
COMP 557 – Tutorial 0: Eclipse, Java, MINtools

TA: Emmanuel Piuze

McGill University

Friday, September 16th, 2011

Introduction

This tutorial will help you get started for assignment 0 and subsequent assignments. Let me know
if something is not clear, if you find a mistake, if you would like to add something to this tutorial,
or if you simply find it useful! Topics that will be covered include the following:

1. Java programming language

• Refresher (syntax, operators, loops, constructors, etc.)

• Basic data structures and operations (lists, hash tables, etc.)

• Vecmath package (vectors, points, matrices, quaternions and operations on them)

2. Eclipse open development platform

• Setting up a Java workspace (project builder, window placement, etc.)

• Quick navigation (jump-to’s, class methods, fields, etc.)

• Code refactoring

• Hot-code debugging (runtime modifications and effects)

3. Swing and MINtools

• Basic Java Swing elements and syntax (JButton, JLabel, JSlider, etc.)

• Parameter types (boolean, integer, double) and listeners

• UI elements (control frames, collapsible panels, etc.)

• Interactivity (KeyAdapter, MouseMotionListener, keyPressed, mouseMoved, etc.)

1



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

Contents

1 Java 3
1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Commenting Your Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Primitive data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 The Main Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.8 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.9 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.10 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.11 JRE Convenience Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.11.1 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.12 Vecmath package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.12.1 Points and Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.12.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.12.3 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Eclipse 12
2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Verifying if Java is Installed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Configuring JREs and JDK Compiler Compliance . . . . . . . . . . . . . . . . . . . 13
2.5 Workspace Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Perspectives, Views and Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Creating a Java Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Creating a Folder, Package, Class, Interface, Enum or Others . . . . . . . . . . . . . 15
2.9 Must-Read: Tips and Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Code refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.11 Debugging and Hot Code Replace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.12 JVM Heap Space and Out of Memory Exceptions . . . . . . . . . . . . . . . . . . . . 18

3 Swing and MINtools 19
3.1 Master of the UI: Creating The EasyViewer . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Building your UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 The getControls() method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 CollapsiblePanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.3 Listeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Keyboard and Mouse Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Page 2 of 24



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

1 Java

This part of the tutorial will give you a brief Java refresher. Most concepts are not explained
thoroughly so I assume that you have had some experience with Java at some point in your life. If
it’s not the case, I highly recommend that you dig through some examples in any Java reference
book you can find on the web or at the Schulich Library.

1.1 History

Java is an object-oriented programming language developed by Sun Microsystems (now Oracle) in
1995. Its syntax is similar to C and C++ but has a simpler object model and runs in a protected
virtual machine, thus exposing less low-level facilities. There is no such thing as a pointer in Java:
everything is passed by reference, except for primitive types (e.g. int, double) and the special String
class. Memory allocation is also being taken care of automatically, as well as deallocation (garbage
collection). Java applications are multiplatform in the sense that once compiled to bytecode they
can run on any machine that has a Java Virtual Machine (JVM) installed.

1.2 Commenting Your Code

First and foremost, the most important and most neglected part of any programming language, the
comments. In Java, comments can be single-line or multiline, and can optionally be (although
recommended by standard coding guidelines) of two different flavours. The first flavour, for both
single- and multi-line comments, should be used inside methods for describing blocks of code or
for commenting code out. The second flavour should be used everywhere else, for example when
describing the signature of a method or a class.

1 // 1 . This i s a s in g l e−l i n e comment o f the f i r s t f l a v ou r .
2
3 // 2 . Commenting a b l o c k o f code us ing the f i r s t f l a v ou r in multi−l i n e .
4 /∗
5 doub le z = Random. nextDouble ( ) ;
6 doub le y = z ∗ z ;
7 ∗/
8
9 /∗∗ 3 . This i s a s in g l e−l i n e comment o f the second f l a v ou r ∗/

10
11 /∗∗
12 ∗ 4 . This i s a mult i−l i n e comment o f the second f l a v ou r .
13 ∗ Note the doub le a s t e r i s k at the top .
14 ∗ This method adds up two numbers t o g e t h e r .
15 ∗ @param x the f i r s t number
16 ∗ @param y the second number
17 ∗/
18 public int add ( int x , int y ) {
19 return x + y ;
20 }

1.3 Primitive data types

In Java, primitive data types are predefined by the language and are named using reserved keywords.
The eight primitive data types supported by the Java programming language are: byte, short, int,

Page 3 of 24



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

long, float, double, boolean, char. The String class is a special case that is treated analogously
to a primitive data type. Primitive type by themselves cannot be modified by reference (no pointers)
and don’t have class methods, i.e.

1 double x = 1 . 5 ;
2 x . round ( ) ; // Inva l i d , no c l a s s methods f o r p r im i t i v e types
3 double y = x ; // Valid , y equa l s 1.5
4 x = 2 ; // Valid , but y s t i l l e qua l s 1 . 5 : no re f e r ence f o r p r im i t i v e types

The JRE contains class wrappers for each primitive type. These wrappers provide additional
operations (casting, truncating, etc.) and allow primitives to be treated like objects (that is, they
can be passed by reference). The naming convention for these classes is the name of the primitive
type they reference with the first letter in uppercase (e.g. Double, Integer, Float, etc.).

1.4 Operators

Here are some examples showing the use and effect of common operators:

1 int x = 1 ;
2 int y = 1 ;
3 int z ;
4
5 // Addit ive , mu l t i p l i c a t i v e
6 z = x + y ; // z i s the sum of x and y
7 z = x − y ; // z i s the d i f f e r e n c e o f x and y
8 z = y ∗ x ; // z i s y t imes x
9 z = x / y ; // z i s x d i v i d ed by y

10 z = x % y ; // z i s the reminder o f x d i v i d ed by y (modulus )
11
12 // Assignment
13 x += 2 ; // x i s incremented by 5
14 x ∗= 2 ; // x i s mu l t i p l i e d by 2
15 x /= 2 ; // x i s d i v i d ed by 2
16
17 // Pos t f i x
18 x++; // x i s incremented by 1 a f t e r ”x” i s executed
19 x−−; // x i s decremented by 1 a f t e r ”x” i s executed

Other operators include unary, shift, relational, bitwise, logical and ternary operators (see Oracle’s
Java Operators for a complete list along with the operator precedence).

String objects can be manipulated using the + sign, which acts as a concatenation operator:

1 St r ing s = ”Programmers ” + ” us ing C ” ;
2 s += ” can ’ t use t h i s ” ;
3 // s equa l s ”Programmers us ing C can ’ t use t h i s ”

1.5 Methods

Methods in Java have a signature similar to those in C. Methods are required to have a return type
– null if nothing is returned, just like void in C –, a name, a comma-delimited parameter list in a
parenthesis, and a body enclosed in brackets , e.g.

1 int sum( int x , int y ) {
2 return x + y ;

Page 4 of 24

http://download.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
http://download.oracle.com/javase/tutorial/java/nutsandbolts/operators.html


COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

3 }

Optionally, you can specify a modifier such as public or private, depending on the scope of
the method, and static. See Section 1.10 on Java classes for more on this. Other elements include
an exception list (not covered in this tutorial) and generic types (also not covered).

1.6 The Main Method

Second most important part of your application, the Main method. This method is how the Java
Virtual Machine knows that your application wants to be compiled. Without it, your code is just a
complicated arrangement of spaghetti but without sauce. This method must appear within a class,
but it can be any class. Here is an example of a main() method invoking the constructor for the
application living in the class MyApp:

Page 5 of 24



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

1 /∗∗
2 ∗ @param args
3 ∗/
4 public stat ic void main ( St r ing [ ] a rgs ) {
5 new MyApp( ) ;
6 }

More onto constructors and classes later...

1.7 Rounding

If you cast a double or a float directly to an integer, the decimal part of the number is simply
omitted, no rounding operation is performed. e.g.

1 int x = ( int ) 1 . 7 ; // x equa l s 1

If you want “proper” rounding, then you can use the static Math.round(number) method, which
returns the closest integer to the number, i.e. a long for a double, and an int for a float.

1 long x = Math . round ( 1 . 6 ) // x i s a long rounding o f the number
2 int y = Math . round ( 1 . 6 f ) // y i s an in t rounding o f the number
3 int z = ( int ) Math . round ( 1 . 6 ) // z i s a long rounding o f the number , ca s t to an in t

Other ways of rounding numbers include Math.rint(number) and the BigDecimal class which has
many rounding modes available.

1.8 Logic

Logical statements in Java have the following syntax. Note that brackets are only necessary when
an if statement encloses more than one line of code.

1 double z = new Random( ) . nextDouble ( ) ; // z i s a random number between 0 and 1
2
3 i f ( z == 0) {
4 System . out . p r i n t l n ( ”z equa l s 0 and we don ’ t l i k e t h i s ” ) ;
5 e x i t (1 ) ;
6 }
7 else i f ( z > 0 && z < 0 . 5 )
8 System . out . p r i n t l n ( ”z i s nonzero and l e s s than 0 .5 ” ) ;
9 else i f ( z >= 0.5 && z < 1)

10 System . out . p r i n t l n ( ”z i s equal or l a r g e r than 0 .5 and l e s s than 1” ) ;
11 else i f ( z == 1) {
12 System . out . p r i n t l n ( ”z equa l s 1 and we don ’ t l i k e t h i s e i t h e r ” ) ;
13 e x i t (1 ) ;
14 }
15 // This shou ld never happen
16 else {
17 System . out . p r i n t l n ( ”wtf ?” ) ;
18 }

Switch statements can be used when working with discretized values. The break keyword
prevents the code from “leaking” from one case to another. The default keyword indicates the
operation to be performed if the evaluation does not fall in any case block.

Page 6 of 24



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

1 public St r ing t r an s l a t eF r en chEng l i s h I t a l i a n ( int x ) {
2 St r ing s ;
3 switch ( x ) {
4 case 1 :
5 s = ”un , one , uno” ;
6 break ;
7 case 2 :
8 s = ”deux , two , due” ;
9 break ;

10 // cases 3−9.. .
11 case 10 :
12 s = ”dix , ten , d i e c i ” ;
13 break ;
14 default :
15 System . e r r . p r i n t l n ( ”This t r a n s l a t i o n eng ine only supports numbers up to 10 . ” ) ;
16 s = ” i n v a l i d number” ;
17 }
18
19 return x + ” i s t r an s l a t ed to [ ” + s + ” ] ” ;
20 }

You can save a few lines when performing logical assignments by using an inline if-then-else
statement:

1 double z = −1 + 2 ∗ new Random( ) . nextDouble ( ) ; // z i s a number between −1 and 1
2 int x = z < 0 ? −1 : 1 ; // i n l i n e l o g i c : x i s the s i gn o f z
3 int y = z < 0 ? −1 : z == 0 ? 0 : 1 ; // i n l i n e l o g i c : y i s the t rue signum of z
4 boolean b = y == 1 ; // b i s t rue i f z i s s t r i c t l y p o s i t i v e

1.9 Loops

A for loop is a block of code that is designed to be executed a number of times, until a certain
condition is met, with an optional incremental operation. e.g.

1 // Incremental opera t ion = i++
2 for ( int i = 0 ; i < 10 ; i++) {
3 System . out . p r i n t l n ( ”The cur rent i t e r a t i o n i s ” + i ) ;
4 }
5 // No incrementa l opera t ion in loop dec l a ra t i on
6 for ( int i = 0 ; i < 10 ; ) {
7 System . out . p r i n t l n ( ”The cur rent i t e r a t i o n i s ” + i ) ;
8 i = i + 1 ;
9 }

A while loop is a block of code that is designed to be executed until a certain condition is met.
e.g.

1 int i = 0 ;
2 while ( i < 10) {
3 System . out . p r i n t l n ( ”The cur rent i t e r a t i o n i s ” + ( i++)) ;
4 }

A do-while loop is a loop that is designed to be executed once, and then until a certain condition
is met. e.g.

Page 7 of 24



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

1 do {
2 hitLaptop ( ) ;
3 } while ( i sSc reenFrozen ( ) ) ;

1.10 Classes

A class is defined in a file having the name of the class and ending with the .java suffix. e.g.

1 // HumanInteractor . java
2 public class HumanInteractor {
3
4 private f ina l stat ic int minIndex = 0 ;
5
6 public boolean i sVa l i d ( int i n t e r a c t o r Index ) {
7 return i n t e r a c t o r Index >= minIndex ;
8 }
9 }

Many objects of the same Class can be defined on the same line, e.g.

1 HumanInteractor human1 = new HumanInteractor ( ) , human2 = new HumanInteractor ( ) ;

The static keyword indicates that this field is shared by all objects implementing this class. The
same thing can be done for classes (e.g. public static void main(String[][] args).

A new class is constructed by calling the new keyword followed by the class name with param-
eters enclosed in brackets, e.g.

1 SomeClass ob j e c t = new SomeClass ( ”magic number” , 42 , 1 . 0 f ) ;

Anonymous classes can also be created on-the-fly if you don’t need to keep track of them. In this
example, an ActionListener object is being declared anonymously:

1 button . addAct ionLis tener (new Act ionL i s t ene r ( ) {
2 public void act ionPerformed ( ActionEvent e )
3 {
4 // do something .
5 }
6 }) ;

Interface are classes that define a set of method signatures that a class implementing them must
declare. e.g.

1 // In t e ra c t o r . java
2 public interface I n t e r a c t o r {
3 public void attach ( St r ing component ) ;
4 }

Classes implementing the interface need to implement its methods:

1 // HumanInteractor . java
2 public class HumanInteractor implements I n t e r a c t o r {
3
4 // This method has to e x i s t in the HumanInteractor c l a s s
5 // s ince i t implements the In t e ra c t o r i n t e r f a c e which
6 // dec l a r e s i t .

Page 8 of 24



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

7 @Override
8 public void attach ( St r ing component ) {
9 System . out . p r i n t l n ( ”Attaching ” + component ) ;

10 }
11 }

1.11 JRE Convenience Classes

The Java JRE has many built-in classes that you will find useful for your implementation. You can
trust these classes as they are well-maintained, updated anytime a new JRE comes out, and have
been around for a long time. By using these classes, you won’t need to reinvent the wheel whenever
you need a new feature and will save a lot of time. Just make sure you read the documentation
properly so you know exactly what to expect.

1.11.1 Lists

Java defines a List interface to represent any ordered collection. The user of this interface has
precise control over where in the list each element is inserted. The user can access elements by their
integer index (position in the list), and search for elements in the list. Unlike sets, lists typically
allow duplicate elements. The elements can be anything that is a Class (meaning no primitive types
are allowed so in order to use them you will need their Class wrappers: Double, Integer, Float,
etc.) and even the null element. You can traverse a List rapidly by using the for (element : list)
syntax:

1 List<Vector3d> vec t o r s = new LinkedList<Vector3d>() ;
2 po in t s . add (new Vector3d (1 , 2 , 3) ; // element 0
3 po in t s . add (new Vector3d (4 , 5 , 6) ; // element 1
4 po in t s . add (new Vector3d ( ) ; // element 2
5 po in t s . add ( null ) ; // element 3
6
7 // Traverse the l i s t one element at a time .
8 // I t w i l l throw an excep t ion i f i t reaches a nu l l e lement and
9 // you t ry to c a l l a method on i t .

10 for ( Vector3d v : v e c t o r s ) {
11 v . normal ize ( ) ; // throws an excep t ion when i t reaches the l a s t e lement
12 }

Java comes with two standard and useful List subclasses: the LinkedList and the ArrayList.

LinkedList The LinkedList is a data structure consisting of a group of elements that form a
sequence. Each element has a reference to the next node in the sequence. This structure allows for
efficient insertion or removal of elements from any position in the sequence. More precisely, Java
uses a doubly-linked list. The running time for common operations is the following:

• list.get(index): O(n).

• list.add(object): O(1.)

• list.remove(index): O(n). The constant factor is large compared to that for the ArrayList.

Page 9 of 24



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

ArrayList The ArrayList is a dynamically-resizable array implementation of the List interface.
Each ArrayList instance has a capacity that is always at least as large as the list size. As elements
are added to an ArrayList, its capacity grows automatically. You can increase the capacity of an
ArrayList manually before adding elements using the ensureCapacity(size) method, reducing the
amount of incremental reallocation. The running time for common operations is the following:

• list.get(index): O(1).

• list.add(object): amortized O(1), worst-case O(n) if the array must the resized and copied.

• list.remove(index): O(n). The constant factor is low compared to that for the LinkedList.

Collections This class allows to perform operations on Classes implementing the List interface.
Useful operations include searching, sorting, shuffling, replacing, etc.

Arrays This class allows to perform operations on arrays containing primitive types, such as
copying, searching, filling and sorting.

1 int [ ] array = new int [ ] { 4 , 3 , 2 , 1 } ;
2 int [ ] sortedArray = Arrays . copyOf ( array , 3) ; // Copies the f i r s t t h ree e lements .
3 sortedArray . s o r t ( ) ;

1.12 Vecmath package

To complete the assignments in this course you will be working with matrices, points, and vectors.
The Vecmath package provides useful classes for manipulating vectorial data, including 2D and 3D
vectors and points, 3 × 3, 4 × 4 matrices, axis angles, and quaternions. The Vecmath package is
available as part of the (extensive) Java3D project, but instead of installing the full Java3D, you
can download just the vecmath.jar locally. The source code (i.e., the javadoc) is in the jar but it
might not be automatically attached. In order to attach the source code to the jar for the javadoc,
first add the jar to your build path, then open up Reference Libraries in your project, right click
on the jar to set properties, go to source code attachment, and tell it where to find the zip file.

1.12.1 Points and Vectors

Come in double or float flavour, and for two-, three-, and four-element tuples, e.g. Vector2d,
Vector3f, Point2d, Vector4d. The components of 2-,3-,4-tuples can be respectively accessed directly
using the public fields (x, y), (x, y, z), and (x, y, z, w). Here is how you create them:

1 Point3d p = new Point3d (1 , 2 , 3) ;
2 Vector4d v = new Vector4d ( ) ; // Set v to (0 , 0 , 0 , 0) by d e f a u l t

Here are some useful methods for these classes.

• Negate all components of this vector in place.

1 vec to r . negate ( ) ;

• Scale all components of this vector by 2.

Page 10 of 24



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

1 vec to r . s c a l e (2 ) ;

• Sum up a point and a vector and place the result in the point.

1 po int . add ( vec to r ) ;

• Sum up two vectors and place the result in the first.

1 vector1 . add ( vector2 ) ;

• Set the first vector as the sum of two others.

1 vector1 . add ( vector2 , vec tor3 ) ;

• vector1 = 0.5 * vector2 + vector3d

1 vector1 . scaleAdd ( 0 . 5 , vector2 , vec tor3 ) ;

• Compute the Euclidean distance between two points.

1 point1 . d i s t ance ( po int2 ) ;

• Normalize a vector in place under the Euclidean distance so that its Euclidean norm is 1.

1 vec to r . normal ize ( ) ;

• Compute the length of a vector under the standard Euclidean distance.

1 vec to r . l ength ( ) ;

Note: although programmatically they might seem identical, points and vectors are different. A
point is a location (single point) and a vector is a magnitude and direction (an ordered pair of
points). This distinction is the reason you cannot get the distance between two Vector2d or that
you don’t have a scale(), length() or normalize() method in the Point3d class.

1.12.2 Matrices

Come in double or float flavour, and for 3×3 and 4×4 matrices. The components of these matrices
can be accessed directly using the public fields m.ij, e.g.

1 Matrix4d m = new Matrix4d ( ) ;
2 m.00 = 1 ; // Set the f i r s t row , f i r s t column
3 m.01 = 2 ; // Set the f i r s t s row , second column
4 m.33 = 16 // Set the f our th row , f our th column

Here are some useful methods for these classes.

• Compute the determinant of a matrix.

1 matrix . determinant ( ) ;

Page 11 of 24



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

• Sum up two matrices and place the result in the first.

1 matrix1 . add ( matrix2 ) ;

• Set the value of a matrix to a counter-clockwise rotation about the x axis.

1 matrix . rotX (Math . PI / 3) ;

• Transform a point using a matrix (dimensions must match).

1 matrix . trans form ( po int ) ;

• Retrieves the value at the specified row and column of this matrix.

1 matrix . getElement (0 , 3) ;

Note: Extracting the rotation matrix from a 4x4 matrix using the matrix4d.get() method involves
an SVD normalization and should be avoided since it is prone to numerical errors. If a 4x4 matrix
is a rigid transformation matrix, you can use the matrix4d.getRotationScale() to extract the upper
3x3 matrix of the transformation matrix. This 3x3 matrix is in fact a combination of a rotation
matrix and of a scaling matrix so don’t forget to set its diagonal elements to 1.

1.12.3 Quaternions

Quaternions are a special number system first described by Hamilton in 1843. This number system
has a convenient mathematical notation for representing rotations of objects in three dimensions.
They are more numerically stable and may be more efficient than rotation matrices. In vecmath,
quaternions are represented as a vector of their components, in double or float flavour. The com-
ponents of a quaternion can be accessed directly using the public fields x, y, z, w, e.g.

1 Quat4d q = new Quat4d ( ) ; // q i s (0 , 0 , 0 , 0)
2 q . y = 1 ; // Set q to (0 , 1 , 0 , 0)

2 Eclipse

This section will help you download and install Eclipse, and set up your Java workspace. It will
also give you some tips on how to be more efficient while programming your assignments, so even
if you have used Eclipse before, I recommend you at least skim over this section briefly.

You are strongly encouraged to use Eclipse as a development environment for this course. You
are obviously free to develop in whatever IDE you prefer but we will only give technical support
for Eclipse and your assignments will be graded using Eclipse.

2.1 History

Eclipse is a free and open source software development environment written mostly in Java. Al-
though originally designed for Java developers, plugins and extensions now allow Eclipse to be also
used to develop applications in languages including Ada, C, C++, COBOL, Fortran, Mathematica,
Perl, PHP, Python, R and Ruby.

Page 12 of 24



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

2.2 Verifying if Java is Installed

Eclipse requires Java to be installed in order to run properly. Nowadays, many operating systems
come out of the box with a preinstalled Java JDK (Java Development Kit) and OS X is one of them.
Almost all operating systems come with the Java JRE (Java Runtime Environment) installed so
you shouldn’t have to worry about this one. The JDK and JRE respectively consist of a compiler
to compile your Java code to bytecode and a virtual machine to run your Java programs. Note that
you may have other Java compilers (e.g. Microsoft or GNU Java) installed on your machine, but
Sun / Oracle’s Java will be used for this course.

Here is a simple test to determine if the Java JDK is already installed on your machine. If you
are using OS X, Unix or Linux, type which java in a console and if the output shows a location
(e.g. /usr/bin/java) then you should have a JDK installed. If you are using windows, you can
search for javac.exe, which is the Java compiler. You can dig a little deeper to determine what
version of the Java JDK you have. For this course, we will be using a Java JDK 1.6 compliance
level so make sure your version is at least 1.6 (as this tutorial is given, the most recent version is
1.7). If you have an older version, you might not be able to compile certain parts of the base code
we provide you for the assignments.

Quick solution If the previous test fails or if you are unsure about all this and just want to
start your assignment as soon as possible, you can just go ahead and download the latest Java
SE JDK – just be careful not to select the JRE – for your machine at http://www.oracle.com/

technetwork/java/javase/downloads/index.html.

2.3 Installation

You can download Eclipse at http://www.eclipse.org/downloads/. There are many packages
available for download. They essentially all share the same basic codebase, but have different plugins
preinstalled, depending on what your needs are. You can eventually decide to use something else
but for this course, download the Eclipse IDE for Java Developers. Make sure you select the
appropriate computer architecture for your machine (32 or 64 Bit) and operating system.

2.4 Configuring JREs and JDK Compiler Compliance

This next step only has to be performed once, so you should go through it and make sure everything
is fine. We’ve all had headaches in the past because of a mismatch in the JRE version and the
compiler compliance level. In order to avoid compatibility issues, you should tell Eclipse to use a
JRE version of 1.6 (or more) and a JDK compliance level of 1.6 (or more). In order to do that, you
need to change some Eclipse preferences.

In OS X, click Eclipse −→ Preferences and in Windows, click Window −→ Preferences.
On the left, select Java −→ Installed JREs. On the right, check the default JVM to use, e.g.
JVM 1.6 (there can be multiple versions installed with the same number, just pick one). If no JVM
1.6+ exists, then look at Section 2.2 on how to install Oracle’s Java JDK.

On the left, select Java −→ Compiler. On the right, under JDK Compliance, set the
Compiler compliance level: to 1.6+. Again, if you can’t do that, then look at Section 2.2.

Page 13 of 24

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/


COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

2.5 Workspace Management

Eclipse uses a workspace to organize your projects. A workspace is simply a directory in which
Eclipse places some hidden configuration files. When you start Eclipse for the first time, it will
automatically create a default workspace at some location (e.g. in your home directory).

You can switch to or create a new workspace by going to File −→ Switch Workspace −→
Other..., and by selecting any folder you want for your workspace. For example, you could use a
unique workspace for this course by creating a folder named “workspaceComp557” in your home
directory, and then telling eclipse to switch to that workspace. Whenever you launch Eclipse, it
loads the workspace that was used during its previous utilization.

2.6 Perspectives, Views and Packages

Eclipse has a system of “perspectives” and “views” for managing its layout and the elements that
are displayed in its interface. In the menu, under Window −→ Show View, you have a list
of available displayable elements. For example, the Package Explorer lets you manage your Java
code and projects efficiently by clustering them into packages. We will be using this feature in this
course so you will get familiar with it. A class belongs to a package by using the reserved package
keyword at the top of a Java class file, e.g.

1 // Dots are used to separa te subpackages
2 // In t h i s case , ’ ’ edu ’ ’ i s the top− l e v e l package ,
3 // conta in ing the ’ ’ mcg i l l ’ ’ package
4 // which conta ins the ’ ’ i n t e r a c t i on ’ ’ package :
5 package edu . mcg i l l . i n t e r a c t i o n ;
6
7 import javax . media . opengl .GL;
8
9 public class HumanInteractor implements I n t e r a c t o r {

10 . . .
11 }

A perspective is a predefined set of views along with a layout that you can save/load. You can
load and move the different views around depending on your preference and then save your own
perspective in Window −→ Save Perspective As....

2.7 Creating a Java Project

Once you are in the appropriate workspace, you can create a new java project. Click File −→ New
−→ Java Project. Give your project a name, such as “assignment0”. Now look under JRE. By
default, Eclipse will use your most recent JVM version. Make sure that version is at least 1.6. If
it’s not the case, then select Use a project specific JRE: and pick an appropriate JVM version.
If no JVM 1.6+ exists, then look at Section 2.2 on how to install Oracle’s Java JDK and Section
2.4 on how to configure Eclipse defaults with the appropriate JVM.

In the same window, under Project layout, select “Create separate folders for sources and
class files”, which will make the folder in which your code is stored a lot cleaner.

In the same window, under Working sets, unselect “Add project to working sets” unless you
intend to that feature (it actually is a useful feature so read about it if you can).

Page 14 of 24



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

Now click Finish. Et voilà, you’re done. Once the project is created, it should appear under
your Package Explorer. The project should contain a src folder, a Referenced Libraries folder
and a JRE System Library folder.

2.8 Creating a Folder, Package, Class, Interface, Enum or Others

From the package explorer, if you right click in the appropriate folder or package, New −→ lets
you create a new folder, package, subpackage, Java class, Java interface, or others. A subpackage
is created by using the full path of its parent (e.g. edu.mcgill) and then adding a dot followed by
the package name (e.g. ”edu.mcgill.interaction” for a new subpackage interaction located in the
”edu.mcgill” package).

2.9 Must-Read: Tips and Tricks

Here are some tips on how to better use Eclipse when implementing and browsing your code.

Comment / Uncomment You can comment and uncomment multiple lines of code at the same
time by selecting them with your mouse and pressing the keyboard shortcut Command+/ (forward
slash) in OS X or Ctrl+/ in Linux or Windows.

Navigation History The editor keeps a navigation history so you can easily go backward and
forward to a previous or next source file you’ve edited. In OS X, press Alt+Command+(Left or
Right) and in Linux or Windows, Alt+(Left or Right) to navigate in that manner. You can also
use the yellow forward and back buttons in the toolbar.

Javadoc Hover If you let your mouse hover over an identifier, variable or method, a window will
pop up telling you what it is, and providing you with the java documentation about this element
(javadoc).

Figure 1: Mouse hover brings up the javadoc

Page 15 of 24



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

Jump to Definition If you hold the Command key (OS X) or Ctrl key (Windows, Linux) and
left-click on an identifier, it will take you to its definition (source code). An identifier can be an
object, a field, a class, a method, pretty much anything. Combine this with the navigation history
trick and you will be exploring your code much faster. Note that if you do this on a method that
is defined in a jar, there might be no definition available if the jar does not contain the source code
(or was not attached to it).

Figure 2: Command-click (OS X) or Ctrl-click (Linux, Windows) to jump to definition.

Call Hierarchy If you ever wonder what classes are calling a certain method, you can right-click
on that method, then select Open Call Hierarchy. A new view will be shown with all members
that call this method.

Figure 3: Opening the call hiearchy for a method.

And Many More... For more ideas on how to improve your browsing, coding experience and
productivity, have a look at this official Eclipse document (Eclipse documentation - Current Release,
under Workbench User Guide: Tips and tricks).

2.10 Code refactoring

Code refactoring is a technique for restructuring an existing body of code without changing its
external behavior. For instance, if you want to change the name of a class, you expect the resulting
“rename” to propagate to all classes that are concerned with that change, without affecting the way
the code executes. Typically, refactoring is done by applying series of small changes to the source
code that do not modify its functional requirements. Advantages include improved readability,
maintainability, and extensibility of the source code. You should try to use refactoring as often as
possible, whenever necessary. As a piece of software grows, many classes will naturally need to be
renamed and moved around.

As an example, if you right click on a method in an interface class, then select Refactor −→,
here is a snapshot of what the refactoring menu looks like:

Page 16 of 24

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Ftips%2Fplatform_tips.html


COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

Figure 4: Eclipse refactoring menu for an interface method in OS X

The refactoring menu can be brought up by right-clicking pretty much any element (object,
class, method, etc.) in the source code editor. Some refactoring actions are more useful than others
and can be applied on many kinds of elements. Here is a short list of useful refactoring actions.

• Rename... lets you rename this element. alt+command+R in OS X and alt+shift+R in
Linux or Windows.

• Move... lets you move this element to a new location (package or class). alt+command+V
in OS X and (alt)+shift+(V) in Linux or Windows.

• Change Method Signature... does just that, for instance changing the return type of a
method or changing its parameter list. alt+command+C in OS X and alt+shift+C in
Linux or Windows.

• Push Down... moves a set of methods and fields from a class to its subclasses.

• Pull Up... moves a field or method to a superclass of its declaring class or (in the case of
methods) declares the method as abstract in the superclass.

For other more specific commands, have a look at the documentation (Eclipse documentation -
Current Release, under Java development user guide: Refactoring).

2.11 Debugging and Hot Code Replace

Debugger The Eclipse Java debugger features many standard debugging functionalities, includ-
ing the ability to set breakpoints, to perform step into/over/return actions, to inspect objects
and values, to evaluate expressions, and to suspend/resume/terminate threads. To debug your
application, select Run −→ Debug As −→ Java Application or click the debug button:

Page 17 of 24

http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.user/reference/ref-menu-refactor.htm


COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

Figure 5: Launch your application in debug mode by clicking the debug button.

Hode code replace HCR is a debugging technique that allows you to make changes to your code
while debugging and see the effect in real-time. The Eclipse debugger can replace old class files in
the Virtual Machine while it is running. No restart is required, hence the reference to “hot”.

From the Eclipse FAQ: “[...] HCR has been specifically added as a standard technique to Java to
facilitate experimental development and to foster iterative trial-and-error coding. HCR only works
when the class signature does not change; you cannot remove or add fields to existing classes, for
instance. However, HCR can be used to change the body of a method. HCR is reliably implemented
only on 1.4.1 VMs and later [...]”.

You need to be running your application in debug mode in order for HCR to work. If HCR
still does not work, make sure you have automatic building turned on by checking Project −→
Build Automatically.

2.12 JVM Heap Space and Out of Memory Exceptions

The exception As you start to build programs that become more memory hungry (adding a
large number of heavy objects to a list, for instance), you might end up getting an exception of the
type:

1 Exception in thread ”main” java . lang . OutOfMemoryError : Java heap space

The operating system automatically allocates a certain amount of working memory (heap space) to
the Java Virtual Machine when your program is started. However, the default size of the heap is
typically 128MB. If your program exceeds that memory limit, the JVM will throw the exception
message seen above.

The fix You can increase the size of the JVM heap space by adding the appropriate virtual
machine arguments to your program’s run configuration. Click Run −→ Run configurations...
then select the Arguments tab. Under VM arguments, specify the minimum and maximum
heap size. -Xms sets the minimum heap size (in megabytes, don’t forget the m after the number)
the JVM should use for your program and -Xmx sets the maximum.. For example, if you want a
minimum of 128MB and maximum of 512MB, use:

1 −Xms128m
2 −Xmx512m

Likewise, you can increase the heap size for your debugging sessions by going in Debug −→
Debug configurations... and repeating the same process as for your run configurations.

3 Swing and MINtools

During this course, you will be using the Mintools Java framework for designing user interfaces
(UI), and displaying OpenGL code. The Mintools framework is a combination of convenience classes

Page 18 of 24

http://wiki.eclipse.org/FAQ_What_is_hot_code_replace%3F


COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

for rapidly constructing and manipulating a Java Swing UI, including an OpenGL canvas. It was
developed in the Computer Graphics Lab at McGill.

3.1 Master of the UI: Creating The EasyViewer

In order to create your UI, you will first need to create an instance of the EasyViewer class. The
EasyViewer class is a convenience class that allows you to create, manage and expand the main UI
of your application easily. It also automatically creates an OpenGL window. This tutorial will not
discuss any OpenGL-related topics; attend next tutorial for that instead.

The EasyViewer constructor requires

• a title for your UI window frame,

• a class (your application) implementing the SceneGraphNode interface for handling the
creation of the UI and the OpenGL calls,

• a dimension for the OpenGL canvas

• and a dimension for the frame of your UI.

You can create an instance of the EasyViewer class in your main by directly creating an instance
of your application class:

1 public stat ic void main ( St r ing [ ] a rgs ) {
2 new EasyViewer ( ”Some app t i t l e ” , new MyApp( ) , new Dimension (640 ,480) , new

Dimension (320 ,480) ) ;
3 }

or better, you can create it inside your class constructor and then add a reference to your class
from it. This allows you to manipulate the EasyViewer directly in your code:

1 public class MyApp implements SceneGraphNode {
2
3 public stat ic void main ( St r ing [ ] a rgs ) {
4 new MyApp( ) ;
5 }
6
7 // App l i ca t ion cons t ruc tor
8 public MyApp( ) {
9 // Create the EasyViewer

10 St r ing t i t l e = ”Some app t i t l e ” ;
11 SceneGraphNode app = this ;
12 Dimension g l S i z e = new Dimension (640 , 480) ;
13 Dimension f rameSize = new Dimension (320 , 480) ;
14 EasyViewer ev = new EasyViewer ( t i t l e , app , g lS i z e , f rameSize ) ;
15
16 // We now have a re f e r ence to the EasyViewer
17 ev . doSomething ( ) ;
18 }
19
20 @Override
21 public void i n i t ( GLAutoDrawable drawable ) {
22 // I n i t your OpenGL code here
23 }
24

Page 19 of 24



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

25 @Override
26 public void d i sp l ay ( GLAutoDrawable drawable ) {
27 // Draw your OpenGL scene here
28 }
29
30 @Override
31 public JPanel ge tCont ro l s ( ) {
32 // Return your UI con t r o l s here
33 }
34
35 }

3.2 Building your UI

3.2.1 The getControls() method

During runtime, and only once, the EasyViewer will automatically call your application’s getControls()
method. In this method you can add elements to your UI:

1 @Override
2 public JPanel ge tCont ro l s ( ) {
3 // Create the panel t ha t w i l l contain our UI elements .
4 Vert ica lFlowPane l vfp = new Vert ica lFlowPane l ( ) ;
5
6 // Add a l a b e l to the panel .
7 vfp . add ( new JLabel ( ” h e l l o f00bar ” ) ) ;
8
9 // Return the panel conta in ing our UI

10 return vfp . getPanel ( ) ;
11 }

You have a direct access to the frame that contains your UI through the EasyViewer’s control-
Frame field. This frame also allows you to add tabs to your application, for instance:

1 JPanel panel = new JPanel ( ) ;
2 easyViewer . controlFrame . add ( ”New Panel ” , panel ) ;

3.2.2 CollapsiblePanel

A CollapsiblePanel is used for showing and hiding a panel that contains elements (see Figure 6).
You create it by adding the panel directly to it:

1 @Override
2 public JPanel ge tCont ro l s ( ) {
3 Vert ica lFlowPane l vfp = new Vert ica lFlowPane l ( ) ;
4 Co l l ap s i b l ePane l cp = new Co l l ap s i b l ePane l ( vfp . getPanel ( ) ) ;
5 return cp ;
6 }

3.3 Parameters

Mintools contains a set of useful parameters for manipulating your data using a user interface.
They act as wrappers around Java primitive types including a BooleanParameter, a DoubleParam-

Page 20 of 24



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

Figure 6: A collapsible panel containing diverse UI elements. The collapsible button is shown as a
minus sign in a square at the top left of the frame.

eter, and an IntParameter class. As their name suggests, these classes are respectively used for
representing boolean, double, and integer values.

3.3.1 Constructors

The BooleanParameter, DoubleParameter, and IntParameter all have a value, either logical (true or
false) or numerical (real or integer), and a default value. The DoubleParameter and IntParameter
also have a minValue, and a maxValue.

Here is how you initialize them:

1 BooleanParameter bparam = new BooleanParameter ( ”some text ” , de fau l tVa lue ) ;
2 DoubleParameter dparam = new DoubleParameter ( ”some text ” , de fau l tValue , min , max ) ;
3 IntParameter iparam = new IntParameter ( ”some text ” , de fau l tValue , min , max ) ;

3.3.2 Controls

You can add UI controls for your parameters by calling their getControls() method:

1 @Override
2 public JPanel ge tCont ro l s ( ) {
3 Vert ica lFlowPane l vfp = new Vert ica lFlowPane l ( ) ;
4 BooleanParameter bparam = new BooleanParameter ( ” boolean ” , true ) ;
5 DoubleParameter dparam = new DoubleParameter ( ” double ” , 0 , 0 , 1 ) ;
6 vfp . add ( bparam . ge tContro l s ( ) ) ;
7 vfp . add ( dparam . g e tS l i d e rCon t r o l s ( fa l se ) ) ;
8 return vfp . getPanel ( ) ;
9 }

Page 21 of 24



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

Figure 7 shows the controls for a BooleanParameter and Figure 8 shows controls for a DoublePa-
rameter.

Figure 7: BooleanParameter UI: name (JLabel) and true / false value (JCheckBox).

Figure 8: Numerical parameter UI: name (JLabel), slider (JSlider), and value (JTextField).

3.3.3 Listeners

You need to set up a ParameterListener if you want to be able to react to the changes applied
to the parameters in the UI. For instance, if you want to print to the console the value of a
DoubleParameter whenever it is changed, you would create an instance of a ParameterListener
that does just that and then add it to the parameter.

Note that the ParameterListener class is an interface so you must create an instance of the
interface in order to use it. Generally, this is done by creating an anonymous inner class using
the following syntax:

1 // Create some DoubleParameter o b j e c t
2 DoubleParameter dparam = new DoubleParameter ( ”some text ” , de fau l tValue , min , max ) ;
3
4 // Create an anonymous c l a s s implementing the ParameterListener i n t e r f a c e
5 ParameterListener l i s t e n e r = new ParameterListener ( ) {
6 @Override
7 public void parameterChanged ( Parameter parameter ) {
8 System . out . p r i n t l n ( dparam . getValue ( ) ) ;
9 }

10 } ;
11
12 // Add the l i s t e n e r to the parameter
13 dparam . addParameterListener ( l i s t e n e r ) ;

Note that you can add a ParameterListener to multiple Parameter objects. You can also parse the
name of the Parameter that triggered a change:

1 ParameterListener l i s t e n e r = new ParameterListener ( ) {
2 @Override
3 public void parameterChanged ( Parameter parameter ) {
4 System . out . p r i n t l n ( parameter . getName ( ) ) ;
5 }
6 } ;
7 booleanParam1 . addParameterListener ( l i s t e n e r ) ;
8 booleanParam2 . addParameterListener ( l i s t e n e r ) ;
9 intParam1 . addParameterListener ( l i s t e n e r ) ;

10 . . .

Page 22 of 24



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

3.4 Keyboard and Mouse Input

The EasyViewer naturally supports keyboard and mouse input. By having your application imple-
ment the Interactor interface and calling the addInteractor() method of the EasyViewer, you can
set up keyboard and mouse handling:

1 // In your App cons t ruc tor
2 easyViewer . addInte rac to r ( this ) ;

In order to implement the Interactor interface, you will need to define the attach() method, in
which you can decide what kind of input you are interested in. For instance, if you want to respond
only to key presses:

1 @Override
2 public void attach (Component component ) {
3 component . addKeyListener (new KeyAdapter ( ) {
4 @Override
5 public void keyPressed (KeyEvent e ) {
6 i f ( e . getKeyCode ( ) == KeyEvent .VK SPACE) {
7 // Do something
8 }
9 else i f ( e . getKeyCode ( ) == KeyEvent .VK Q) {

10 System . e x i t ( 0 ) ;
11 }
12 }
13 }) ;
14 }

The advantage of using the KeyAdapter is that you don’t need to implement the other keyboard
handling methods if you don’t need them, such has keyTyped() and keyReleased().

The same applies for mouse handling, although you need to treat mouse motion separately from
other mouse events (such as clicking). The addMouseListener() allows you to handle all mouse
events except motion, including mouseClicked(), mouseEntered(), mouseExited(), mousePressed(),
and mouseReleased(). If you only need to know when and where the user actually clicked (meaning
click and release) something, use the mousePressed() method:

1 @Override
2 public void attach (Component component ) {
3 component . addMouseListener (new MouseAdapter ( ) {
4 @Override
5 public void mousePressed (MouseEvent e ) {
6 // You can a l s o ge t the mouse po s i t i on
7 Point pos = e . getPoint ( ) ;
8
9 i f ( e . getButton ( ) == MouseEvent .BUTTON1) {

10 // Le f t c l i c k
11 }
12 else i f ( e . getButton ( ) == MouseEvent .BUTTON2) {
13 // Middle c l i c k
14 }
15 else i f ( e . getButton ( ) == MouseEvent .BUTTON3) {
16 // Right c l i c k
17 }
18 }
19 }) ;
20 }

Page 23 of 24



COMP 557 – Tutorial 0 Friday, September 16th, 2011 TA: Emmanuel Piuze-Phaneuf

If you need mouse motion and position information, use the MouseMotionListener:

1 @Override
2 public void attach (Component component ) {
3 component . addMouseMotionListener (new MouseMotionAdapter ( ) {
4 @Override
5 public void mouseMoved(MouseEvent e ) {
6 // Get the new mouse po s i t i on
7 Point pos = e . getPoint ( ) ;
8 }
9 }) ;

10 }

You can also determine if special keys were held while a mouse event occurred, by calling the
isAltDown(), isShiftDown(), or isControlDown() method on the MouseEvent.

Page 24 of 24


	Java
	History
	Commenting Your Code
	Primitive data types
	Operators
	Methods
	The Main Method
	Rounding
	Logic
	Loops
	Classes
	JRE Convenience Classes
	Lists

	Vecmath package
	Points and Vectors
	Matrices
	Quaternions


	Eclipse
	History
	Verifying if Java is Installed
	Installation
	Configuring JREs and JDK Compiler Compliance
	Workspace Management
	Perspectives, Views and Packages
	Creating a Java Project
	Creating a Folder, Package, Class, Interface, Enum or Others
	Must-Read: Tips and Tricks
	Code refactoring
	Debugging and Hot Code Replace
	JVM Heap Space and Out of Memory Exceptions

	Swing and MINtools
	Master of the UI: Creating The EasyViewer
	Building your UI
	The getControls() method
	CollapsiblePanel

	Parameters
	Constructors
	Controls
	Listeners

	Keyboard and Mouse Input


