Today's Lecture

- Neural networks
 - Training
 - Backpropagation of error (backprop)
 - Example
 - Radial basis functions

CS-424 Gregory Dudek

Recall: training

For a single input-output layer, we could adjust the weights to get linear classification.

- The perceptron computed a **hyperplane** over the space defined by the inputs.
 - This is known as a linear classifier.
- By stacking layers, we can compute a wider range of functions.
- Compute error derivative with respect to weights.

- "Train" the weights to correctly classify a set of examples (TS: the training set).
- Started with perceptron, which used summing and a step function, and binary inputs and outputs.
- Embellished by allowing continuous activations and a more complex "threshold" function.
 - In particular, we considered a **sigmoid** activation function, which is like a "blurred" threshold.

CS-424 Gregory Dudek

The Gaussian

• Another continuous, differentiable function that is commonly used is the Gaussian function.

Gaussian(x) =
$$e^{\frac{x^2}{2\sigma}}$$

- where σ is the width of the Gaussian.
- The Gaussian is a continuous, differentiable version of the step function.

What is learning?

• For a fixed set of weights w₁,...,w_n

$$f(x_1,...,x_n) = Sigma(x_1 w_1 + ... + x_n w_n)$$

represents a particular scalar function of n variables.

• If we allow the weights to vary, then we can represent a family of scalar function of n variables.

$$F(x_1,...,x_n,w_1,...,w_n) = Sigma(x_1 w_1 + ... + x_n w_n)$$

- If the weights are real-valued, then the family of functions is determined by an n-dimensional parameter space, Rⁿ.
- Learning involves <u>searching</u> in this parameter space.

CS-424 Gregory Dudek

Basis functions

• Here is another family of functions. In this case, the family is defined by a linear combination of basis functions

$$\{g_1,g_2,...,g_n\}.$$

The input x could be scalar or vector valued.

$$F(x,w_1,...,w_n) = w_1 g_1(x) + ... + w_n g_n(x)$$

Combining basis functions

We can build a network as follows:

$$g_1(x)$$
 --- w_1 ---\
 $g_2(x)$ --- w_2 ----\
...

 $\sum_{p_1(x)} f(x)$
 $f(x)$

E.g. From the basis $\{1,x,x^2\}$ we can build quadratics:

$$F(x, w_1, w_2, w_3) = w_1 + w_2 x + w_3 x^2$$

CS-424 Gregory Dudek

Receptive Field

- It can be generalized to an arbitrary vector space (e.g., Rⁿ).
- Often used to model what are called "localized receptive fields" in biological learning theory.
 - Such receptive fields are specially designed to represent the output of a learned function on a small portion of the input space.
 - How would you approximate an arbitrary continuous function using a sum of gaussians or a sum of piecewise constant functions of the sort described above?

Backprop

- Consider sigmoid activation functions.
- We can examine the output of the net as a function of the weights.
 - How does the output change with changes in the weights?
 - Linear analysis: consider partial derivative of output with respect to weight(s).
 - We saw this last lecture.
 - If we have multiple layers, consider effect on each layer as a function of the **preceding** layer(s).
 - We propagate the error backwards through the net (using the chain rule for differentiation).
- Derivation on overheads [reference: DAA p. 212]

CS-424 Gregory Dudek

Backprop observations

- We can do gradient descent in weight space.
- What is the dimensionality of this space?
 - Very high: each weight is a free variable.
 - There are as many dimensions as weights.
 - A "typical" net might have hundreds of weights.
- Can we find the minimum?
 - It turns out that for multi-layer networks, the error space (often called the "energy" of the network) is NOT CONVEX. [so?]
 - Commonest approach: multiple restart gradient descent.
 - i.e. Try learning given various random <u>initial</u> weigh t distributions.

Success? Stopping?

- We have a training algorithm (backprop).
- We might like to ask:
 - 1. Have we done enough training (yet)?
 - 2. How good is our network at solving the problem?
 - 3. Should we try again to learn the problem (from the beginning)?
- The first 2 problems have standard answers:
 - Can't just look at energy. Why not?
 - Because we want to GENERALIZE across examples. "I understand multiplication: I know 3*6=18, 5*4=20."
 - What's 7*3? Hmmmm.
 - Must have additional examples to **validate** the training.
 - Separate input data into 2 classes: training and testing sets. Can also use **cross-validation.**

CS-424 Gregory Dudek

What can we learn?

- For any mapping from input to output units, we can learn it if we have enough hidden units with the right weights!
- In practice, many weights means difficulty.
- The right representation is critical!
- Generalization depends on bias.
 - The hidden units form an <u>internal representation</u> of the problem. make them learn something general.
 - Bad example: one hidden unit learns exactly one training example.
 - Want to avoid learning by table lookup.

Representation

- Much learning can be equated with selected a good problem representation.
 - If we have the right hidden layer, things become easy.
- Consider the problem of face recognition from photographs. Or fingerprints.
 - Digitized photos: a big array (256x256 or 512x512) of intensities.
 - How do we match one array to another? (Either manually or by computer.)
 - Key: measure important properties, use those as criteria for estimating similarity?

CS-424 Gregory Dudek

Faces (an example)

- What is an important property to measure for faces?
 - Eye distance?
 - Average intensity
 - BAD!
 - Nose width?
 - Forehead height?
- These measurements form the basis functions for describing faces.
 - BUT NOT NECESSARILY photographs!!!
 - We don't need to reconstruct the photo. Some information is not needed.

Radial basis functions

- Use "blobs" summed together to create an arbitrary function.
 - A good kind of blob is a Gaussian: circular, variable width, can be easily generalized to 2D, 3D,

CS-424 Gregory Dudek

Topology changes

- Can we get by with fewer connections?
- When every neuron from one layer is connected to every layer in the <u>next</u> layer, we call the network <u>fully-connected</u>.
- What if we allow signals to flow <u>backwards</u> to a preceding layer?

Recurrent networks

