Lecture 9

• Heuristic search, continued

A* revisited

• Reminder:

with A^* we want to find the best-cost (C) path to the goal **first**.

- To do this, all we have to do is make sure our cost estimates are less than the actual costs.
- Since our desired path has the lowest actual cost, no other path can be **fully** expanded first, since at some point it's estimated cost will have to be higher that the cost *C*.

CS-424 Gregory Dudek

Heuristic Functions: Example

5	4	
6	1	8
7	3	2

Start State

Goal State

8-puzzle

$$h_C$$
 = number of missplaced tiles
 h_M = Manhattan distance

- Admissible?
- Which one should we use?

Choosing a good heuristic $h_C \ll h_M \ll h_{opt}$

- Prefer h_M Note: Expand all nodes with $e(n) = g(n) + h(n) < e^*$
- So, $g(n) < e^* h(n)$, higher h means fewer n's.
- When one *h* function is larger than another, we say it is **more informed.**
- Aside: How would we get an h_{opt} ??

?

Inventing Heuristics

- Automatically
- A tile can move from sq A to sq B if
- A is adjacent to B and B is blank.
- (a) A tile can move from sq A to sq B if A is adjacent to B.
- (b) A tile can move from sq A to sq B if B is blank.
- (c) A tile can move from sq A to sq B.
- If all admissible, combine them by taking the max.

IDA^*

- Problem with A*: like BFS, uses too much memory.
- Can combine with iterative deepening to limit depth of search.
- Only add nodes to search list L is they are within a limit on the *e cost*.
- iterative deepening (ID) $+ A^* = IDA^*$

Further improvement: Simplified Memory-Bounded A* : SMA*

A Different Approach

- So far, we have considered methods that systematically explore the full search space, possibly using **principled** pruning (A* etc.).
- The current best such algorithms (IDA* / SMA*) can handle search spaces of up to 10¹⁰⁰ states or around 500 binary valued variables.

(These are ``ballpark " figures only!)

And if that's not enough?

- What if we have 10,000 or 100,000 variables / search spaces of up to 10^{30,000} states?
- A completely different kind of method is called for: <u>Local Search Methods</u>

or Iterative Improvement Methods

When?

Applicable when we're interested in the Goal State not in how to get there.

E.g. N-Queens, VLSI layout, or map coloring.

Iterative Improvement

- Simplest case:
 - Start with some (initial) state
 - Evaluate it's quality
 - Apply a perturbation ∂ to move to an adjacent state
 - Evaluate the new state
 - Accept the new state sometimes, based on decision $D(\partial)$

Can we be smarter?

- Can we do something smarter than
 - A) moving randomly
 - B) accepting every change?

A) move in the "right" direction

B)

accept changes that get us towards a better solution

Hill-climbing search

- Often used when we have a solution/path/setting and we want to improve it, and we have a *suitable space:* an **iterative improvement algorithm.**
- Always move to a successor that that increases the desirability (can minimize or maximize cost).
 - Expand children of current node.
 - Sort them by expected distance to goal (closest first).
 - Put them all at the front of L.
- Depth first flavor.

Hill-climbing problems

- Hill climbing corresponds to function optimization by simply moving uphill along the gradient.
 - Why isn't this a reliable way of getting to a global maximum?
- 1. Local maxima
- 2. Plateaus
- 3. Ridges
 - E.g. Trajectory planning.
 - Scrabble.

Gradient ascent

• In continuous spaces, there are better ways to perform hill climbing.

- Acceleration methods
 - Try to avoid sliding along a ridge
- Conjugate gradient methods
 - Take steps that do not counteract one another.

Stochastic search

- Simply moving uphill (or downhill) isn't good enough.
 - Sometime, have to go against the obvious trend.
- Idea: Randomly make a "non-intuitive" move.
 Key question: <u>How often</u>?
- One answer (simple intuition):
- Act more randomly when you are lost, less randomly when you're not.

Simulated Annealing

- Initially act more randomly.
- As time passes, we assume we are doing better and act less randomly.
- Analogy: associate each state with an energy or "goodness".
- Specifics:
 - Pick a random successor s^2 to the current state s^1 .
 - Compute $\partial E = \text{energy}(s^2) \text{energy}(s^1)$.
 - If ∂E good (positive) go to the new state.
 - If ∂E bad (negative), <u>still take it sometime</u>, with probability $e^{(\partial E/T)}$
- Annealing schedule specifies how to change T over time.

GA's

Genetic Algorithms

Plastic transparencies & blackboard.

Adversary Search

Basic formalism

- 2 players.
- Each has to beat the other (competing objective functions).
- Complete information.
- Alternating moves for the 2 players.

Minimax

- Divide tree into *plies*
- Propagate information up from terminal nodes.
- Storage needs grow exponentially with depth.