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Multiple-Goal Kinematic Optimization of a Parallel
Spherical Mechanism with Actuator Redundancy

Ronald Kurtz and Vincent Hayward

Abstract—A new kinematic design will be presented that is fully parailel
and actuator redundant. Actuator redundancy refers to the use of more
actuators than are strictly necessary to control the mechanism without
increasing the mobility. The uses of this form of redundancy include the
ability to partially control the internal forces, increase the workspace,
remove singularities, and augment the dexterity. Optimization will take
place based on several objective functions. The kinematic dexterity, the
forces present at the actuators, and the uniformity of the dexterity over
the workspace will all be investigated as potential objectives. Global
measures will be derived from each of these quantities for optimization
purposes. Examining only a single objective may not yield an acceptable
design. Instead, optimization of several factors is done simultaneously by
specifying a primary objective and minimum performance standards for
the secondary measures.

I. INTRODUCTION

Parallel kinematic structures are important means to improve the
performance of robot manipulators. Justifications for this have been
extensively discussed in the literature, for example [10], [13], [15],
in terms of structural and actuator advantages. Much attention have
been devoted to the analysis of these structures from the kinematic
(position and velocity) and dynamic viewpoints. A survey of these
techniques, even partial, would be quite impossible to fit here, so
references will be made as needed.

Of the immense number of possibilities offered by parallel kine-
matic structures, it appears that two have been extensively used: the
pantograph mechanism and its derivatives (vast numbers of industrial
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manipulators), and the iso-static (or Stewart) platform. Many others
have been proposed and used, but once again, a survey would be
outside the scope of this paper.

The observation of biological manipulators was used to suggest
alternate structures that could contribute to the design of manip-
ulators. From a kinematic viewpoint, dualities between serial and
parallel mechanisms have been pointed out [17]. One of them is not
often discussed: the relative work volume for a given mechanical
mobility. Serial chains have a large workspace (and poor structural
properties); parallel ones have a reduced workspace (but good struc-
tural properties). It is not surprising that biological manipulators
have hybrid structures: bones, tendons, and skeletal muscles form
numerous chains closed regionally, yet the general architecture of
biological manipulators is serial [8]. In addition, the work volume
of biological manipulators can be large, for example, the human arm
[12].

Part of the human shoulder can be approximated by a spherical
ball and socket joint actuated by six muscle groups to control three
degrees of freedom when four are strictly needed. This can be
viewed as a case of actuator redundancy in which the redundant
shoulder muscles are used to supply the internal forces needed to
keep the humeral head (ball) firmly anchored to the glenoid (socket)
throughout a large workspace. It also can be viewed as a means
to increase workspace, among many other plausible interpretations
such as the possibilities offered by antagonist actuation. This has
inspired the development of a mechanical counterpart with similar
properties: a three-degree-of-freedom mechanism fully parallel and
actuator redundant. A detailed kinematic analysis has revealed that
actuator redundancy can be used for more than just controlling
internal forces [7]. Increasing the workspace, removal of singularities,
decreasing joint forces, and improving dexterity are all possible with
this technique.

This paper is concerned with the design optimization of the
said mechanism, which consists of determining fixed geometric
parameters in accordance with some set objectives. For any design
problem, there will potentially be many objectives that cannot all be
satisfied simultaneously. In addition, technological constraints must
be considered before a practical design can be realized. Here, the
focus is on kinematics and on the determination of a range of good
designs from this perspective.

Purely numerical methods of optimization are avoided as they
would give no insight into the workings of the mechanism. Instead,
the approach is to form a hierarchy of objectives. Each objective
will be examined in turn to reveal the best designs. The idea is to
maximize the high-order objectives such that the low-order objectives
satisfy some minimum criteria.

II. DESCRIPTION OF THE MECHANISM

The general case of a spherical fully parallel platform mechanism
with linear actuation consists of a movable body attached to n legs
with one actuator per leg. Each leg has one prismatic joint interposed
between two spherical joints. A point of the platform is constrained
by a spherical joint permitting freedom of orientation (see Fig. 1). Let
us denote the center of rotation as C, the point of attachment of each
leg to the platform as P;, and the point of attachment of each leg to
a fixed frame A;, ¢ = 1,...,n. For the nonredundant case, n = 3,
with n > 3 for all the redundant cases. The parallel mechanism to
be described will have four actuators, one being “redundant” — yet
essential!

1042-296X/92$03.00 © 1992 IEEE
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Fig. 1. (a) General case of a fully parallel mechanism. Point C' is fixed,
preventing translations but permitting arbitrary rotations. The particular case
shown in (b) has a debilitating singularity in the middle of the workspace.

@ (b)

Fig. 2. Schematic arrangement of (a) a separated and (b) a grouped actuator
redundant manipulator.

Among all possible ways to configure this mechanism, we will
discuss some interesting cases that will arise from the attempt to
introduce simplifying symmetries. It is first assumed that C' should
be in the plane formed by P;. In the absence of particular constraints,
it is reasonable to place the attachment points to the mobile platform
(P;) in a symmetrical arrangement. Under these conditions, simple
geometrical descriptions can be adopted. The primary goal of this
design is to maximize the usable workspace, as a small workspace
is a deficiency of most parallel mechanisms. The workspace limit is
reached either when an actuator touches one of the trusses or when
two actuators intersect. Interestingly, in all practical implementations
we could think of, the orientation workspace always is limited by self-
interference and never because of a kinematic singularity condition
[7]. By grouping the fixed attachment points in pairs so that Ay = Ao
and A3 = A4, we climinate a source of self-collisions of the grouped
actuators and enlarge the workspace. This leads to the basic concept
of a mechanism depicted in Fig. 2. The nomenclature, as well as
the coordinate frames and variables to be used as part of the design
optimization are now defined.

The rotation matrix 2@ with respect to base coordinates centered
in C is described by three Euler angles v, ¢, and 4, where ¢ is a
rotation about the r axis, ¢ is a rotation about the new y axis, and ¢
is a Totation about the new = axis: 2Q = Rot.(¢)Rot,(¢)Rot.(6).

Euler angles suffer from many problems: they are are not unique
nor invariant, the geometry of orientations in these coordinates are
contorted, they suffer from degenerate points, they are cumbersome to
manipulate mathematically, and they are computationally expensive.
However, they have the relative benefit of being easy to visualize
when compared with other representations. Because of this, the results
of this paper are presented in terms of the above set of Euler angles,
considering that any simple implementation would be unable to tilt

by more than 90°. In this restricted domain, the magnitudes of the
tilt angles ¥ and ¢ will be less than 90°. The angle 6 represents the
swivel of the mechanism about the outward pointing normal of the
platform, without such restriction.

The solutions to the forward and inverse kinematics problems have
been presented in [7]. Is is fortunate that a closed-form solution to
the forward problem exists as it is often quite a difficult problem for
parallel mechanisms. By performing a velocity analysis we can solve
for the Jacobian. The defining equation of the Jacobian J is p = Jw,
where p is the 4 x 1 vector of actuator rates, and w is the 3 X 1 vector
of angular velocity. As expected, the inverse Jacobian is much easier
to solve for than the forward one, as the actuator velocities can be
readily obtained as linear combinations of the angular velocity. The
4 x 3 Jacobian matrix J is explicitly known, and from it the loci of
singularities of the four submechanisms were derived [7].

A remarkable feature resulting from the addition of a fourth
redundant actuator is the “climination” of the loci of singularities.
It is in fact possible to show that, for the grouped actuator case, all
singularities are eliminated except when the plane containing points
P, also contains A;’s (¢ = £90°). The equivalent mechanism with
only three actuators has several debilitating singularities within the
usable workspace. This illustrates one use for actuator redundancy,
namely, the elimination of singularities. Other significant benefits
imparted by actuator redundancy are the ability to control internal
forces in the mechanism, and improvement of the accuracy and
dexterity.

Assuming perfect spherical joints, the workspace of this mecha-
nism has also been investigated. It was found that the one important
factor is the combined thickness of the actuators and central post (¢)
in relation to the base offset length I, defined as the half distance
between opposite A points. The singularities are in fact outside the
workspace for any realistic design. Fig. 3 plots the range of swivel
angle @ versus the tilt angles ¢ and ¢' for Iy/t = 20,10.5. The
plots are reasonably flat showing a large usable workspace with
over 230° of swivel throughout. The uniformity and volume of the
workspace increases as I/t increases. In the limiting case, if the
actuators have zero thickness, then the boundary of the workspace
would occur when —90° < v.¢ < 90° and —135° < 6 < 135°
irrespective of any other design parameter. In addition, we have
found gimbal arrangements for the implementation of each of the
spherical joints that do not lead to any kinematic “lock” throughout
the interference-free workspace.

We have just summarized the properties of a combinatorial mecha-
nism, which shares the overall properties of any parallel mechanisms
while overcoming a significant disadvantage. The rest of this paper
describes the efforts that were made to take full advantage of these
properties from a kinematic point of view.

III. OPTIMIZATION OF THE PARALLEL MECHANISM

A. Formulation of the Optimization Problem

The methodology used here to optimize the mechanism can be
broken down into two stages. The first stage consists of simplifying
the problem by reducing the number of independent variables down to
a manageable set. The points of attachement of the four actuators, A;
and P;, yield 24 variables. Numerical optimization on this set would
be quite cumbersome. A symmetrical layout of points P, reduces
the number of independent variables to 13. In order to maximize
the workspace by limiting the collisions of actuators, points A; are
grouped, giving the three design variables I, 1y, and I4. The variable
1, is the length of the center post giving the height of the mechanism.
The base offset length I, specifies the width of the mechanism,
and Iy is the lever length specifying the dimension of the mobile
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Fig. 3. Workspace of the grouped actuator manipulator. Actuators and trusses
are composed of cylinders with an aspect ratio of (a) 20, (b) 10, and (c) 5.
The range of possible 6 is plotted for each value of ¢ and . Notice that,
for practical considerations, the workspace is independent of ¢ and " except
when they assume large values.

platform. Notice that all three variables have the dimension of length.
In terms of kinematics, the scale of the mechanism will have no
effect. Arbitrarily, I4 will be set equal to one, and I, and 1, will be
the two independent design variables. Now that we have simplified
the problem from 24 to 2 variables, a numerical method will be used
to optimize the design according to some objective function.

For the second stage, the mechanism is numerically optimized
according to a primary objective function expressing the desired
performance. Secondary objectives will then be investigated to ensure
that any resulting designs satisfy certain minimum criteria. Even
though this methodology may not give precise or unique solutions, an
understanding of the mechanism is developed. A strictly numerical
approach would not lend any insight into the problem.

B. Selection of the Objective Function

1) Primary Objective—Dexterity: One important consideration in
the design of all robotic manipulators is their dexterity. Intuitively
we have some idea of dexterity, such as the ease and accuracy with
which objects can be manipulated. There have been several attempts
to quantify this, each with their own advantages and disadvantages.

The focus has been placed on kinematics rather than dynamics,
and therefore a measure of dexterity in terms of the Jacobian will
be used. Klein and Blaho [11] compared several of these measures
and found that the condition number of the Jacobian matrix was the
preferred index because it has a direct physical significance as seen
in the following relations given by Salisbury and Craig [14]:

l[6w] léall
Il = ¥ 50 M
sl lI6nll
7 < F ) @

where n is the external moment applied to the mechanism, f is the
4 x 1 vector of joint forces, and k(J) is the condition number of the
Jacobian matrix. The condition number is a local measure dependent
solely on the configuration. From (2) we see that the condition number
gives the amplification factor of relative errors when going from joint

to Cartesian coordinates. It can also be thought of as a measure of
sensitivity to external perturbations. If én is a small disturbance, then
the condition number gives an upper bound on the resulting relative
change in joint forces. The knowledge of the condition number is
thus a primary factor in the selection of sensors and actuators to
achieve a given performance. Conversely, bounds on the performance
of the mechanism can be derived from the properties of given sensors
and actuators. As a measure of dexterity, the condition number is
related to the accuracy of the mechanism in a specific configuration.
The condition number ranges in value from one (isotropy) to infinity
(singularity) and thus can be regarded as a measure of the “distance”
the particular configuration is from a singularity [1].

Given task specifications, other indices such as the actuation index
[9] and the compatibility index [4] could be used. For cases in
which the dynamics of the manipulator is important, uniformity of the
inertia matrix [2] or dynamic manipulability [18] could be important
considerations. The optimization is being carried out independently
of a specific task for greater generality, and so these measures would
not be appropriate.

Any m x n matrix J can be factored into the following form,
known as the singular value decomposition:

[Tmscn = [0 Jmxcon [Blmxn [VInxn (©)

where U and V are orthogonal matrices and X is a diagonal formed
with the singular values. For m = 4 and n = 3, we have the
three singular values o; > o2 > o3 > 0. The condition number
can be expressed in terms of these singular values: k(J) = a1 /03.
The reciprocal of the condition number will be used as the measure
of local dexterity: D; = 1/k(J) ranges from O (singularity) to 1
(isotropy). For purposes of design we need a global dexterity index
independent of the orientation of the platform. The integral of the
local dexterity measure over the workspace, as defined in [3], could
be one such possibility. Another is the global conditioning index as
in [6], given by

 fyDidw [, 1/k)dw
o S dw a Jwdw

This is the dexterity integrated over the workspace and normalized
by the volume of the workspace. It gives a measure in the range
0 < Dy <1 that is independent of the size of the workspace, unlike
a simple integral. For this reason, D, will be used as the objective
function to be maximized over the design variables.

One of the problems with an integral measure is that it represents
an average and therefore does not take into account any poor local
behavior exhibited by the manipulator. Two additional indices will
be presented as secondary objectives. These will be selected to help
pinpoint a good design as well as to provide the designer with a better
insight into the workings of the mechanism.

2) Secondary Objective—Actuator Forces: The first index is once
again related to the singular values of the Jacobian. For a parallel
mechanism, the Jacobian maps the joint forces f to the external
moment n under the condition of static equilibrium as follows:

n=Jf. )

D

Q)

Using the left pseudoinverse, the minimum norm solution to this
equation is

F=JUJT) 'n (6)

From the singular value decomposition theorem we can place bounds

on Il
lInll/or < 1I£Il < Inll/os. Q)
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Fig. 4. Local dexterity D; of the mechanism for three isotropic designs plotted on a scale that varies from 0 to 1. For each
plot the angle @ varies in a range £135° and ¢ in a range +90°. When (a) [y = I, = 0.7, several of the isotropic points
are “spikes” that would not serve as good operating points. For I, = I, equal to (b) 1 and (c) 5, the flatness of these points

increases resulting in superior designs.

For parallel manipulators, one of the characterizing features of the
region surrounding a singularity is the abnormally low joint velocities.
In terms of statics, the joint forces should approach infinity as one
nears a singularity. For a given external moment, the minimum
singular value provides an upper bound on the magnitude of joint
forces. Maximizing this value would reduce the force along the
actuators and hence keep the mechanism well conditioned. Thus,
we define F; = 1/o3 as a secondary local measure for purposes
of optimization. There is no maximum value for F;, but there is a
minimum of zero when the mechanism is singular. Once again we
integrate this measure over the workspace to form a global measure
F, that can be used for design.

P fWdew _ fw 1/osdw
T fydw T fydw

®

3) Another Secondary Objective—Uniformity: Maximizing the
global indices Dy and Fy is not enough to ensure a good design,
as this gives no indication of the uniformity of the dexterity over the
workspace. The relative variation of these measures should be kept
as small as possible to make the dextrous regions more consistent
and useful. Portions of tasks requiring high accuracy can then
be structured about operating points of maximum dexterity. These
configurations would be of little use if the dexterity in the immediate
neighborhood dropped drastically. Any small rotation would then
reduce the dexterity resulting in a configuration with a high sensitivity
to errors, an amplification of noise, and poor controllability. Consider
the three plots of dexterity in Fig. 4, all of isotropic designs with
1, = Ils. As I, approaches 1 /V/2, the dexterity in the vicinity of
the isotropic points degrades and becomes more spiky. Notice that
Y= 145°, 0 = £45°, 6 = 0, and Iy = I, = 1/+/2 causes one
of the actuator lengths p to go to zero and the determinant of the
Jacobian to become unbounded, and hence singular.

One way to check the uniformity of any function is to look at
the magnitude of its gradient. Thus, a local measure of flatness of
the dexterity would be GD; = ||V D||. Integrating this to obtain a
global measure would obviously not be a good idea. Thus, we define
the global gradient index as

GD, = mV%XGDI = mwax||VD1H. )

If GD, is zero, then the dexterity is uniform throughout the
workspace. Taken alone this is not necessarily good, as the dexterity
could be uniformly bad, everywhere. As G D, increases, the dexterity
will become less uniform and spikier in at least one point in the
workspace.

IV. CARRYING OUT THE OPTIMIZATION

A. Computational Issues

The objective function used to optimize the design is based on
an integral of the dexterity defined in terms of the singular values
of the Jacobian. This function does not have an analytic form. The
singular values can be computed numerically with good accuracy, but
this requires a large amount of computational time. The integral of
the dexterity must also be computed numerically as no closed-form
solution exists. Since function evaluations are expensive, the integral
will be approximated by a discrete sum.

(10)

where w is one of N, points in the workspace of the mechanism.
Therefore

1
Dy~ 5 > D 11)

weW

For the sum to approximate the integral, the orientations w should be
uniformly distributed across the workspace. A uniform sampling of
the three Euler angles will obviously not be appropriate. Finite rota-
tions can be conveniently interpolated using quaternion coordinates,
four-dimensional quantities composed of a scalar part go and a three-
dimensional vector part 7, ¢ = (go, ¥’ ), Where v = (1,92, 93)-
In terms of Euler’s theorem, any rotation of a rigid body can be
expressed as a rotation about an axis 4 by an angle 6. This is related
to quaternions as follows: go = cos(¢/2) and T = asin(8/2). Thus,
any rotation can be represented by a quaternion of unit magnitude,
llgll = 1. Since a rotation of § + 2 about & is identical to a
rotation of @ about , it can be shown that ¢ and —q are in fact
the same rotation. Thus, the space of rotations falls on the upper half
hypersphere ||g|| = 1.

The problem can now be stated as how to uniformly sample
the unit hypersphere. In general, no closed-form solution exists
for this problem. In 3D only the vertices of the regular polyhedra
with triangular faces lead to a uniform sampling. The largest is the
icosahedron each with 12 vertices. For more points we can subdivide
the faces of these solids and project the resulting vertices onto the unit
sphere. Although this does not give an exact uniform distribution, it is
nonetheless a good approximation. This technique, popularized by R.
Buckminster Fuller, has been used extensively to construct geodesic
domes from a subdivided icosahedron. For an even better distribution
of points, we can combine the vertices of the icosahedron with its
dual, the dodecahedron, and then subdivide the faces.

As in the 3D case, the vertices of the regular polytopes are
used, and if more are needed, then the faces are subdivided and
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projected onto the unit hypersphere. The regular polytopes have been
enumerated [5]. The largest has 600 vertices. For more vertices, we
can subdivide the 120 tetrahedral cells of its dual and project the
resulting points onto the unit hypersphere, resulting in 720 points
on the unit hypersphere, each separated by approximately the same
distance. Only the set of rotations that lie inside the workspace
of the manipulator are used when forming the global dexterity
measure, reducing the number of rotations from 720 to 368. This is
enough to use in (11) to approximate the integral by a discrete sum.
From symmetry considerations the dexterity need only be evaluated
in one quadrant of the workspace, and so the number of points
effectively reduces to 92. Since each evaluation of the local dexterity
is expensive, we would not want to use more than this number of
points.

Since we have no closed-form representation of the local dexterity,
the gradient measure G D; must be approximated numerically. Once
again the computational complexity of the singular value decomposi-
tion is a limiting factor, and so the gradient will be approximated by
first-order difference equations. Quaternions are the natural choice
of coordinates for doing interpolations of rotations, and hence the
gradient operation will be performed in this coordinate system. One
problem with this method is that only three elements of the quaternion
are independent. Thus, the gradient can be approximated by only three
first-order difference equations as follows:

oD, oD, BDI]

(12)

VD, = |22 92 O
I [341 dqs " Ogs

where

@ - Di(q1 + Aqi,q2.93) — Di(q1. q2, g3)
A Aq1

The remaining partials are found similarly. The global flatness
measure G D, is approximated by calculating the maximum of GD;
over the 92 points defined above. This requires four evaluations of
D, for each orientation for a total of 368 evaluations for each set
of design variables.

Although the optimization will take place on the above global
measures, it is still important to examine the local behavior of the
mechanism in terms of dexterity.

. (13)

B. Local Behavior of the Mechanism

Ideally, we would like the mechanism to be as accurate as possible
throughout the workspace. It is impossible for the mechanism to
be isotropic everywhere; however, for many applications involving
delicate work it is sufficient for the manipulator to be isotropic in a
discrete set of orientations. These optimal configurations could then
serve as an operating point for much of the task. Placing one of
these configurations at the center of the workspace would yield the
maximum benefit.

The Jacobian is isotropic only if it is proportional to an orthogonal
matrix. This implies that the columns are mutually orthogonal and
that they all have the same magnitude. The Jacobian at the center of
the workspace (Euler angles ¢» = ¢ = § = 0) is given by

[ A
J= ! _III’ :;P ”; (14)
VI2+/VE-by )| T T b

-, I, I

Only when ly = [, is the Jacobian isotropic in this configuration.
Fig. 5 plots the dexterity of the manipulator over the workspace
when I, = I, = Iy = 1. It is interesting to note that there are
several configurations where the mechanism is isotropic (see Table
I). These configurations also correspond to maxima of the dexterity

Fig. 5. Dexterity D; of the grouped actuator paraliel mechanism plotted on a
scale that varies from O to 1. Here, Iy = I, = I, = 1. The three-dimensional
plots are of the local dexterity D; versus two Euler angles ¢ varying in the
range £90° and @ in the range £135°. Each plot is done for a different
value of ¢. Notice the isotropic points (D; = 1) present for ¢ = 0 and
¢ = 45°. When ¢ = 90° the manipulator is in a singular configuration, thus
the dexterity is identically zero.

TABLE I
IsoTROPIC CONFIGURATIONS FOR Iy, = I3 = I, =1
RANKED BY MINIMUM SINGULAR VALUE

P [} [ Minimum Singular Values
0 0 0 1.12
90 45 90 1.00

90 245 -90 1.00

+45 0 45 0.82

+45 0 +135 0.82

gradient. As the tilt angle ¢ increases, there is an overall loss of
dexterity culminating in the singularity (D; = 0) when ¢ = +90°.
Roughly speaking, the dexterity is high anywhere in the range
|| < 60°,|v| < 90°,]8] < 135°. This provides a large usable
workspace free of singularities and well suited for accurate motions.

C. Results of the Optimization

The resulting surface Dgy(ls,1,) is shown in Fig. 6, where [, and
I, range in value from 0.1 to 10. The surface is saddle shaped, with
no apparent maximum. The ridge of the saddle corresponds to the
isotropic designs (I, = I,) forming a locus of highest dexterity (Fig.
7). The maximum values of D, occur when (I5,1,) — (00, oc) and
(I,1p) = (e,€) where € — 0. The first maximum does not lead to
a realistic design, as the link lengths tend to infinity. The second
design is equally bad because I, = I, = 0 causes the singular values
of the Jacobian to be uniformly zero and hence the manipulator is
singular. Only in the limit is the dexterity high. This can be clarified
by looking at the secondary objective function Fy, which takes the
average of the minimum singular value over the workspace.
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Fig. 6. The global dexterity Dy as a function of I, and [;,. These lengths
range in value from 0.1 to 10 on a logarithmic scale. There is no optimal
value for this “saddle” shaped function. The highest dexterity occurs along
the ridge I, = Ip, the isotropic designs.
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Fig. 7. The global dexterity of the isotropic designs for various values of
Iy = I, when [y = 1. Shown are also some isotropic designs and their
corresponding location on the curve.

Since the condition number was incapable of finding an optimal
design, we will try to maximize one of the secondary objectives,
namely, to have the largest average minimum singular value (Fy)-
This function is plotted for various designs in Fig. 8. Once again
the best designs in this respect are those that attain isotropy. Unlike
the previous optimization, only those designs with large values for
I, and I, give good results, while those with small values of the
design variables cause F, to decrease toward zero. Next, a numerical
maximization of F, was performed using Powell’s multidimensional
method [16]. A single maximum was found for I, = I, = 36, but
it does not lead to a reasonable design either! The maximum is in
fact quite broad with the function showing little difference when the
design lengths change by a factor of 100.

The uniformity of the dexterity measures should now be checked
to ensure that the final design will have a consistent and predictable
behavior. Fig. 9 shows the maximum gradient of the dexterity (GDy)
over the design variables. The magnitude of the gradient approaches
infinity for I, =1, = 1/ /2 when one of the actuator lengths can go
to zero. It is interesting to note that the global dexterity for this design
is not low, even though it contains a singularity of the Jacobian. The
ability to detect this condition is one of the justifications for using
the gradient method. The flatness of the dexterity is maximized when
I, approaches infinity or zero, and is quite good everywhere except
in the vicinity of 1/+/2.

Although maximization of the global dexterity was unable to
produce a realizable design, it is possible to describe a space that
yields interesting designs. This is done by specifying some minimum
criteria for the performance indicators. One such rule could be
to permit designs for which the performance is within a certain
percentile of the maximum (see Fig. 10).

Last, physical realizability will impose additional constraints on the
design variables. An acceptable heuristic would be to select a design
within the region of interest such that the lengths I, and I, are as
small as possible resulting in a compact device. Another possibility
would be to consider only those designs that are isotropic within the
region of interest to improve the local dexterity. Combining these
two heuristics leads to the selection of an isotropic mechanism with
minimum design lengths. This rule results in Iy = [, = 2 for Dy and
F, specified at 95% of the maximum. A summary of the optimization
procedure is outlined as follows:

1) Define heuristics

a) Improve local dexterity — isotropic designs Iy = 1p).
b) Reduce the length I, and I, to keep the mechanism
compact.

2) Set minimum performance standards for the global dexterity,
maximum actuator forces, and uniformity of the dexterity (Dy,
F,, and GD, respectively).

3) Search the resulting region for the best design according to the
above heuristics.

4) Test if this solution is feasible. Does it comply with other
design constraints (mechanical, application specific, ... )? If
not, return to step 2.

V. SUMMARY AND CONCLUSION

The architecture of actuator redundant mechanism has been es-
tablished and then optimized from a kinematic view point. This
consists of determining fixed geometric parameters in accordance
with some set objective. The general form of this simple mechanism
can be described by over 20 parameters. Any brute force attempt at
numerical optimization would be computationally intractable. Even
if this were possible, it would give no insight into the workings of
the mechanism.

The approach taken here is to form a hierarchy of objectives. Each
objective is examined in turn to reveal the best designs. The idea
is to maximize the high-order objectives such that the low-order
objectives satisfy some minimum criteria. For parallel mechanisms
the overriding concern is to provide a large and uniform workspace.
Maximization of the workspace volume is used to restrict the possible
designs thereby reducing the number of design parameters to a man-
ageable set. Interestingly, maximizing the dexterity and minimizing
the maximum actuator forces, aithough possible in principle, do
not lead to physically realizable designs, despite their relevance for
sensing and actuation. This shows the care that must exercised in
ascribing utility to simple measures. Among many alternatives, the
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Fig. 8. Fy as a function of I, and I,. The average minimum singular value is high when the two design lengths are equal and
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thresholding the measures Dy, Fy, and GD, at certain percentiles of the maximum. The regions of interest are shaded. The
dotted line corresponds to those designs that are isotropic at some point in the workspace.



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 5, OCTOBER 1992 651

smoothness of the dexterity can be used effectively as additional
possible secondary objectives.

The methodology outlined in this paper is intended to be a general
guideline for the optimization of robotic mechanisms. For the specific
case of this parallel mechanism, a range of designs was found to be
good in terms of dexterity, but this should be only one consideration
among many in the design process. Evidently, no system exists to
unambiguously define these heuristics; however, this methodology
does provide an informative framework in which the mechanism can
be analyzed.

At the time of this writing, a hydraulically actuated version of the
described mechanism is under construction. It is intended to form
the shoulder of a high-performance manipulator, and its parameters
have been determined following the guidelines outlined in this paper.
Many other applications of the described mechanism are possible
resulting in various designs.
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An Approach to Discrete Inverse Dynamics
Control of Flexible-Joint Robots

Krzysztof P. Jankowski and Hendrik Van Brussel

Abstract—This paper presents an inverse-dynamics-based method for
discrete-time control of flexible-joint robots. The main drawbacks of
the inverse dynamics approach based on continuous-time analysis are
its computational burden and the necessity for very high sampling
frequencies. These inconveniences can be avoided by the use of numerical
methods conceived for the solution of systems of differential-algebraic
equations. Such an approach naturally leads to a predictive control

h As a ¢ q e, in the control process a basic dynamic
model of a flexible-joint robot can be used, which is much less complex
than in the classical inverse dynamics solution. At the same time, the
simplified inverse dynamics approach discussed here accepts low sampling
frequencies. Control algorithms are presented and their properties are
discussed. Successful experiments on computer control of a two-link
manipulator with one flexible joint are described.

I. INTRODUCTION

The existence of flexibilities in the robot structure limits its ability
to perform high-precision manipulation. Experimental results reveal
that, for a wide variety of robots, joint flexibility is the principal
source contributing to overall robot flexibility [1]. Therefore, joint
flexibility should be taken into account in the modeling and design
of robot controllers if high performance is to be achieved.

One approach to control of flexible-joint robots is based on the
idea of nonlinear decoupling, which can be achieved by applying
the feedback linearization method [2], [3]. For system models in the
descriptor form, inverse dynamics control can be used to accomplish
the same task [4], [5]. These methods have been criticized for their
computational complexity and the necessity of feedback of link
accelerations and jerks to provide robustness to parameter uncertainty
and external disturbances [2].

Using another approach, based on the concept of an integral
manifold [2], [6], one has no need for feedback of accelerations
and jerks. However, practical implementation of this method is a
complicated task, and the robustness to parameter uncertainty is
difficult to achieve. Recently, the use of adaptive control methods for
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