
Topics in Artiflcial Intelligence

CS424 | Fall 1999

Lecture #4/5

Gregory Dudek

CS424{1

dudek
Note: there is material in these notes that were not covered in class.

Proof Theory

Purely syntactic rules for deriving the logical consequences

of a set of sentences.

We write: KB ` α, i.e., α can be deduced

from KB or α is provable from KB.

Key property:

Both in propositional and in flrst-order logic we have a

proof theory (\calculus") such that:

` and |= are equivalent.

CS424{2

Proof Theory

If KB ` α implies KB |= α, we say the

proof theory is sound.

If KB |= α implies KB ` α, we say the

proof theory is complete.

Why so remarkable / important?

CS424{3

Soundness and Completeness

Allows computer to ignore semantics and

\just push symbols"!

In propositional logic, truth tables cumbersome (at least).

In flrst-order, models can be inflnite!

Proof theory: One or more inference rules with

zero or more axioms/tautologies

to \get things going.").

CS424{4

Example Proof Theory

One rule of inference: Modus Ponens

From α and α⇒ β it follows that β.

Semantic soundness easily verifled. (truth table)

Axiom schemas: not wffs, but a way to generate axioms
(As. I) α⇒ (β ⇒ α)

(As. II) ((α⇒ (β ⇒ γ))⇒ ((α⇒ β)⇒ (α⇒ β))).

(As. III) (¬α⇒ β)⇒ (¬α⇒ ¬β)⇒ α.

Note: α, β, γ stand for arbitrary sentences. So,

inflnite collection of axioms.

CS424{5

Now, α can be deduced from a set of sentences '

ifi there exists a sequence of applications of

modus ponens

that leads from ' to α (possibly using the axioms).

One can prove that:

Modus ponens with the above axioms will generate

exactly

all (and only those) statements logically entailed by '.

So, we have a way of generating entailed statements

in a purely syntactic manner!

(Sequence is called a proof. Finding it can be hard . . .)

CS424{6

Example Proof

Lemma. For any α, we have ` (α⇒ α).

Proof.

(α⇒ (α⇒ α)⇒ α)⇒ (α⇒ α⇒ α)⇒ α⇒ α, (Ax. II)

α⇒ (α⇒ α)⇒ α, (Ax. I)

(α⇒ α⇒ α)⇒ α⇒ α, (M. P.)

α⇒ α⇒ α) (Ax. I)

α⇒ α (M.P.)

Alternative: more e–cient using resolution.

CS424{7

Example Proof Theory

One rule of inference: Modus Ponens

From α and α⇒ β it follows that β.

Semantic soundness easily verifled. (truth table)

Axiom schemas:

(Ax. I) α⇒ (β ⇒ α)

(Ax. II) ((α⇒ (β ⇒ γ))⇒ ((α⇒ β)⇒ (α⇒ γ))).

(Ax. III) (¬α⇒ β)⇒ (¬α⇒ ¬β)⇒ α.

Note: α, β, γ stand for arbitrary sentences. So,

inflnite collection of axioms.

CS424{8

Now, α can be deduced from a set of sentences '

ifi there exists a sequence of applications of modus ponens

that leads from ' to α (possibly using the axioms).

One can prove that:

Modus ponens with the above axioms will generate exactly

all (and only those) statements logically entailed by '.

So, we have a way of generating entailed statements

in a purely syntactic manner!

(Sequence is called a proof. Finding it can be hard . . .)

CS424{9

Example Proof

Lemma. 1) For any α, we have ` (α⇒ α).

Proof.

(α⇒ (α⇒ α)⇒ α)⇒ (α⇒ α⇒ α)⇒ α⇒ α, (Ax. II)

α⇒ (α⇒ α)⇒ α, (Ax. I)

(α⇒ α⇒ α)⇒ α⇒ α, (M. P.)

α⇒ α⇒ α) (Ax. I)

α⇒ α (M.P.)

CS424{10

Another Example Proof

Lemma. 2) For any α and β, we have β,¬β ` α.

Proof.

(¬α⇒ β)⇒ (¬α⇒ ¬β) ` α, (Ax. III)

β, (hyp.)

β ⇒ ¬α⇒ β, (Ax. I)

¬α⇒ β, (M.P.)

(¬α⇒ ¬β)⇒ α, (M.P.)

¬β, (hyp.)

¬β ⇒ ¬α⇒ ¬β, (Ax. I)

¬α⇒ ¬β, (M.P.)

α (M.P.)

CS424{11

Key Properties

We have the following properties (also for flrst-order logic):

the following three conditions are e valent:

(I) ' |= α

(II) ' ` α

(III) ',¬α is inconsistent (ca be refuted).

(I) is semantic; (II) syntactic, and (III) high-level semantic

but we have a nice syntactic autom c procedure procedure:

resolution.

What common proof techinque doe

CS424{13
qui

n

at

ati
s III represent?

Resolution
First need canonical form: \clausal".

Conjunction of disjunctions (clauses) / CNF

Ex.: ¬(P ⇒ Q) ∨ (R⇒ P).

¬(¬P ∨Q) ∨ (¬R ∨ P)

(P ∧ ¬Q) ∨ (¬R ∨ P) (Morgan’s law)

(P ∨ ¬R ∨ P) ∧ (¬Q ∨ ¬R ∨ P) (assoc. and distr. laws)

(P ∨ ¬R) ∧ (¬Q ∨ ¬R ∨ P)

{(P ∨ ¬R), (¬Q ∨ ¬R ∨ P)},

CS424{14

What can you say about the length of the CNF?

Given a CNF, a single inference rule (and no axioms) will

allow us to determine inconsistency.

So, using property III (above) and resolution, we have a

sound and complete proof procedure for

propositional logic

(can be extended to flrst-order).

CS424{15

The Resolution Rule (clausal form)

We saw it (on blackboard) last class.

From α ∨ p and ¬p ∨ β, we can derive:

α ∨ β (α and β are disjunctions

of literals (literal = prop. vars or its negation).

: ¬α⇒ p and p⇒ β

gives

¬α⇒ β.

It’s a \chaining rule."

CS424{16

We can derive the empty clause via resolution ifi

the set of clauses is inconsistent.

Method relies on property III. It’s refutation complete.

Note that method does not generate theorems from scratch.

E.g. we have P ∧R |= (P ∨R), but we can’t get

(P ∨R) from {{P}, {R}}.
But, given {{P}, {R}} and the negation of P ∨R, we

get the set {{P}, {R}, {¬P}, {¬R}}. Resolving

on this set gives empty clause. Thus contradiction.

Thus proof.

CS424{17

dudek
Consider why not?

May seem cumbersome but note that can be easily

automated. Just \smash" clauses till empty clause or

no more new clauses.

Guaranteed sound and (refutation) complete.

Q. Why is method with axioms more di–cult

to implement?

CS424{19

What about length of resolution proof?

Consider Pigeon-Hole (PH) problem: Formula encodes that

you cannot place n + 1 pigeons in n holes (one per hole).

Cook / Karp around 1971/72. Resolved by Armin Haken 1985

Related to NP vs. co−NP questions.

PH takes exponentially many steps! (no matter in what

order.)

PH hidden in many practical problems. Makes thm. proving

expensive. Partly, led to recent move to model-based

methods (NP-complete).

CS424{20

dudek
If you don't know what NP and co-NP are, don't worry about it. It is tangential.

Pigeon-Hole Principle

Pi,j for Pigeon i in hole j.

P1,1 ∨ P1,2 ∨ P1,3 . . . P1,n

P2,1 ∨ P2,2 ∨ P2,3 . . . P2,n

. . .

P(n+1),1 ∨ P(n+2),2 ∨ P(n+3),3 . . . P(n+1),n

and ??

CS424{21

(¬P1,1 ∨ ¬P1,2) , (¬P1,1 ∨ ¬P1,3) , (¬P1,1 ∨ ¬P1,4)

. . .

(¬P1,(n−1) ∨ ¬P1,n),

(¬P2,1 ∨ ¬P2,2) . . . (¬P2,(n−1) ∨ ¬P2,n)

etc.

(¬P1,1 ∨ ¬P2,1), (¬P1,1 ∨ ¬P3,1), . . .

(¬P1,2 ∨ ¬P2,2), (¬P1,2 ∨ ¬P3,2), etc.

CS424{22

Resolution proof of inconsistency requires at least

an exponential number of clauses, no matter in what

order how you resolve things!

\Method can’t count."

CS424{23

A More Concise Formulation

∀x∃y(x ∈ Pigeons)(y ∈ Holes)IN(x, y)

∀x∀x′∀y(IN(x, y) ∧ IN(x′, y) . . . ??

∀x∀y∀y′(IN(x, y) ∧ IN(x, y′) . . . ??

Pigeons = {p1, p2, ...pn+1},
Holes = {p1, p2, ...pn}.

We have flrst-order logic with some set-theory notation.

Notation only.

Alternatively, we can state for x ∈ Pigeons as ??

Q. Any easier to determine inconsistency?

CS424{24

dudek
No time to cover this in class

Basic idea: axiomatic / knowledge-based / declarative approach

allows us a very large range of queries / conclusions.

Procedural (e.g., standard program, \simulation") would

require separate procedure for each possible question (almost).

Of course, getting the axioms / facts right can be tricky!

And, reasoning can be computationally very hard!

CS424{25

Again, \what’s meant by embodying knowledge about the world?"

Example:

1) On(A, F l)⇒ Clear(B)

2) (Clear(B) ∧ Clear(C))⇒ On(A, F l)

3) Clear(B) ∨ Clear(A)

4) Clear(B)

5) Clear(C)

CS424{26

One interpretation:

U is the set { A, B, C, Floor }.
1) mapping constant symbols to elements of U .

e.g., A to A, B to B, C to C

and Fl to Floor

Could we have mapped Fl to A??

2) mapping of relation symbol On to relation on U .

e.g., On = { [B, A], [A, Floor], [C, Floor]}.
3) mapping of relation (property) Clear to a unary rel. on U .

e.g., Clear = { [B], [C] }.

CS424{27

Yet others . . .

B C

A C A B C A B

------ ------- -----

floor floor floor

Including completely difierent interpretations!

E.g., use integers for domain. (Lowenheim 1915)

CS424{28

Try to add su–cient axioms (facts) to rule out

unwanted models. E.g., add clear(A).

CS424{29

Terms |- a logical expressions that refers to

an object. Constant symbols are terms. Functions applied

to constant symbols. FatherOf(John). Also, variables

are terms (later) and functions applied to variables or

other terms.

The interepretation is given by whatever the Constant or Function

maps to in U (vars later).

If no vars, called atomic terms.

CS424{30

Atomic sentences:predicate symbol applied to atomic terms.

E.g. Married(FatherOf(Richard), MotherOf(John))

Evaluated to true if predicate symbol holds between the

objects referred to by the arguments.

Complex sentences | add logical connectives.

E.g. Older(John, 30)⇒ Older(Jane, 29)

CS424{31

Quantiflers

Universal Quantiflcation ∀ |

E.g., ∀x Cat(x)⇒ (x)

Think of as:

(Cat(Spot)⇒Mammal(Spot)) ∧
(Cat(Felix)⇒Mammal(Felix)) ∧
(Cat(John)⇒Mammal(John)) ∧
. . .

Intuition: Expand over all object symbols.

CS424{32

Existential Quantiflcation ∃ |

E.g., ∃x Sister(x, Spot) ∧ Cat(x)

Think of as:

(Sister(Spot, Spot) ∧ Cat(Spot)) ∨
(Sister(Rebecca, Spot) ∧ Cat(Spot)) ∨
(Sister(Felix, Spot) ∧ Cat(Spot)) ∨
. . .

Intuition: Expand over all object symbols.

CS424{33

Equality = |

E.g. father(John) = Henry

True ifi refer to same object of U in interpretation.

(identity relation)

CS424{34

See reference materials for more discussion and flne details.

E.g. can’t switch quantiflers around.

Compare ∀x∃yLoves(x, y) vs.

Compare ∃x∀yLoves(x, y)

CS424{35

Graph Coloring

Graph: N nodes, K colors.

• 1) ∀i (1 ≤ i ≤ N) ∃j (1 ≤ j ≤ K) Color(i, j)

∀i, j, l (1 ≤ i ≤ N) (1 ≤ j, l ≤ K)

[(Color(i, j) ∧ Color(i, l))⇒ (j = l)]

• 2) ∀i, j (1 ≤ i, j ≤ N) [(i 6= j)⇒
(Edge(i, j)⇒
[¬∃ k(1 ≤ k ≤ K) (Color(i, k) ∧ Color(j, k))])]

CS424{37

alternative:

• 3) ∀i, j (1 ≤ i, j ≤ N) [(i 6= j)⇒
(Edge(i, j)⇒ [∀ k(1 ≤ k ≤ K) (¬Color(i, k) ∨ ¬Color(j, k))])]

Now actual graph given by, e.g.,:

• 4) Edge(1, 3), Edge(2, 4), Edge(5, 6). . . etc.

CS424{38

reasoning: 3 & 4 gives e.g.:

∀ k(1 ≤ k ≤ K) (¬Color(1, k) ∨ ¬Color(3, k))

uses \uniflcation" {i/1, j/3}with Modus Ponens (p. 269 R&N).

For K = 5, we get:

(¬Color(1, 1) ∨ ¬Color(3, 1)), (¬Color(1, 2) ∨ ¬Color(3, 2)),

. . . (¬Color(1, 5) ∨ ¬Color(3, 5))

in propositional form.

uses Universal Elimination, e.g., substitute {k/1}, etc.

CS424{39

So far, we’ve considered various flrst-order formalizations.

How do we reason with them? Derive new info?

A. Use resolution as in propositional case

From (α ∨ p) ∧ (¬p ∨ β)

conclude α ∨ β until you reach contradiction.

Need some extra \tricks" to deal with quantiflers

and variables.

CS424{62

Example

Jack owns a dog.

Every dog owner is an animal lover.

No animal lover kills an animal.

Either Jack or Curiosity killed the cat, who is named Tuna.

Did Curiosity kill the cat?

CS424{63

Original Sentences (Plus Background Knowledge)

1. ∃x : Dog(x) ∧Owns(Jack, x)

2. ∀x(∃yDog(y) ∧Owns(x, y))→ AnimalLover(x)

3. ∀xAnimalLover(x)→ ∀yAnimal(y)→ ¬Kills(x, y)

4. Kills(Jack, Tuna) ∨Kills(Curiosity, Tuna)

5. Cat(Tuna)

6. ∀xCat(x)→ Animal(x)

CS424{64

dudek
#6 is the background knowledge.

Clausal Form

1. Dog(D) (D is the function that flnds Jack’s dog)

2. Owns(Jack, D)

3. ¬Dog(S(x)) ∨ ¬Owns(x, S(x)) ∨ AnimalLover(x)

4. ¬AnimalLover(w) ∨ ¬Animal(y) ∨ ¬Kills(w, y)

5. Kills(Jack, Tuna) ∨Kills(Curiosity, Tuna)

6. Cat(Tuna)

7. ¬Cat(z) ∨ Animal(z)

CS424{65

\Tricks"

• uniflcation: needed to match variables and terms

between clauses that look similar

See DAA text pp. 103-107.

• normalization: put in clausal form

move quantiflers / ∧ / ∨ etc.

and Skolemization | remove ∃ by giving

an arbitrary, but unique name to the object in question.

E.g. D for the dog owned by Jack.

See DAA pp. 96-96.

CS424{67

Uniflcation

Unify (p,q) takes two atomic sentences p and q and returns a

substitution that makes p and q look the same.

Rules for substitutions:

• Can replace a variable by a constant.

• Can replace a variable by a variable.

• Can replace a variable by a function expression, as long as

the function expression does not contain the variable.

Unifler: a substitution that makes two clauses resolvable.

v1 → C; v2 → v3; v4 → f(...)

CS424{68

1. To resolve two clauses, two literals must match exactly, except that one is
negated. Sometimes the literals match exactly as they are, but other times
one can be made to match the other by an appropriate substitution.

2. This requires uniflcation.

3. Denote substitutions as shown. variable v1 is replaced by the constant c;
variable v4 is replaced by the function f and its arguments.

68

Uniflcation

Knows(John, x)→ Hates(John, x)

Knows(John, Jim)

Knows(y, Leo)

Knows(y,Mother(y))

Knows(x, Jane)

UNIFY(Knows(John, x),Knows(John, Jim)) =

UNIFY(Knows(John, x),Knows(y, Leo)) =

UNIFY(Knows(John, x),Knows(y,Mother(y))) =

UNIFY(Knows(John, x),Knows(x, Jane)) =

CS424{69

UNIFY(Knows(John, x),Knows(John, Jim)) = {x/Jim}
UNIFY(Knows(John, x),Knows(y, Leo)) = {x/Leo, y/John}
UNIFY(Knows(John, x),Knows(y, Mother(y))) =

{y/John, x/Mother(John)}
UNIFY(Knows(John, x),Knows(x, Jane)) = fail

CS424{70

• Want to use the KB to flnd out who John hates.

• Need to flnd those sentences that unify with Knows(John,x) and
then apply the unifler to Hates(John,x).

• Remember that x and y are universally quantifled

• Last one fails because x can’t take on both the value John and
the value Jane But intuitively we know that everyone john
knows he hates and everyone knows Jane so we should be able
to infer that John hates Jane.

• This is why we required every variable to have a separate name.
Knows(John,x) and Knows(y,Jane) works.

CS424{71

Most General Unifler

In cases where there is more than one substitution choose the

one that makes the least commitment about the bindings.

UNIFY(Knows(John, x),Knows(y, z))

= {y/John, x/z}
or {y/John, x/z, z/Freda}
or {y/John, x/John, z/John}
or

CS424{72

	Lecture #4/5
	proof theory
	Soundness and Completeness
	Key Properties
	Resolution
	The Resolution Rule (clausal form)
	length of resolution proof?
	Terms
	Atomic sentences
	QuantiØers
	Existential QuantiØcation
	Equality
	Graph Coloring
	Example: encoding
	Original Sentences
	Clausal Form
	uniØcation:
	normalization:

	UniØcation
	Most General UniØer

