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Abstract. Using a database of vibratory signals captured from the in-
dex finger of participants performing self-touch or touching another per-
son, we wondered whether these signals contained information that en-
abled the automatic classification into categories of self-touch and other-
touch. The database included signals where the tactile pressure was var-
ied systematically, where the sliding speed was varied systematically, and
also where the touching posture were varied systematically. We found
that using standard sound feature-extraction, a random forest classifier
was able to predict with an accuracy greater than 90% that a signal
came from self-touch or from other-touch regardless of the variation of
the other factors. This result demonstrates that tactile signals produced
during active touch contain latent cues that could play a role in the
distinction between touching and being touched and which could have
important applications in the creation of artificial worlds, in the study
of social interactions, of sensory deficits, or cognitive conditions.

Keywords: Self-Touch · Touchant-touché · Social tactile interactions ·
Machine learning.

1 Introduction

Skin-to-skin touch is an important tactile interaction. This type of touch has
attracted the attention of many authors (e.g. [31,24,9]) and motivated research
across many fields; from philosophy [23,16], cognitive neuroscience [5,2,10,20,28],
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to human development and well-being [4,1,8,25]. All these works are based on
introspection or on behavioural observations since, by necessity, they cannot
rely on the objectification of the mechanical consequences, hence of the sensory
consequences of skin touching skin. It was however recently been realised that
the objectification of tactile interactions is possible when hands actively inter-
act with inanimate objects [30,12,29]. Motivated by this observation, some of
us collected a database of vibration signals collected from a index finger inter-
acting with another finger, or a forearm, with a view to provide objective data
produced during skin-to-skin interactions [17]. This latter study demonstrated
that the “tactile waves” measured on a touching finger bore features related to
the interaction, to wit, the pressure applied (a tonic characteristic) and the slid-
ing speed (a kinematic characteristic). The signals were shown to be relatively
independent from the posture with which the interaction was effected, making
this technique potentially useful for analyses about tactile behaviour [17].

1.1 Present Study

In the present study we advanced the hypothesis that information contained in
single-channel vibration signals recorded from a finger in sliding contact with an-
other finger, or with a forearm, contained information that would enable the dis-
crimination between self-touch and touching another person. In the foregoing, we
show that certain supervised machine classifiers can achieve a very high level of
success in deciding whether tactile vibrations came from self-touch or from other-
touch (touching another person). Supervised machine classifiers trained models
through ground-truth labels which are indicated here by self and other. Our
findings could contribute to the study of behaviour in many domains, chief among
them is the study of the role of touch in social interactions and investigations
related to cognitive conditions such as autism or schizophrenia where self/other
touch discrimination might be impaired [31,8]. It also bears the intriguing con-
clusion that the determining factors differentiating self from ordinary touch are
not limited to a unique convergence of sensory and motor signals [23,3,14,15]
but that the tactile inputs per se contain cues that are special to self-touch.

1.2 Signal Database

A key attribute of the database is that it included signals recorded in similar con-
ditions of pressure and speed during self-touch but also when touching another
person. The vibrations recorded from a finger sliding on skin clearly depended on
the pressure applied and on the sliding speed [17]. On this account, it would be
surprising if machine learning classifiers were not able to discriminate between
categories of intensity or speed. In fact, the multichannel whole-hand record-
ings described in [29] contained sufficient information to enable a support vector
machine classifier to categorise twelve different tactile gestures, three types of
materials, as well as the shape of the objects being touched.
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1.3 Feature Extraction

Since the data at hand were available in form of time-dependent signals arising
from mechanical interactions between objects in contact, it stands to reason that
techniques developed to classify sounds would also be appropriate to classify
signals arising from sliding fingers. A first option was to train and then to test
classifiers using raw data. Another possibility was to extract domain knowledge
features from the signals.

Features frequently used in the processing of sound include: Maximum Mel
Frequency Cepstral Coefficients (MFCC), a quantification technique for vibra-
tory signals [11], minimum MFCC, mean MFCC, Zero-Crossing Rate which cap-
ture the rhythmic features of a signal [13], Chromograms which are commonly
used for the analysis of musical sounds [27], Spectral Roll-Off which measures the
right skewness of a spectrum [18], Spectral Flux which describes rate of change
a time-varying spectrum arising from a non-stationary process [21], and Pitch
which is a well-known instantaneous attribute of sounds [26]. Features do not
contribute equally significant to a given classification problem. Their significance
can be assessed through the decrease of accuracy in classification when a feature
is dropped. To this end, GINI importance, or mean decrease in impurity (MIDI),
may be used to evaluate the importance of each feature [6].

1.4 Performance Measures

The performance of a classifier is relative to a test dataset used to examine the
model trained with a train dataset. Here we use standard performance metrics.
Accuracy is measured by

Accuracy = (Ntp +Ntn)/(Ntp +Nfp +Nfn +Ntn),

which accounts for the number, N , of predictions labeled as true positives (tp),
true negatives (tn), false positives (fp), and false negatives (fn), commonly ex-
pressed in percent, while precision is defined by the proportion of true positive
predictions to the total number of positive predictions, and recall which reaches
one when there are no false negatives. We also used a statistical measure termed,
F1-Score, which is the harmonic mean of precision and recall. These metrics are
recalled below.

Precision = Ntp/(Ntp +Nfp), Recall = Ntp/(Ntp +Nfn),

F1-Score = 2(Recall · Precision)/(Recall + Precision).

We used a graphical representation borrowed from Signal Detection Theory [22].
Here, a Receiver Operating Characteristics (ROC) curve plots the false positives
vs. true positives. It can be interpreted as a plot of 1-sensitivity vs. sensitivity.
Even though these curves may cross, any curve clearly above another is better.
A single-number separability measure, the area under the ROC curve (AUC),
follows from this representation. An AUC of 0.7 is said to be acceptable, excellent
if it around 0.8, and outstanding above 0.9.
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1.5 Ambiguity and Abstention

In the present study we employed a recently introduced technique which pro-
poses that in case of ambiguity it is better to abstain rather than to make a
prediction [7]. This technique can be implemented, for example, in a three-way
random forest algorithm which can extract probabilities for each class. Given
two probability thresholds, α and β, having value 1.0 for the ground-truth class
and 0 for the incorrect class, predictions are declared positive when the score
of the positive class is greater than α and the score the positive class is greater
than the score of the negative class. Conversely, predictions are declared nega-
tive when the score of the negative class is greater than β and the score of the
negative class is greater than the score of the positive class. When neither of
these conditions are met, then there is an abstention. Typical values for α and
β are 0.75.

2 Results

The skin-to-skin touch datasets described in [17] contained signal recorded with
eighteen participants of balanced gender and hence captured a reasonable diver-
sity of individual behaviours. The signals were recorded at audio-rate and down-
sampled 10-fold. The initial one second interval of each recording was edited
out to eliminate the energy burst due to the stick-to-slip transition. This dele-
tion potentially eliminating useful information for the purpose of this study. The
pressure dataset comprised ten 10-second recordings where participant touched
ten times for each condition their own or the other participant’s index finger with
a gentle or firm touch, resulting in 720 trials. The speed dataset comprised sim-
ilar recordings but the participants touched their own or the other participant’s
forearm at three different speeds giving rise to 1080 trials. The posture dataset
comprised similar recordings but the participants touched their own or the other
participant’s index finger in two different orientation to vary the relationship be-
tween the sensor and the regions of skin contact, resulting in 720 trials.

2.1 Relative Performance of Classification Techniques

Table 1 shows the performance of various classification techniques using the
pressure dataset suggesting that that the random forest classifier performed best
compared to other classifiers. It produced negligible Mean Squared Error (MSE)
for the test dataset with a classification accuracy of 81% greatly surpassing
logistic regression, decision tree, Gaussian, and support vector classification.

2.2 Importance of Feature Extraction

Tests conducted with the combined datasets to evaluate the contribution of
extracted features vs raw data unequivocally confirmed the importance of pro-
viding the algorithms with extracted domain knowledge features. Most metrics,
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Table 1. Classifier performance & Importance of feature extraction. Accuracy in %.

classifier w pressure Accuracy Precision Recall F1-Score train-MSE test-MSE AUC

logistic regression 52.5 0.52 0.52 0.52 0.41 0.47 0.56
decision tree 65.0 0.65 0.65 0.65 0.00 0.35 0.65
Gaussian 55.0 0.56 0.46 0.50 0.42 0.45 0.57
support vector 53.4 0.53 0.61 0.56 0.40 0.47 0.53
random forest 81.0 0.81 0.79 0.80 0.00 0.19 0.84

raw/features w dataset

raw w pressure 61.0 0.58 0.63 0.60 0.02 0.39 0.64
raw w speed 62.0 0.57 0.67 0.62 0.17 0.38 0.64
raw w posture 53.0 0.54 0.56 0.55 0.10 0.47 0.54
features w pressure 81.0 0.81 0.79 0.80 0.00 0.19 0.83
features w speed 78.0 0.76 0.76 0.76 0.00 0.22 0.85
features w posture 76.0 0.78 0.75 0.76 0.01 0.24 0.81

Table 1, show low to unacceptable values when raw data was used. Figures 1a,b
further indicate that classification models become skilful with the introduction
of domain knowledge features since the figure shows across-the-board reduction
in false positives rate.
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Fig. 1. ROC curves. a, Weak performance of classifiers on the raw data of combined
datasets. b, Overall effect of domain knowledge feature extraction on different datasets.

The results shown in Table 2 indicate that a three-way classification al-
gorithm with abstention greatly improved discrimination between the labels
self and other. Accuracy was increased from 81% to 92% with the pressure

dataset, from 78% to 97% with the speed dataset, and from 76% to 84% with the
posture dataset. For the case of the combined dataset accuracy was increased
from 73% to 90%, which is very significant.

Figure 2 summarizes the GINI importance of the different domain knowledge
features used relatively to the datasets.



6 A. Ramasamy et al.

Table 2. Three-way classification of self and other using abstention.

Accuracy (%) Precision Recall F1-Score Train-MSE Test-MSE AUC
pressure 92.2 0.96 0.89 0.92 0.00 0.08 0.92
speed 97.6 1.00 0.95 0.87 0.00 0.02 0.98
posture 84.8 0.88 0.85 0.86 0.00 0.15 0.84
combined 90.2 0.87 0.97 0.91 0.00 0.01 0.90
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Fig. 2. GINI importance of features. This measure is plotted for each features
during three-way random forest classification of different datasets. Features are ranked
by order of decreasing importance with combined data.

2.3 Discussion and Conclusion

Overall, the best performance was achieved by the three-way random forest clas-
sification algorithm which makes use of an ensemble learning method though
a multitude of decision trees. The mutually exclusive branches represent sub-
categories of the input features. The random forest classifier overcomes over-
fitting though voting to predict an output. The technique known as bootstrap
aggregating de-correlates the decision trees corresponding to different training
sets. Noise in single tree affects the performance of the model but not the average
of many trees. This strategy was very successful in the classification of self-touch
and other-touch (labels self and other) from single-channel recordings of tac-
tile waves in the index finger.

As a whole, the eight domain knowledge features showed little relative advan-
tages over the others in the task of discriminating self-touch from other-touch.
The mean and max MFCC features which made important contributions when
the speed of sliding contact varied could be considered as exceptions. Also, the
zero-crossing feature was important when the posture was changed. Chromogram
and pitch had the highest importance in terms of classification with combined
data. These findings indicates that none of the commonly used audio features
preferentially revealed the latent characteristics of skin-to-skin friction-induced
vibrations that can be used to distinguish self-touch from touching other peo-
ple. It is possible that the removal of the stick-to-slip frictional transitions was
responsible for this general lack of sensitivity. These findings therefore suggest
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that further research is needed to discover better domain knowledge features for
this type of data.

The AUC measure was found to be a preferred performance indicator over
accuracy, an observation that was commented in [19] although it is recommended
to consider different evaluation metrics to discuss performance of a classifier on
a particular problem. This observation is validated by the ROC curve obtained
under change in posture compared to that obtained under change in speed.

It is astonishing that some of the machine learning algorithms could reach
such very high level of performance in discriminating self- from other-touch.
Common sense would suggest that the applied pressure would be a factor but
the results suggest otherwise. The same can be said of the speed of sliding. If it
was an important factor, then the dataset where speed was purposefully varied
would have led to poor performance, which was not the case. Thus, surprisingly,
the latent characteristics that enabled discrimination between self- and other-
touch were not related to neither the tonic nor the kinematic attributes of the
gestures employed. Since it is not at all obvious which signal characteristics
these algorithms exploited to achieve discrimination, future research will seek to
identify which invariant properties hidden in the recorded tactile signals were
used by the classifier to discriminate self- from other-touch.
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