t.o access the shared memory for all asynchronous communications. Furt.her details of
the hardware requirement.s and implementation have been present.ed.23 The use of the
VxWoks operating system provides for an easy upgrade (68030, SPARC). Presently, the
initial version of Kali at McGill University can run up to 1 KHz sampling rate.

6 Conclusion

Kali is an attempt at creating an integrated manipulator programming and control
system. A significant amount. of care has been exercised to set up an open environment.
from the software and hardware point of view. For example, we consider using Kali
for controlling manipulat.ors, walking machines, or dexterous hands. In each of these
cases, relevant common programming primitives have been identified and implemented.
Another implementation. under development, utilizes the Harmony operating syst.em. 26

Several other implementat.ions are currently under consideration.

7 Acknowledgments

Credit. must be given to Tony Topper, Ajit Nilakantan, John Lloyd and Ron Kurtz for
their contributions to the project.

The research described in this paper has been funded for the largest part by the Jet
Propulsion Laboratory under contract with the National Aeronautics and Space Admin­
istration. Support through grants from the Natural Sciences and Engineering Research
Council of Canada (NSERC), and a contract. with the National Research Council of
Canada (NRC), is also gratefully acknowledged.

8 References

1. Paul, R. P. 1972. Modeling, trajectory calculation, and servoing of a computer con­
trolled arm. A.I. Memo 177, Stanford Artificial Intelligence Laboratory, Stanford.

2. Hayward, V., Paul, R P., 1984 (June). Robot control and computer languages.
Fifth CISM-IFToMM Symposium on Theory and Practice of Robot Manipulators,
{ldine, Italy.

* Trademark of AT&T

557

3. Hayward, V. 1988. Autonomous control issues in a telerobot.. IEEE Conference on
systems man ilJld cybernetics, Beijin, China.

4. Hayward. V .. Paul. R. P. 1987. Robot manipulator control under Unix: RCCL a
robot control 'C" library. International Journal of Robotic Research. [,(4).

). Hayward. Y .. Paul. H. P. 19:->4 Introduction to RC'C'L: A robot control .(.. lihrary.
Pmc. of First IEEE ('o11fere11c(:" Oil RolJOtics. Atlanta. GA.

b. Llo;·d, .J .. Parker. I'd .. :'I\cC'lain. H. 19:->K. ExtelJding the RCeL enyirollllJelJt to

multiple robots and processors. Proc. 19x8 IEEE Inl. Con!. on Robotics and
Automation, Philadephia. Pa.

I. Guptill, R., St.ahura, P. 1987. Multiple rohotics devices: Posit.ion specification and
("()ordinat.ion. Proc. 1987 IEEE lilt. COIlf. 011 Robolic,~ and Automation. Raleigh,
NC'.

8. Lee, J. S., Hayati, S., Hayward, V .. Lloyd. J. E. 1986 Implement.ation of robot
control C library on the micro vax II. Advances in Intelligent Robotics Systems,
SPIE's Cambridge Symposium on Optical and Optoelectronic Engineering. Cam­
bridge, Ma.

9. Kossman, D., Malowany, A. 1987. A multi-processor Robot control syst.em for
RCCL 11l1der iRMX. IEEE Int. Conf. on Robotics and Automation, Raleigh, Pa.

JO. Trevelyan, J. P., Nelson, M. 1988. Adaptive motion sequencing for process robot.s.
In Robotic Researdl, the Fourth International Symposium, MIT Press.

11. Craig, J. J. 1988. Issues in the design of off-line programming systems. In Robotic
Researdl. the Fourth International Symposium, MIT Press.

12. Backes, P., Hayati, S., Hayward, V., Tso, Kam. 1989. The Kali multi-arm robot
programming and control environment. 1989 NASA Conference on Space Teler­
obotics, Pasadena, Ca.

13. Hayward, V., Hayati, S. 1988. Kali: An Environment. for the Programming and
Control of Cooperative Manipulators. 1988 American Control Conference, Atlanta,
Ga.

14. Hayward, V., Daneshmend, L., Nilakant.an, A. 1988. Model based trajectory plan­
ning using preview. SPIE Conference, Space Automation N, Cambridge, Ma.

15. Nilakantan, A., Hayward V. 1988. Synchronizing Multiple Manipulators. In
Robotics and Manufacturing, Recent Trends in Research, Education and Applica­
tions, ASME Press.

16. Hayati, S. 1986 (San Francisco, April). Hybrid position/force control of multi-arm
cooperating robots. IEEE International Conference on Robotics and Automation,
pp. 82-89.

17. Izaguirre, A., Hashimoto, M., Paul, R. P., Hayward, V. 1988. A new computational
structure for real-time dynamics. International Journal of Robotic Research. (to
appear).

18. Lloyd, E. J., Hayward, V. 1988. Kinematics of common industrial robots. Robotics.
North-Holland. Vol. 4.

558

19. Daneshmend, L., Hayward, V. 1988. Adaptation in the control of multiple coordi­
nated manipulat.ors. In Robotics and Afanufacturing, Recent Trends in Research,
Education and Applications. ASME Press.

20. Fujii, S., and KurOllO, S. 1975. Coordinated Computer Control of a Pair of Manip­
ulators. Proc. 1. !vIedJ. E., pp. 411-41i.

21. Ishida. T. 19ii. Force Cont.rol ill CoordiIliltiOlI of Two Arms. Proc. .'ith I.1('AI.
C'amhridge. i\1A. vol. ~,pp. il i-i1~.

22. Arillloto. S., :\Iiyazaki. F .. and himilIll1lra. S. l!I.'ii Cooperat.ive lllotioll COlltrol of
l\lultiple Robot Arms or Fingers. Proc. 198i IEEE Int. Con£. 011 Robotics and
11utollliltion. pp. 140i-141::.

23. Topper. A .. Daneshmelld. L.. Hil:nvard, Y. 19Fix (011awa, Canada, November). A
wm]Jut.ing archit.ecture for a Illultiple robot controller for space applications (Kali
project). Fifth CA.S] Conference on Astronaut.ics.

24. Khatib, 0 .. Burdick . .J. 19xG. !Vlotion and force control of robot manipulators.
IEEE Intf rnational Co nff 1'f ncr on Robotic,I and Automation, San Francisco, Ca.
pp. 1381-1386.

25. Kirranski, N. Kircanski, M., Vukobratovic, M., Timcenko, O. 1986. An approach
to development. of real t.ime robot. models. IFToMM Symp. ROMANCY, Krakow.

26. Gentlemen, W. M. 1985. Using the harmony operating syst.em. Technical Report
ERB-966 (NRCC No. 24685). National Research Council, Ottawa, Canada.

