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Abstract

A technique for transitioning between path segments
is described which is tolerant to dynamic changes aris-
ing from sensor inputs. The main idea is to “blend”
the segments together in a way that does not require
advance knowledge of the paths. It is also possible to
decompose the transition into an action which “brings
to rest” the motion along the initial path plus an action
which “starts up” the motion along the final path. By
adjusting the timing of these two components, one may
control the shape of the transition, in both time and
space, so as to satisfy different task constraints.

1 Introduction

In robot manipulator control systems, the role of the
trajectory generator is to convert commands specified
by a programming level into a stream of setpoints suit-
able for tracking by a feedback controller. A typical
programming command will specify constraints for the
manipulator to satisfy, such as target positions, veloci-
ties, path shape, arrival times, and stiffnesses or compli-
ant forces. The trajectory generator must then produce
setpoint paths that meet these constraints as closely as
possible. A central problem in trajectory generation is
that specified task constraints often conflict with the
kinematic or dynamic constraints of the manipulator
itself. In particular, the final path must be smooth,
with no discontinuities in velocity and possibly higher
derivatives.

Current approaches to trajectory generation can be
grouped first into offline and online techniques. I the
trajectory is computed offline (i.e., before the setpoints
are sent. to the feedback controller), then time is avail-
able to compute a trajectory that addresses both task
and manipulator constraints in some optimal fashion.
Common optimality criteria include minimum time and
minimum path error. [2, 9]. Once computed, however,
such trajectories are generally difficult to modify in re-
sponse to real-time sensor inforination. This problem
may be tempered somewhat by using techniques, such
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as B-splines, that localize the trajectory’s dependence
on the constraints [11].

On-line trajectory generation, by contrast, computes
the setpoints in real-time, usually at some known sam-
ple rate, at the same time they are sent to the con-
troller. This maximizes the opportunity to respond to
sensor driven events, at the expense of creating paths
that utilize only very local constraints. The recent rapid
advances in CPU power have improved the ability to
perform online trajectory generation.

A common technique in on-line trajectory generation
is to compute path segments that satisfy individual pro-
gram requests, and then join these together using poly-
nomial fits applied over transition windows [8, 10]. Of-
ten the path segments themselves are simply straight
lines between via points. This separates the problem
of meeting both program and manipulator constraints:
during the transition window, the program path con-
straints are relaxed and the acceleration constraint pre-
dominates. Between transition windows, where the
path segments are known to accelerate very little or
not at all, the program path and velocity constraints
predominate. The amount of manipulator acceleration
induced by the transition is proportional to the inverse
square of the length of the transition window [6], and so
can be easily controlled. If one is willing to relax pro-
gram velocity constraints (such as the ability to move
at a constant speed), then the cruise period between
transition windows may be disposed of entirely and the
path may be constantly computed (and recomputed) as
a polynomial fit to the next goal position [1].

What we will describe in this paper is a variation on
the conventional transition window technique that

¢ permits the path segments to be changing dynam-
ically in response to sensor inputs, and

¢ provides several parameter “knobs” that allow us
to adjust the shape of the transition in both space
and time.

The techniques described here can be applied equally
well in either joint or Cartesian coordinates (or yet an-



other coordinate system). To simplify the presentation,
niost of the discussion will refer to paths of a single
variable (¢) vs. time. All of the methods generalize to
paths described by vectors (x). The generalization to
rotations. which is necessary when working in Carte-
sian coordinates, is slightly more subtle; it has been
worked out, but. is not described here because of space
limitations. Two variations of the scheme outlined in
this paper have been implemented and currently form
the core of the trajectory generation techniques of the
Multi-RCCL system [7], and Kali [4, 5].

2 Transitioning by Polynomial Fitting
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Figlll‘e I: Tlustration of a path segment transition, in one di-
mension. The path segments are indicated by hatched lines and
the smoothed path is indicated by a solid line.

The transition window used to connect two path seg-
ments is illustrated by a one-dimensional example in
Figure 1. Paths X1(¢) and Xo(t) both meet at the com-
mon point B. The transition window begins at time 1
and ends at time {2, and over this interval X; and o
should be smoothly connected by some curve X (). For
simplicity, transition computations are usually done us-
ing a normalized time coordinate s € [0, 1], where

=1
to — 11

s =

Let &(s), v1(s) and 2s(s) correspond to X(t), Xq1(t) and
Ns(t). Assuming that we want continuity down to the
cecond derivative, then we have the following boundary
conditions:

2(0) = 21(0) = p1,

l’(U) = 11(0) = U1,

F0) = 21(0) = ay,
These can he satisfied using a 5th degree polyno-
Juial, whose coefficients. described by the vector ¢ =

(e, cq. 03,00, e1.c0)”, can be readily found using a Her-
mite boundary condition matrix H [3].

0 000 0 1
0 00010
|l o 00200 )
H=1 93 11111 (2)
5 43210
2 12 6 2 0 0

Letting the boundary conditions be described by a
vector b = (p1,v1,a1,p2, V2, a2), the coefficients may
be determined from

c=H'1b (3)

which yields

es = (as—a1)/246(p2 —p1) — 3(va +v1)
ca = (3a1—2a)/2+15(p1 — p2)+8v1 + Tug
es = (aa—2a1)/2+10(p2 —p1) — 6vy — 4y
Cco = (11/2

¢y = vy

¢ = pP1

(4)

This allows us to connect path 1 to path 2 smoothly.
If the paths are linear (i.e., a1 = as = 0), and the paths
intersect at the transition midpoint, then the bound-
ary conditions can be matched using only a 4th degree
polynomial [8].

Most windowed transition schemes utilize some form
of the above relationships. Notice that in order to com-
pute 2(s), we must have advance knowledge of the final
boundary conditions ps, v2, and az. But if the paths
are changing dynamically because of sensor input infor-
mation, this may not be possible. What we need is a
transition scheme that tracks changes in the paths
and xs.

3 Transitioning by Blending

One way to achieve our objective is to simply blend the
two paths together, using a blend function a(s), so that

z(s) = a(s)za(s) + (1 — a(s))z1(s) (5)

To meet the boundary conditions at x1(0) and wa(1),
a(s) should itself satisfy the following boundary condi-
tions:

a(0)=10 a(l)y =1 (6)
a(0)=0 a(l)y=0
a(0)=0 a(l)=10

This is achieved by letting o have the form
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Figlll’@ 2: Direct blend of the paths x1 and .

a(s) = 6s° — 155 41053, s €[0,1] (M

The transition curve x(s) is a one-dimensional Coon’s
patch along the time axis. Its appearance is shown in
Figure 2. We are not yet done, however. Examining
Figure 2, one may see that the blend curve has an un-
desirable tendency to speed up as it approaches the
transition midpoint. Let us try to correct for this by
adding an additional polynomial 3(s) to the transition
curve.

What degree should 3(s) be? To leave the origi-
nal boundary conditions undisturbed, its own position,
velocity, and acceleration should be zero at both end-
points. Then, to do something useful, we will need at
least one more degree of freedom. We therefore choose
3 to be of degree 6.

The relationship between the boundary conditions
and the polynomials coefficients can be expressed us-
ing the following (underdetermined) Hermite matrix:

0 0 0000 1
0 0 000 1 0
, | o 0 00200 i
H=1 1 1 11111 ()
6 5 43 2 10
30 20 12 6 2 0 0

If we have a set of coefficients ¢y that satisfies this
matrix, then for all other coefficients we have

¢ = co+R(Hk

where k is a parameter vector that matches the dimen-
sion of the matrix’s null space. In the present case,
the boundary conditions are all zero, implying ¢ = 0.
The null space of H' has dimension I, implying k = &,
and is spanned by (1,-3.3,~1.,0,0,0), which vields the

following form for 3(s):

A(s) = k(s® = 3s” + 35 — 5%

k is a free parameter with which we may adjust the
characteristics of the transition curve.
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Since the raw blend introduces acceleration into the
transition, it would be reasonable to choose 3 so as to
try to minimize the acceleration. For purposes of this
analysis, we shall assume that the paths 2y and x» are
close to linear in the neighborhood of the transition
interval, which implies that they can be approximated
by

mys + by (9)

Mmas + ba

T1

o

Letting Am = ma — my and Ab = by — by, we can
expand (5) and find that

2(s) = by +mys+ 10Abs3 + (10Am — 15Ab)s?+
(6Ab — 15Am)s° + 6Ams®
#(s) = 60Abs+ (120Am — 180Ab)s>+
(120A0 — 300Am)s® + 180Ams*
. (10)
Expanding 3(s) gives
A(s) = —6s + 3657 — 605> + 30s*. (11)

We now combine these to compute the mean square
acceleration as a function of k:

120A6(AbFAM)+60AMm?

Jo (E(s) + kB(s))? 6 1
+ 30Amk42k3
35
(12)
which is minimized for k = —15/2Am.

Note that Am is simply va — v1, or the rate at which
the two curves are moving toward each other at time
s = 0. This means that we can compute & given only lo-
cal knowledge of x; and x5 at the beginning of the tran-
sition. Of course, if #; and x5 turn out to be nonhnear.
then the acceleration may not necessarily be minimized,
and the final curve will distort in response to the non-
linearities.

We may not always want to set k to —15/2Am. In
particular, if we set k to —6Am instead, then we notice
that the high order term for x(s) in (10) cancels out.
and the transition curve is described by a polynomial
of degree 5. This implies that curve is less likely to
wobble. In general, can define a parameter «, such that

k=—rnAm

which (very qualitatively) gives us a sort of ~damper
control”™ on the transition curve. The transition curve
1s then computed [rom

r(s)

= a(s)ra(s) + (1 — a(s))r(s) — wvAmI(s) (13)



1 0

08 0.004
06
-0.008
04
0.2 0012
0 0.016
0 02 04 06 08 1 0 02 04 06 03 1

(a) alpha vs. s (b)betavs. s

X
4
-

path displacement
s 5
o

o 02 0.4 0.6 038 1
s parameter

(c) blend of linear path scgments

Figure 31 (a) Plot of . (b) Plot of 3. (c) Blends applied to the
intersection of two linear path segments. The dotted line is the
curve for which & = 0, while the solid line is the curve for which
K= 15/2.

Throughout the vest of this paper, £ will usually be set
to 6.

Plots of o, 3, and a(s) for k= 0 and kK = —15/2 are
given in Figure 3.

4 Controlling the Transition Shape

We may be interested in controlling other characteris-
tics of the transition, and particularly the way in which
the space curve wanders from the specified paths during
the transition. 1t may be desirable of have the transition
curve actually pass through (or over) the via point, or
we may want to follow one of the path segments faith-
fully for the entire motion, and handle the transition
with an overshoot at the end point. In this section, we
will introduce a pair of parameters to give us that sort
of control over the curve.

It is useful to think of a transition as having two com-
ponents. where the first component brings the motion
along path a4y toa halt (at some target point B, which
intersects path a»). and the second component starts
up the motion along path xa, away from B. This can
he expressed by expanding (13) in terms of B:

ris) = li(.ﬂ)B—F(l—(i(S)).l"l(S)
a(s)ea(s) F (L= a(s))B — kAm(s)

(14)
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Figure 4: (a) Path intersections with py = p2 = .5 (b) Path
intersections with pp = .4 and pp = .75.

Thus far, we have tended to assume that the path seg-
ments x; and xo meet B simultaneously near the mid-
point of the transition (as illustrated in Figure 4(a)).
However, this does not have to be the case. For each
of the two path segments, we define a preview factor
p € [0,1] which describes the value of s in the transi-
tion window for which the associated path meets B. py
and p2 define the preview factors for 23 and xa, respec-
tively. Figure 4(b) gives an example of a situation with
pp = 4 and pa = .75,

Qualitatively, the preview factor is a measure of
how much the trajectory generator is allowed to “plan
ahead” in computing the transition for the associated
curve. The effect of the parameters are most clearly
illustrated by examining the associated position/time
and space curves. Figure 5 shows a situation where
we have two linear, orthogonal paths which intersect
at B = (0,0). a1 describes a motion along the unit
vector V2/2(1,1), while 2 describes a motion along
V2/2(1,-1). The left-hand figures plot the path pa-
rameter vs. time; the right-hand figures show the corre-
sponding space curves. With py = pa = 0.5, we have the
conventional transition in Figure 5(a). In Figure 5(b),
setting the preview factors to py = 3125 and p2 = 6875
causes the transition to travel through the via point B
(the magic values depend on x, which is 6 is these ex-
amples). In Figure 5(c), we let pp = 0 and ps = .5,
which causes path z; to be followed all the way to the
end. where it then overshoots as it begins the blend into
path zo. The opposite case, preshooting in order to fol-
Jow path za completely for its entire length, is shown in
Figure 5(d). Finally, by setting p1 = 0 and pa = L, it 18
possible to follow both paths exactly, at the expense of
overshooting both and looping around.

Figure 6 shows the velocity and acceleration maghi-
tudes resulting from transitioning between two orthog-
onal path segments, with different preview values.

It is reasonable to use the following rules of thumb
when setting preview values. If py + 2 = 1, and the
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Figure 5: Position/time curves (on the left) and space trajec-
tory curves (on the right) for transitions between two orthogonal
linear path segments. showing the effect of different settings of
the preview parameters. The figures on the left show the two
path segments vs. time (hatched lines) and their corresponding
transition components {solid lines). The figures on the right in-
dicate the space curve for the two path segments (hatched lines)
and the space curve generated by the transition (solid line).
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initial and final path velocities are equal, then the space
curve will be symmetric about the via point. Generally,
as p1 — 0 and p2 — 1, the speed during transition will
decrease. Specifically, for a & value of 6, if p1 € [.5,1]
(or pa € [0,.5]). we will get an overshoot in the initial
(or final) path velocity.

5 Applying the Transition Paradigm

The transition blending technique is quite simple and
can be implemented for paths generated in any vector-
ized coordinates system (or in Cartesian coordinates if
we use the rotation blending scheme described in the
next section).

To implement the preview p;, we simply begin the
transition —Tp; time units before the scheduled arrival
time of path z; at its goal point B, where T is the to-
tal time allocated for the transition window. We then
adjust the parameterization from which path zo will
be computed to ensure that it meets B at a time T'pa
units from the start of the transition. In a straight-
line motion interpolation scheme such as in [8] this
would be done by appropriately setting the “drive” pa-
rameters (either joint or Cartesian). Notice that to do
this we need to know the goal position B. But this
may not always be possible if ¢; is dependent on sensor
information. In that case, B may be estimated from
2y and 1. Inaccuracies in this estimate may perturhb
the transition slightly, but will not affect the end-point
conditions. Once we have path z2, then Am can be
computed from from &2 — #; at the beginning of the
transition.

We may not always want to continue computing 2y
after the transition has started. This is true in cases
where the computation is cumbersome, such as when 2y
and o are originally computed in different coordinate
systems and doing the full blend would require mapping
from one into the other. In such cases we have found
that it is usually acceptable to compute a “fake” x4 path
by simply extrapolating 1 from its initial conditions.

6 Working with Rotations

When working in Cartesian coordinates, it is necessary
to hlend paths in rotation space. Because rotational
operations do not commute, rotations cannot be de-
scribed as a vector quantity and therefore the methods
described so far cannot be applied directly. However,
it is possible to achieve the same effect with rotational
operators.

We are unable to deseribe the methods for doing this
hecause of space limitations.
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7 Conclusion

We have found a simple method for computing the tran-
sition between manipulator trajectory segments that is
tolerant of dynamic changes in the path. This is of
particular concern if the path is coupled to real-time
sensory information.

We have also found that if we decompose the trajec-
tory blend into a “stop” operation and a “start” opera-
tion, then we can define two “preview” parameters, pi
and po, the setting of which gives us considerable con-
trol over the time/space shape of the transition curve.
This decomposition also provides us with a natural way
to do the blend computation for rotations.
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