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Abstract—Continuous systems are today controlled digitally.
It is therefore necessary to consider the effects of quantization
and sampling. We show that any second-order LTI system can
be controlled exactly by fixed quantized feedback independently
from the resolution of the sensors. When sampling is considered,
only practical stabilization can be achieved and the size of the
limit cycle depends on the sampling rate.

I. INTRODUCTION
Sampling and quantization effects have a special impor-

tance in control engineering since, today, analog control
is employed only exceptionally. Since the very beginnings
of digital control technology, research was concerned with
the effects of sampling [1], [2], and quantization [3], [4].
Traditionally, the effects of quantization were approached by
considered quantization errors as disturbances, for example,
characterized as uniformly distributed noise [4]. The latter
approach is advocated in contemporary texts on sampled-
data systems [5].
Prior attempts to analyze the properties of quantized

feeback systems include those of Delchamps [6], who found
that systems with quantized feedback cannot be stabilized in
the traditional sense. However, under the special assumption
that the quantization step can be made arbitrarily small,
Brockett and Liberzon showed that asymptotic stability can
still be achieved [7]. When variable-rate sampling instants
can be made to coincide in time with quantization, other
convergence results were shown by Kofman [8]. Logarithmic
quantization was considered by Elia and Mitter to show that
a form of optimal control can still be achieved together with
practical stabilization [9]. These, and other works, which
cannot be surveyed here, often assume that the quantization
step can be adjusted. In practice, however, fixed quantizers
are used in most engineering systems (position encoders,
analog-to-digital converters) where a fixed precision is de-
signed to reflect the desired operating resolution.
In this article, we proceed with an exact analysis of

fixed and uniformly quantized control of linear second-order
systems.

II. PD-CONTROL
Second-order systems are important because the results

obtained with these systems can be extended to other single-
input, single-output (SISO), linear-time-invariant (LTI) sys-
tems. Generic second-order systems represent the dominant
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dynamics of many devices in mechanical and electrical
applications. Among all possible compensators, proportional-
derivative (PD) controllers are frequently employed in track-
ing and regulation for their robustness properties and because
PD control coincides with a generic state-feedback control
of a second-order system for which the poles can be placed
arbitrarily.
With reference to the origin, the dynamics of a second-

order LTI system with PD control can be written as

ẍ = a2ẋ + a1x + e, e = −k′
1x− k′

2ẋ, k′
1, k

′
2 > 0. (1)

If the states are accessible through sensors (that is, a velocity
sensor is also available) and if the measurements are quan-
tized and normalized to discrete levels, then (1) becomes

ẍ = a2ẋ + a1x− k2(�ẋ�+ 1
2 )− k1(�x�+ 1

2 ). (2)

Here, �ς�+ 1
2 represents the action of the quantizer on a con-

tinuous signal, ς . The floor function returns the largest integer
not exceeding ς , but since ς represents a signed quantity, 1

2
has to be added to ensure symmetry of the quantization error
with respect to zero. Most analog-to-digital converters, “mid-
rise” types, are designed to behave this way so that ς and −ς
have the same magnitude after quantization. When the origin
is arbitrary, as in the case of incremental motion encoders,
the origin can still be unambiguously put in correspondence
between the continuous domain, ς ∈ R, and the quantized
domain, (�ς�+ 1

2 )− 1
2 ∈ Z.

III. EFFECT OF QUANTIZATION
A. Equilibrium of a Quantized Feedback System
We must first define an appropriate notion of equilibrium

for systems such as (2). The right-hand-side of (2), evaluated
at x = 0, is equal to − 1

2 (k1 + k2), k1, k2 > 0. Hence, the
origin is not a stationary point in an ordinary sense. In state
space form, the motion of system (2) is governed by the
discontinuous vector field v(x) = [v1(x), v2(x)]� ∈ R

2,
x = [x1, x2]

� ∈ R
2, where x1 � x and x2 � ẋ,

v1(x) = x2,

v2(x) = a2x2 + a1x1 − k2(�x2�+ 1
2 )− k1(�x1�+ 1

2 ). (3)

The points of discontinuity in (3) are all the points in the set
D � {x1 ∈ Z, x2 ∈ Z}. For further analysis, it is convenient
to partition the state space into disjoint “tiles” within which
the system vector field v is continuous,

Si,j � {x1 ∈ ]i, i + 1[, x2 ∈ ]j, j + 1[}, i, j ∈ Z.

The closures of these sets are

S̄i,j � {x1 ∈ [i, i + 1], x2 ∈ [j, j + 1]}, i, j ∈ Z.

Proceedings of the European Control Conference 2009 • Budapest, Hungary, August 23–26, 2009 MoA15.5

ISBN 978-963-311-369-1
© Copyright EUCA 2009 531



It is convenient to introduce

v
i,j : x �→

[
vi,j
1 (x), vi,j

2 (x)
]�

,

v̄
i,j : x �→

[
v̄i,j
1 (x), v̄i,j

2 (x)
]�

,

where a v
i,j is the restriction of v to the tile Si,j , and v̄

i,j

is the continuous extension of the v
i,j to S̄i,j .

An approach to modeling systems such as ẋ = v(x) is
to consider them as governed by differential inclusions [10],
rather than by differential equations. These are written,

ẋ ∈ F (x). (4)

The set-valued mapping F : x �→ F (x) ⊂ R
2, ∀x ∈ R

2,
is related to the piecewise continuous vector field v(x) as
follows. When x ∈ Si,j the RHS of (4) reduces to a singleton,
F (x) = {vi,j(x)}. For points on the boundaries of S̄i,j ,
x ∈ ∂ S̄i,j , for some i, j ∈ Z, the set F (x) is determined as
the closed convex-hull of all the limit points v

∗ of the vector
field v on the domain S =

⋃
Si,j , where

v
∗ = lim

ξ→x,ξ∈S
v(ξ). (5)

A solution to (4) is defined as an absolutely continuous
function x : t �→ x(t) ∈ R

2 such that ẋ(t) ∈ F (x(t))
almost everywhere. Then, see [10],
Definition 1: A point, xE , is a generalized stationary

point of a quantized system such as (2) iff 0 ∈ F (xE).
With this definition, the constant trajectory x(t) = xE

satisfies the differential inclusion (4). In particular, the origin
is a generalized stationary point of (2) since F (0) =
1
2 co{[−k1,−k2]

�, [k1,−k2]
�, [k1, k2]

�, [−k1, k2]
�} 	 0.

Proposition 1 (Unicity): A sufficient condition for the ori-
gin to be the sole stationary point of System (2) is that

k1 − k2 > 2 max(0, a1). (6)
Proof: First, note that ∀x, |x2| > 0, 0 /∈ F (x), since

any v has the form [x2, ·]� 
= 0. We show now that the points
of the form [n + r, 0]�, r ∈ ]0, 1[, n ∈ Z and the points of
the form [n, 0]�, n ∈ Z − {0} are not stationary. First, let
r > 0. Then F (x) = co

{[
0, v̄n,0

2

]�
,
[
0, v̄n,−1

2

]�}
with

v̄n,0
2 =(a1 − k1)n + a1r − 1

2k1 − 1
2k2, (7)

v̄n,−1
2 =(a1 − k1)n + a1r − 1

2k1 + 1
2k2. (8)

We show that 0 /∈ F ([n+ r, 0]�) by demonstrating that v̄n,0
2

and v̄n,−1
2 always have the same sign.

From (6), a1−k1 < 0. From (7)-(8), v̄n,0
2 and v̄n,−1

2 have
same signs ∀n ∈ N− {0}, provided that both quantities are
negative when n = 0. In the latter case, again by (6),

v̄0,0
2 =a1r − 1

2k1 − 1
2k2 < 0,

v̄0,−1
2 =a1r − 1

2k1 + 1
2k2 < 0.

If now n = −1, then from (6),

v̄−1,0
2 =− a1 + k1 + a1r − 1

2k1 − 1
2k2 > 0,

v̄−1,−1
2 =− a1 + k1 + a1r − 1

2k1 + 1
2k2 > 0.

As a1 − k1 < 0, one can see that v̄n,0
2 > 0 and v̄n,−1

2 > 0
when −n ∈ N − {0, 1}, so 0 /∈ F (x) for −n ∈ N − {0}.
Now, suppose that r = 0, then

F (x) =

co

{[
0, v̄n−1,0

2

]�
,
[
0, v̄n−1,−1

2

]�
,
[
0, v̄n,0

2

]�
,
[
0, v̄n,−1

2

]�}
,

for n ∈ Z − {0}. When n ≥ 1, then [0, v̄n−1,0
2 ]�,

[0, v̄n−1,−1
2 ]�, [0, v̄n,0

2 ]�, [0, v̄n,−1
2 ]� are all negative from

(7)-(8). On the other hand, if n ≤ 1 these quantities are all
positive. Hence, 0 /∈ F ([n, 0]�), for all n ∈ Z− {0}.
Corollary 1: The sole constant trajectory of system (2) is

x(t) = 0, for all t.

B. Stability of a 2ndOrder System with Quantized Feedback
At this point it is noted that, provided that Condition (6)

holds, the formalism of differential inclusions is no longer
needed since, away from the origin no ambiguity arises as to
how the system traverses the discontinuities of the defining
vector field. From the proof of Proposition 1, it can be
seen that the trajectories of the system form a correct phase
portrait that encircles the origin in the clockwise direction.
Under Condition (6) further analysis can hence be con-

ducted by employing a standard system representation as
in (2) in the region RD � R

2−{0}. The main stability result
is easier to derive by first demonstrating that the closed-loop
quantized system is input-output passive.

Proposition 2 (Passivity): A sufficient condition for the
second-order system with quantized PD feedback (2) to be
input-output passive with respect to the output y = ẋ and
the dissipation rate ẋu is that the gains satisfy

k2 > 4 max{0, a2}, and k1 > k2 + 2 max{0, a1}. (9)

Proof: On RD, consider the augmented system

ẍ = a2ẋ + a1x− k2(�ẋ�+ 1
2 )− k1(�x�+ 1

2 ) + u, (10)

and the associated input-output product

ẋu = ẋẍ−a1ẋx−a2ẋẋ+ẋk1(�x�+ 1
2 )+ẋk2(�ẋ�+ 1

2 ). (11)

Integrating (11) over an arbitrary interval [t1, t2] yields∫ t2

t1

ẋu dτ =

∫ t2

t1

ẋẍ dτ − a1

∫ t2

t1

ẋxdτ − a2

∫ t2

t1

ẋẋdτ

+k1

∫ t2

t1

ẋ(�x�+ 1
2 ) dτ + k2

∫ t2

t1

ẋ(�ẋ�+ 1
2 ) dτ,

= 1
2 [ẋ2(t2)− ẋ2(t1)]− a1

1
2 [x2(t2)− x2(t1)]

+k1

∫ t2

t1

ẋ(�x�+1
2 ) dτ − a2

∫ t2

t1

ẋ2 dτ + k2

∫ t2

t1

ẋ(�ẋ�+ 1
2 ) dτ.

It is now convenient to introduce the quantization error
function, ξ �→ Γ(ξ) � ξ − �ξ�. Then,∫ t2

t1

ẋ(�x�+ 1
2 ) dτ =

∫ t2

t1

ẋ(x− Γ(x) + 1
2 ) dτ.
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It is seen that∫ t2

t1

ẋΓ(x) dτ =

∫ x(t2)

x(t1)

Γ(ζ) dζ =

∫ x(t2)

0

Γ(ζ) dζ −
∫ x(t1)

0

Γ(ζ) dζ

=1
2

[�x(t2)�+ Γ2(x(t2))− �x(t1)� − Γ2(x(t1))
]
. (12)

Hence,∫ t2

t1

ẋ(�x�+ 1
2 ) dτ = 1

2x2(t2)− 1
2x2(t1)

+ 1
2

[
Γ(x(t2))−Γ2(x(t2))

]
]− 1

2

[
Γ(x(t1))−Γ2(x(t1))

]
.

Now we show that a positive lower bound exists for the term

P (ẋ) � −a2

∫ t2

t1

ẋ2 dτ + k2

∫ t2

t1

ẋ(�ẋ�+ 1
2 ) dτ

on the set RD. WLOG, we may assume that t1, t2 are such
that ∀τ ∈ [t1, t2] either

(a) ẋ(τ) = +n + r(t), n ∈ N + {0}, or
(b) ẋ(τ) = −n + r(t), n ∈ N.

Case (a): The value of term P (ẋ) , for r ∈ ]0, 1[, is

P (ẋ) =

∫ t2

t1

[−a2(n + r(τ))2 + k2(n + 1
2 )(n + r(τ))] dτ.

If n = 0, then ẋ(τ) = r(τ) ∈ ]0, 1[ and

P (ẋ) =

∫ t2

t1

(−a2ẋ
2 + 1

2k2ẋ) dτ.

Choosing k2 ≥ 4 max{0, a2} and because ẋ ∈ ]0, 1[,

P (ẋ) ≥
∫ t2

t1

(−a2ẋ
2 + 1

2k2ẋ
2) dτ ≥ 1

4
k2

∫ t2

t1

ẋ2 dτ.

Now, if n ∈ N,

P (ẋ) =

∫ t2

t1

[− (a2 − k2)n
2 − 2a2nr − a2r

2

+ k2nr + 1
2k2n + 1

2k2r
]
dτ

≥ −(a2 − k2)n
2(t2 − t1) +

∫ t2

t1

(−2a2 + k2)nr dτ

+ 1
2

∫ t2

t1

(−2a2r + k2)r dτ + 1
2k2n(t2 − t1)

≥ −(a2 − k2)n
2(t2 − t1) + 1

2k2(t2 − t1).

Case (b): n 
= 0, r ∈ ]0, 1[,

P (ẋ) =

∫ t2

t1

[− a2(−n + r)2 + k2(−n + 1
2 )(−n + r)

]
dτ

=

∫ t2

t1

[− a2(−n + r) + k2(−n + 1
2 )

]
(−n + r) dτ.

If n = 1 then ẋ = −1 + r ∈ ]− 1, 0[, so −ẋ ∈ ]0, 1[ and

P (ẋ) = −a2

∫ t2

t1

ẋ2 dτ + 1
2k2

∫ t2

t1

(−ẋ) dτ

≥ −a2

∫ t2

t1

ẋ2 dτ + 1
2k2

∫ t2

t1

ẋ2 dτ

≥ (−a2 + 1
2k2)

∫ t2

t1

ẋ2 dτ ≥ 1

4
k2

∫ t2

t1

ẋ2 dτ.

When n ∈ N, n ≥ 2, r ∈ ]0, 1[,

−a2(−n+r)+k2(−n+ 1
2 ) < 0,⇒ (a2−k2)n−a2r+

1
2k2 < 0.

Provided that k2 ≥ 4 max{0, a2} then

(a2 − k2)n− a2r + 1
2k2 ≤ −1

2
k2n.

Finally, the bound for case (b) is

P (ẋ) =

∫ t2

t1

[− a2(−n + r) + k2(−n + 1
2 )

]
(−n + r) dτ

≥ 1
2k2n(n− 1)(t2 − t1). (13)

Combining (12)-(13) gives

P (ẋ)≥

⎧⎪⎨
⎪⎩

min{ 1
2k2;−(a2 − k2)}n2(t2 − t1),

if |ẋ(τ)| ∈ [n, n + 1[, n ∈ N, ∀τ ∈ [t1, t2[,
1
4k2

∫ t2
t1

ẋ2 dτ, if |ẋ(τ)|∈ ]0, 1[, ∀τ ∈ [t1, t2[.
(14)

It follows that∫ t2

t1

ẋu dτ = 1
2 [ẋ2(t2)− ẋ2(t1)]− a1

1
2 [x2(t2)− x2(t1)]

+k1
1
2 [x2(t2)− x2(t1)] + k1

1
2

[
Γ(x(t2))− Γ2(x(t2))

]
−k1

1
2

[
Γ(x(t1))−Γ2(x(t1))

]
−a2

∫ t2

t1

ẋ2 dτ + k2

∫ t2

t1

(�ẋ�+ 1
2 )ẋ dτ,

=1
2 [ẋ2(t2)− ẋ2(t1)]− 1

2 (a1 − k1)[x
2(t2)− x2(t1)]

+ 1
2k1[Γ(x(t2))− Γ2(x(t2))]

− 1
2k1[Γ(x(t1))− Γ2(x(t1))] + P (ẋ) ≥ 0, (15)

which proves input-output passivity of (2) under condi-
tions (9) with the storage function

S(x, ẋ) � 1
2

[
ẋ2 + (k1 − a1)x

2 + k1(Γ(x)− Γ2(x))
]
. (16)

This storage function is well defined as it is positive definite
since, for all x, Γ(x) ∈ [0, 1[ so Γ(x) − Γ2(x) ≥ 0. Also,
S is locally Lipschitz continuous. The latter is established
by showing Lipschitz continuity of the term Γ(·)− Γ2(·) at
points x ∈ Z. Let x = n for any n ∈ Z and consider a
neighbourhood ]n − ε, n + ε[, ε ∈ ]0, 1

2 [ together with two
points n− ε1, n + ε2 ∈ ]n− ε, n + ε[. We note that

�n− ε1� = n− 1 so n− ε1 = n− 1 + Γ(n− ε1),

�n + ε2� = n so n + ε2 = n + Γ(n + ε2),

i.e. ε1 = 1− Γ(n− ε1) and i.e. ε2 = Γ(n + ε2). Thus

|Γ(n + ε2)− Γ2(n + ε2)− Γ(n− ε1) + Γ2(n− ε1)|,
≤|Γ(n + ε2)− Γ2(n + ε2)|+ |Γ(n− ε1)− Γ2(n− ε1)|,
≤(1− ε2)ε2 + (1− ε1)ε1 ≤ ε2 + ε1.

Substituting back for x = n shows that for any ε1, ε2 < ε

|Γ(x + ε2)− Γ2(x + ε2)− Γ(x− ε1) + Γ2(x− ε1)|
≤|(x + ε2)− (x + ε1)|,

demonstrating Lipschitz continuity of Γ(·) − Γ2(·) with a
Lipschitz constant equal to one.
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Passivity entails asymptotic stability of the closed loop
quantized system as shown below.
Theorem 1 (Stability): A second-order system with quan-

tized PD feedback (2) is globally asymptotically stable if the
gains satisfy Conditions (9).

Proof: Setting u = 0 in (15) and adopting the storage
function (16) shows that

0 = S(ẋ(t2), x(t2))− S(ẋ(t1), x(t1)) + P (ẋ),

so that on RD,

S(ẋ(t2), x(t2))− S(ẋ(t1), x(t1)) ≤ −P (ẋ) < 0. (17)

Since the storage function is proper, i.e., S(x, ẋ) → ∞ as
‖[x, ẋ]‖ → ∞, the level sets of S are compact and are
invariant because S is decreasing monotonically along the
trajectories of (2). Hence, the system is stable.
Since t1, t2 are arbitrary, it follows from (17) and the

properties of the storage function, along with the lower
bound in (14) and continuity of ẋ, that the trajectories of (2)
approach the largest invariant set contained in the set

Z � {(x, ẋ) ∈ R
2 |P (ẋ) = 0} = {(x, ẋ) ∈ R

2 | ẋ = 0}.
We will show that the largest invariant set contained in Z is
the constant, zero trajectory. Suppose that x(t̄) 
= 0 for some
t̄ ∈]t1, t2[, but that y(t) = ẋ(t) ≡ 0 for all t ∈ ]t1, t2[. Then,
ẍ(t) ≡ 0 for all t ∈ ]t1, t2[ which implies that x(t) = x(t̄) 
=
0 for all t ∈ ]t1, t2[, i.e. x(t̄) must be a stationary point of (2).
This contradicts the result of Proposition 1 which states that
the only stationary point is x(t̄) = 0.
Hence, Z = {0} and every trajectory of (2) approaches

the origin. This proves asymptotic stability of the system.

IV. ILLUSTRATIVE EXAMPLE
The stabilization result of Theorem 1 is somewhat counter-

intuitive as one could think that a quantized feedback can
only provide for practical stabilization (to a one-quantum
neighborhood of the origin). As its stands, the result estab-
lishes asymptotic stabilization regardless of the size of the
quantum. A simple example illustrates this phenomenon.
Consider the quantized PD control of a double integrator,

i.e. assume that a1 = a2 = 0 in (2). Let the initial
condition be [x1(0), x2(0)] = [0, c] where c > 0 is such that
(0, c) ∈ {[x1, x2] |S(x1, x2) < 1}, (less than one quantum
away from 0). Referring to Fig. 1, quadrant by quadrant, the
solution of (2) is a concatenation of portions of trajectories,

I

{
ẋ1 = x2,

ẋ2 = − 1
2k1 − 1

2k2,
II

{
ẋ1 = x2,

ẋ2 = − 1
2k1 + 1

2k2,

III

{
ẋ1 = x2,

ẋ2 = + 1
2k1 + 1

2k2,
IV

{
ẋ1 = x2,

ẋ2 = + 1
2k1 − 1

2k2.

For simplicity, denote a � 1
2 (k1 + k2), and b � 1

2 (k1 − k2)
and assume that b < a as guaranteed by Condition (6) of
Proposition 1. Note that all four subsystems are unstable. In
each quadrant, the fragments of the system trajectory emanat-
ing from the initial condition (0, c) are easily computed. The

x1

x2

c

−c

√
b

a

−

c
2
b

a
2

c
2

2a

c

(
b

a

)
c

(
b

a

)2

c

(
b

a

)3

x
∗
2

x
∗
1

ẍ = −a

ẍ = −bẍ = a

ẍ = b

Fig. 1. Phase portrait of the double integrator with quantized PD controller.

points [x∗
1, 0], [0, x∗

2] are the points of “scheduled switches”
corresponding to switching instants t∗. Also, c <

√
2 as

implied by S(0, c) < 1, such that in all cases S(x∗
1, 0) < 1

and S(0, x∗
2) < 1, as expected.

I

{
x2 = −at + c,

x1 = − 1
2at2 + ct,

II

{
x2 = −bt,

x1 = − 1
2bt2 + 1

2
c2

a ,

x2 = 0 ⇒ t∗ =
c

a
, x1 = 0 ⇒ t∗ =

c√
ab

,

x∗
1 =

c2

2a
> 0. x∗

2 = −c

√
b

a
< 0.

III

⎧⎨
⎩x2 = at− c

√
b
a ,

x1 = 1
2at2 − c

√
b
a t,

IV

{
x2 = bt,

x1 = 1
2bt2 − 1

2
c2b
a2 ,

x2 = 0 ⇒ t∗ =
c

a

√
b

a
x1 = 0 ⇒ t∗ =

c

a
,

x∗
1 = − c2b

2a2
< 0. x∗

2 =
cb

a
< c.

The concatenated flow of the system is a “contraction”
since b/a < 1. The trajectory of the system winds around
the origin and passes through points (0, c( b

a )n), ∀n ∈ N.
Figure 1 illustrates how the quantized PD controller applied
to the double integrator causes the trajectory to adopt a phase
portrait that resembles an ordinary stable focus. A system
with quantized feedback can be yet another example of a
stable switched system arising from a family of unstable
members.

V. THE EFFECT OF SAMPLING
Actual digital controllers measure the output at discrete

instants of time. Given a sampling period, T , the system with
quantized and sampled control (2) becomes, xk = x(kT ),

ẍ = a2ẋ + a1x− k2(�ẋk�+ 1
2 )− k1(�xk�+ 1

2 ), (18)
� v2(x, ẋ), ∀t ∈ [kT, (k + 1)T [, ∀k ∈ N.

The stationary points of (18) are still derived according to
Definition 1 where the set-valued mapping F : x �→ F (x) ⊂
R

2, ∀x ∈ R
2, is now calculated by taking limits as xk → x,

i.e., the limit points v
∗ of v on the domain S =

⋃
Si,j ,

when x ∈ ∂ Si,j , are now assumed to be computed as

v
∗ = lim

xk→x,xk∈S
v(xk) (19)
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which replaces (5). With this modification the stationary
points of the quantized and sampled system remain the same,
that is, we can show what follows.
Proposition 3: A sufficient condition for the origin to be

the sole stationary point of system (18) is given by (6).
Proof: As in the proof of Proposition 1, for all x such

that |x2| > 0, 0 /∈ F (x), since any v ∈ F (x) has the form
v = [x2, ·]� �= 0. Adopting (19) to calculate the set-valued
mapping x �→ F (x), it can be verified that the vector fields
v̄

i,j ∈ F (x); i = 0,−1, n, n − 1; j = 0,−1 are the same
as those found in the proof of Proposition 1. Hence, points
of the form [0, n + r]�, r ∈ [0, 1[, n ∈ Z and of the form
[0, n]�, n ∈ Z− {0} are not stationary points of (18).
Although passivity of the system is lost due to sampling,
and so is asymptotic stability, it is possible to show what
constitutes a type of robustness result for the feedback
controller which employs only quantization. The system (18)
is still practically stable in the following sense.

Theorem 2: Suppose that the gains of the feedback con-
troller in (18) satisfy, as before,

k2 > 4 max{0, a2}, k1 > k2 + 2 max{0, a1}. (20)

Then the quantized and sampled feedback control sys-
tem (18) is practically stable in the sense that for every pair
of level sets Sε, Sγ , γ > ε > 0 of the storage function,

Sε � {(x1, x2) | S(x1, x2) ≤ ε},
there exists a sufficiently small sampling period T such that
all system trajectories of (18) originating in Sγ reach Sε in
finite time and remain in Sε thereafter.

Proof: For any given γ > 0, let Kγ > 0 be a bound
for the RHS of (18) on the compact level set Sγ , i.e.

|v2(x, ẋ)| ≤ Kγ , and also, |ẋ| ≤
√

2γ, (21)

∀[x, ẋ], [xk, ẋk] ∈ Sγ , where, WLOG, γ > 1, Kγ > 1 and
ε < 1

2 . The sampled system is now

ẍ = a2ẋ + a1x− k2(�ẋ	+ 1
2 )− k1(�x	+ 1

2 )

+ k2(�ẋ	 − �ẋk	) + k1(�x	 − �xk	), (22)
∀t ∈ [kT, (k + 1)T [, ∀k ∈ N.

Along the solutions of this system the dissipativity inequality
no longer holds as, on RD , it is replaced by

S(ẋ(t2), x(t2))− S(ẋ(t1), x(t1))

≤ −P (ẋ) + k2

∫ t2

t1

|(�ẋ	 − �ẋ(kT )	)ẋ| dτ

+ k1

∫ t2

t1

|(�x	 − �x(kT )	)ẋ| dτ. (23)

Now, let {ti}i∈N be a sequence of instants ti+1 = ti + Δt,
Δt = h

4Kγ
√

γ < 1
2 , for some h to be selected later. From the

Mean Value Theorem,

|ẋ(ti+1)− ẋ(ti)| = |ẍ(ti + θ)|Δt < h, θ ∈ [0, Δt] (24)
|x(ti+1)− x(ti)| = |ẋ(ti + θ)|h ≤

√
2γΔt < h, ∀i ∈ N,

whenever [x(ti), ẋ(ti)]
�, [x(ti+1), ẋ(ti+1)]

�∈ Sγ . Note that

�ẋ(τ)	 − �ẋk	 �= 0 or �x(τ)	 − �xk	 �= 0,

only when [x(τ), ẋ(τ)]� ∈ Sn1,n2 and [x(kT ), ẋ(kT )]� ∈
Sn3,n4 for different tiles of the state space. Now suppose that
the trajectory of (22) satisfies, [x(τ), ẋ(τ)]� ∈ SC

ε/4∩Sγ for
τ ∈ [ti, ti+1], where SC

ε/4 denotes the complement of the
level set Sε/4. By virtue of (24) and since the origin is the
sole stationary point of (22), there exists a constant h̄ deter-
miningΔt such that �x(τ)	 and �ẋ(τ)	 change value at most
once in the interval [ti, ti+1] and such that [x(τ), ẋ(τ)]� ∈
Sε, ∀τ ∈ [ti, ti+1] whenever [x(ti), ẋ(ti)]

� ∈ Sε/2. The
value of h decreases to zero as ε → 0.
For the value of h̄ selected as above, let T = Δt

m which
implies that sampling occurs at each time instant ti, i ∈ N,
m to be selected later. The positive terms on the RHS of (23)
can be bounded as follows,

k2

∫ ti+1

ti

|(�ẋ	 − �ẋ(kT )	)ẋ| dτ

≤ k2

∫ ti+(j+1)T

ti+jT

|(�ẋ	 − �ẋ(kT )	)| |ẋ| dτ ≤ k2T
√

2γ, (25)

for some j ∈ [0, m− 1], j ∈ N. Similarly, on RD,

k1

∫ ti+1

ti

|(�x	 − �xk	)ẋ| dτ ≤ k1T
√

2γ.

We now need a lower bound for P (ẋ) in (23). From (14)
and (20) it follows that

P (ẋ) ≥

⎧⎪⎨
⎪⎩

1
2k2(σ2 − σ1),

if |ẋ(τ)| ∈ [n, n + 1[, n ∈ N, ∀τ ∈ [σ1, σ2[,
1
4k2

∫ σ2

σ1
ẋ2 dτ, if |ẋ(τ)| ∈ ]0, 1[, ∀τ ∈ [σ1, σ2[.

Using (24), it is easy to see that, if at ti, |ẋ(ti)| ≥ 1 then
|ẋ(τ)| ≥ 1−KγΔt > 1

2 for all τ ∈ [ti, ti+1] and

P (ẋ) ≥ 1
2k2(σ − ti) +

1

4
k2

∫ ti+1

σ

ẋ2 dτ ≥ 1

8
k2Δt (26)

where σ corresponds to the time instant at which |ẋ(σ)| = 1.
Now, suppose that there exists a σ ∈ [ti, ti+1] such that
ẋ(σ) = 0. Under the Conditions (20), it follows from the
proof of Proposition 1 that there exist constants ψ > 0 and
δ ∈ ]0, 1[ such that, whenever |ẋ| ≤ δ,

a1x + a2ẋ− k1(�x	+ 1
2 ) + 1

2k2 ≤ −ψ if x > 0,

a1x + a2ẋ− k1(�x	+ 1
2 )− 1

2k2 ≥ ψ if x < 0.

Also, it follows from (24) that for any n ∈ N

|ẋ(τ) − ẋ(kT )| ≤ 2TKγ, τ ∈](k − 1)T, (k + 1)T [,

|x(τ) − x(kT )| ≤ 2
√

2γT, τ ∈](k − 1)T, (k + 1)T [.

whenever [x(τ), ẋ(τ)]�, [xk, ẋk]� ∈ Sγ . Combining the
above, and assuming that T is sufficiently small or, equiva-
lently, that m is greater than some m∗, ∀k ∈ N : |ẋk| ≤ δ
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and ∀τ ∈ ](k − 1)T, (k + 1)T [ such that |ẋ(τ)| ≤ δ

v2(x(τ), ẋ(τ))

=a1x(τ) + a2ẋ(τ) − k1(�x(kT )	+ 1
2 ) + 1

2k2

=a1x(kT ) + a2ẋ(kT )− k1(�x(kT )	+ 1
2 ) + 1

2k2

+ a1(x(τ) − x(kT )) + a2(x(τ) − x(kT ))

≤− ψ + |a1|2
√

2γT + |a2|2TKγ ≤ − 1
2ψ if x(τ) > 0,

v2(x(τ), ẋ(τ))

=a1x(τ) + a2ẋ(τ) − k1(�x(kT )	+ 1
2 )− 1

2k2

=a1x(kT ) + a2ẋ(kT )− k1(�x(kT )	+ 1
2 )− 1

2k2

+ a1(x(τ) − x(kT )) + a2(x(τ) − x(kT ))

≥ψ − |a1|2
√

2γT − |a2|2TKγ ≥ 1
2ψ if x(τ) < 0.

The above implies that the system trajectory traverses the
set Nδ � {[x, ẋ]� ∈ R

2 | |ẋ| ≤ δ} in finite time; i.e. Nδ

is not an invariant set of the system. From (21) the time tR
needed for the system trajectories to traverse Nδ is estimated
as tR ≥ 2δ

Kγ
� tB . WLOG and not prejudicing the previous

choice of h̄, it can now be assumed that Δt = 2tB . If there
exists a σ ∈ [tk, tk+1] such that ẋ(σ) = 0, then

P (ẋ) ≥ 1
4k2

∫ tk+1

tk

ẋ2 dτ ≥ 1
4k2

∫ tB

0

(δ −Kγτ)2 dτ,

≥ 1
6k2

δ3

Kγ
= 1

12k2δ
2Δt. (27)

By virtue of (25), (26), (27), there exists a c > 0 such that

S(x(tk+1), ẋ(x(tk+1))− S(x(tk), ẋ(tk))

≤ − 1

12
k2δ

2Δt +
√

2γ(k1 + k2)
Δt

m∗ ≤ −cΔt, (28)

whenever tk /∈ Sε/4,

for a sufficiently large m∗. For such a value of m∗, select
T = Δt

m∗
. Since by (28) the storage function is guaranteed

to decrease between time instants tk, k ∈ N, we claim that
any trajectory starting from Sγ reaches Sε/2 in finite time.
For if this were false, then we would have S(x(ti), ẋ(ti)) ≤
S(x(t0), ẋ(t0)) − cT i → −∞ as i → ∞ which contradicts
the positive definiteness of S. Once [x(t∗), ẋ(t∗)]� ∈ Sε/2

then, by the choice of Δt, [x(t∗ + Δt), ẋ(t∗ + Δt)]� ∈ Sε

the storage function is again decreasing and the trajectory of
the system cannot leave Sε.
Introducing sampling destroys asymptotic stability. With

the help of the example of the double integrator, we can
show that, indeed, there does not exists a constant sampling
time, T > 0, under which the quantized and sampled system
trajectories converge to the origin. Assume that the initial
condition of the system is, again, at [0, c]�. We can show
that the largest delay that can be introduced in the switching
while traversing the four quadrants of the phase plane must
not exceed c/a if the system were to remain stable. Thus, a
sampling period T ≤ 2c/a is required for stability.
A delay of c/a is equivalent to a system emanating from

the initial condition [0, c]� failing to switch when crossing
the x1-axis of the phase plane, i.e., the change in �ẋ	 is not

detected at time t∗ = c/a. The trajectory evolves through the
four quadrants of the phase plane while the control switches
only twice, as tabulated below:

t [x1, x2]
�

ẍ(τ) τ

0 [0, c]
�

c
a

[
1
2

c2

a , 0
]�

−a [0, c
a [

2c
a [0,−c]� −a [ c

a , 2c
a [

3c
a

[
− 1

2
c2

a , 0
]�

a [2c
a , 3c

a [

4c
a [0, c]

�
a [3c

a , 4c
a [

As can be seen, the system trajectory is periodic, demon-
strating that using T = 2c

a produces trajectories that stay in
the complement of the level set Sc. Asymptotic stabilization
hence requires that T → 0.

VI. CONCLUSION
Under the condition stipulated by Proposition 1, a con-

tinuous 2nd order system is asymptotically stabilized by
quantized feedback for any quantum size, provided that
the gains obey the passivity conditions of Proposition 2.
This result is surprising since it is usually thought that
stabilization is only possible within the resolution of the
sensors. For set-point control, the system can be controlled to
converge exactly to any quantization boundary. Considering
quantization alone is akin to assuming that the sampling
rate is sufficiently fast to ignore its effects, otherwise, only
practical stabilization can be achieved and most systems will
enter a limit cycle in the neighborhood of the origin.
This theory needs to be extended to the quantized and

sampled control of any LTI system. We also plan to relate
it to practical problems such as achieving accurate control
in virtual reality haptic systems [11], as well as to lift the
assumption that velocity sensors are available.

REFERENCES
[1] R. E. Kalman and J. E. Bertram, “A unified approach to the theory

of sampling systems,” J. Franklin Inst., vol. 267, no. 5, pp. 405–436,
1959.

[2] J. Tschauner and E. I. Jury, “A general formulation of the stability
constraints for sampled-data control systems,” Proc. of the IEEE,
vol. 51, no. 4, pp. 619–621, 1963.

[3] J. E. Bertram, “The effect of quantization in sampled-feedback sys-
tems,” Trans. of the AIEE, vol. 77, no. 2, pp. 177–182, 1958.

[4] J. B. Slaughter, “Quantization errors in digital control systems,” IEEE
Trans. Automat. Contr., vol. 9, no. 1, pp. 70–74, 1964.
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