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Today’s Lecture

• Neural networks
– Training

• Backpropagation of error (backprop)
– Example
– Radial basis functions
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Recall: training
For a single input-output layer, we could adjust the

weights to get linear classification.
– The perceptron computed a hyperplane over the space

defined by the inputs.
• This is known as a linear classifier.

• By stacking layers, we can compute a wider range of
functions.

• Compute
error derivative
with respect
to weights.
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• “Train” the weights to correctly classify a set of
examples (TS: the training set).

• Started with perceptron, which used summing and a
step function, and binary inputs and outputs.

• Embellished by allowing continuous activations and
a more complex “threshold” function.
– In particular, we considered a sigmoid activation function,

which is like a “blurred” threshold.
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The Gaussian
• Another continuous, differentiable function that is

commonly used is the Gaussian function.

                Gaussian(x) =

• where σ is the width of the Gaussian.
• The Gaussian is a continuous, differentiable version

of the step function.
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What is learning?
• For a fixed set of weights w1,...,wn

 f(x1,...,xn) = Sigma(x1 w1 + ... + xn wn)
represents a particular scalar function of n variables.

• If we allow the weights to vary, then we can
represent a family of scalar function of n variables.

F(x1,...,xn,w1,...,wn) = Sigma(x1 w1 + ... + xn wn)
• If the weights are real-valued, then the family of

functions is determined by an n-dimensional
parameter space, Rn.

• Learning involves searching in this parameter space.
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Basis functions
• Here is another family of functions. In this case, the

family is defined by a linear combination of basis
functions

{g1,g2,...,gn}.
The input x could be scalar or vector valued.

        F(x,w1,...,wn) = w1 g1(x) + ... + wn gn(x)
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Combining basis functions
We can build a network as follows:

         g 1(x) --- w 1 ---\
         g 2(x) --- w 2 ----\
         ...               \

         ...                ∑ --- f(x)

                           /
                          /
         g n(x) --- w n ---/

E.g. From the basis {1,x,x2} we can build quadratics:

        F(x, w1   ,w2 ,w3 ) = w1 + w2 x + w3 x
2
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Receptive Field
• It can be generalized to an arbitrary vector space

(e.g., Rn).
• Often used to model what are called “localized

receptive fields” in biological learning theory.
– Such receptive fields are specially designed to represent

the output of a learned function on a small portion of the
input space.

– How would you approximate an arbitrary continuous
function using a sum of gaussians or a sum of piecewise
constant functions of the sort described above?
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Backprop
• Consider sigmoid activation functions.
• We can examine the output of the net as a function

of the weights.
– How does the output change with changes in the weights?
– Linear analysis: consider partial derivative of output with

respect to weight(s).
• We saw this last lecture.

– If we have multiple layers, consider effect on each layer
as a function of the preceding layer(s).

• We propagate the error backwards through the net
(using the chain rule for differentiation).

• Derivation on overheads [reference: DAA p. 212]
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Backprop observations
• We can do gradient descent in weight space.
• What is the dimensionality of this space?

– Very high: each weight is a free variable.
• There are as many dimensions as weights.
• A “typical” net might have hundreds of weights.

• Can we find the minimum?
– It turns out that for multi-layer networks, the error space

(often called the “energy” of the network) is NOT
CONVEX .  [so?]

– Commonest approach: multiple restart gradient descent.
• i.e.  Try learning given various random initial weigh t

distributions.
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Success? Stopping?
• We have a training algorithm (backprop).

• We might like to ask:
– 1. Have we done enough training (yet)?
– 2. How good is our network at solving the problem?
– 3. Should we try again to learn the problem (from the beginning)?

• The first 2 problems have standard answers:
– Can’t just look at energy.  Why not?

• Because we want to GENERALIZE across examples.  “I
understand multiplication: I know 3*6=18, 5*4=20.”

– What’s 7*3?  Hmmmm.

– Must have additional examples to validate the training.
• Separate input data into 2 classes: training and testing

sets.  Can also use cross-validation.
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What can we learn?
• For any mapping from input to output units, we can

learn it if we have enough hidden units with the right
weights!

• In practice, many weights means difficulty.
• The right representation is critical!

• Generalization depends on  bias.
– The hidden units form an internal representation of the

problem.  make them learn something general.
• Bad example: one hidden unit learns exactly one

training example.
– Want to avoid learning by table lookup.
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Representation
• Much learning can be equated with selected a good

problem representation.
– If we have the right hidden layer, things become easy.

• Consider the problem of face recognition from
photographs. Or fingerprints.
– Digitized photos: a big array (256x256 or 512x512) of

intensities.
– How do we match one array to another?  (Either manually

or by computer.)
– Key: measure important properties, use those as criteria

for estimating similarity?
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Faces (an example)
• What is an important property to measure for faces?

– Eye distance?
– Average intensity

• BAD!
– Nose width?
– Forehead height?

• These measurements form the basis functions for
describing faces.
– BUT NOT NECESSARILY photographs!!!

• We don’t need to reconstruct the photo.  Some
information is not needed.



8

CS-424  Gregory Dudek

Radial basis functions
• Use “blobs” summed together to create an arbitrary

function.
– A good kind of blob is a Gaussian: circular, variable

width, can be easily generalized to 2D, 3D, ....
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Topology changes
• Can we get by with fewer connections?
• When every neuron from one layer is connected to

every layer in the next layer, we call the network
fully-connected.

• What if we allow signals to flow backwards to a
preceding layer?
Recurrent networks


