
1

CS-424 Gregory Dudek

Lecture 5

G. Dudek
Topics in AI

McGill University

CS-424 Gregory Dudek

Today’s lecture
• Administrative issues

– Comments on assignment
– PDF files
– Class notes

• Knowledge representation: wrap-up
– Prolog details
– Non-monotonic logic
– Forward and backward chaining

• Introduction to search

2

CS-424 Gregory Dudek

Don’t care
• Symbol _ (underscore) is used to match a predicate

that we don’t plan to use on the right-hand side.
• It’s like a dummy variable.

Eg. likes(a,b).
Would return true no matter what a & b are.

We can use likes(a,_).
…..or likes(_,_).

CS-424 Gregory Dudek

Prolog (continued)
• Supports lists of items

[] - empty list
[1,2,3] - 3 items
[bob, ted, alice] - three objects
[[a], [1,2,3], []] - a list of lists

To examine a sub-part
[H | L]

refers to a list decomposed into a
head:H (the first element)

and a remaining part
tail:T

3

CS-424 Gregory Dudek

Lists: [H|T]

[1,2,3]
- head is 1

[bob, ted, alice]
- head is bob

[[a], [1,2,3], []]
- head is [a]

[[[1,2,3]], [1,2,3], []]
- head is [[1,2,3]]

[]
- cannot match

CS-424 Gregory Dudek

Testing membership
• Now we can easily define a predicate to test for list

membership.
• Step 1: the head

 member(H,[H|L]).
• First argument is an item.
• Second argument is a list.

– This matches if H is the head of the list.

 member(bob,[bob,alice]) unifies with
member(H,[H|L)) is we let bob match H and
[bob,alice] match [H|L].

member(H, [H | _]).

4

CS-424 Gregory Dudek

Membership: the body.
• Step 2: if it’s not the head, then there must be a

sublist for which it is the head.
– Recursive definition

• See if the item is the head of the tail portion.

member(Item,[Head|Tail]) :-
member(Item,Tail).

CS-424 Gregory Dudek

Membership: complete

member(Item, [Item | _]).
member(Item, [_ | Rest]) :-

member(Item, Rest).

5

CS-424 Gregory Dudek

Unification: examining combinations
• Remember: prolog execution proceeds by

repeated unifications, applied recursively.
• Consider:

– foo(x) :- bar(x).
– bar(x) :- foo(x).

– This will lead to a problem: the unification will
never terminate!

CS-424 Gregory Dudek

Recursion fix
• How can we fix the infinite recursion?

– Never re-examine an already-considered unifier (i.e.
solution).

1. Within the definition, save the previous solutions
(unifications).

2. Check if the new unifier (solution) is one of those.
How?

Use a list!
foo(X,L) :- …

X is the item,
 L is a list of prior unifiers

6

CS-424 Gregory Dudek

Improved foo!

Improved foo!
 foo(y,[]).

member …

foo(X,L) :- not(member(X,L)),
bar(X,[X|L]).

bar(X,L) :- not(member(X,L)),
foo(X,[X|L]).

foo(a).

CS-424 Gregory Dudek

Concept Description Language
• A specialized language for efficient inference.
• Represent

– classes of objects,
– sub-classes of classes,
– instances of classes,
– properties of instances (and classes).

• Akin to inheritance in object-oriented programming.

• A semantic network is a graph-based representation
that addresses the same idea.

(See DAA pp. 107-109.)

