
1

CS-424 Gregory Dudek

Today’s Lecture

• Tangential questions (warm up)
• Administrative Details
• Learning

– Decision trees: cleanup & details
– Sub-symbolic learning

• Neural networks

CS-424 Gregory Dudek

• Why do I use an Apple Macintosh?
– Who cares
– It’s elegant
– I respect Apple’s innovation.

• On learning...

CS-424 Gregory Dudek

Administrativia
• Please signup AGAIN using the web page.

– There was a bug in the CGI/HTML connection.

• Note that the normal late policy will not apply to the
project.
– You **must** submit the electronic (executable) on time,

or it may not be evaluated!
– It must run on LINUX. Be certain to compile and test it

on one of the linux machines in the lab well before it’s
due.

• If you are developing on another platform, regularly
test on linux during development.

2

CS-424 Gregory Dudek

ID3
Considered information implicit in a query about a set of

examples.
– This provides the total amount of information implicit in a decision

tree.
– Each question along the tree provides some fraction of this total

information.
• How much ??

• Consider information gain per attribute A.
– Gain(Q:X) = E(Q:X) - E(A:X)
– Info needed to complete tree is weighted sum of the

subtrees
E(P) = |Ei|/|X| I(Ei)

Has been used with success for diverse problems including chess endgames & loans [Quinlan 1983,
1986: Michalski et al. book, Machine Learning; Machine Learning journal]

i

v

=∑ 1

CS-424 Gregory Dudek

Is there a fixed circuit network topology that can be
used to represent

a family of functions?

Yes! Neural-like networks (a.k.a. artificial neural
networks) allow us this flexibility and more; we can
represent arbitrary families of continuous functions
using fixed topology networks.

CS-424 Gregory Dudek

Neural Networks?
Artificial Neural Nets

a.k.a.

Connectionist Nets
(connectionist learning)

a.k.a.
Sub-symbolic learning

a.k.a.
Perceptron learning (a special case)

3

CS-424 Gregory Dudek

The idealized neuron
• Artificial neural networks come in several “flavors”.

– Most of based on a simplified model of a neuron.

• A set of (many) inputs.
• One output.

• Output is a function of the sum on the inputs.
– Typical functions:

• Weighted sum
• Threshold
• Gaussian

CS-424 Gregory Dudek

Why neural nets?
• Motives:

– We wish to create systems with abilities
akin to those of the human mind.

• The mind is usually assumed to be
be a direct consequence of the
structure of the brain.

– Let’s mimic the structure of the brain!

– By using simple computing elements,
we obtain a system that might scale up
easily to parallel hardware.

– Avoids (or solves?) the key unresolved
problem of how to get from “signal
domain” to symbolic representations.

– Fault tolerance

Not intext

CS-424 Gregory Dudek

Not intext

4

CS-424 Gregory Dudek

Real and fake neurons
• Signals in neurons

are coded by “spike
rate”.

• In ANN’s, inputs
can be either:
– 0 or 1 (binary)
– [0,1]
– [-1,1]
– R (real)

• Each input Ii has an
associated real-
valued weight wi

• Learning by changing
weights at synapses.

CS-424 Gregory Dudek

Not intext

CS-424 Gregory Dudek

Not intext

5

CS-424 Gregory Dudek

Inductive bias?
• Where’s the inductive bias?

– In the topology and architecture of the network.
– In the learning rules.
– In the input and output representation.
– In the initial weights.

Not intext

CS-424 Gregory Dudek

Simple neural models
• Oldest ANN model is McCulloch-Pitts neuron

[1943] .
– Inputs are +1 or -1 with real-valued weights.
– If sum of weighted inputs is > 0, then the neuron “fires”

and gives +1 as an output.
– Showed you can comput logical functions.
– Relation to learning proposed (later!) by Donald Hebb

[1949].

• Perceptron model [Rosenblatt, 1958].
– Single-layer network with same kind of neuron.

• Firing when input is about a threshold: ∑xiwi>t .
– Added a learning rule to allow weight selection.

Not intext

CS-424 Gregory Dudek

Perceptron nets

Perceptron Network Single Perceptron

Input
Units Units

Output Input
Units Unit

Output

OIj Wj,i Oi Ij Wj

6

CS-424 Gregory Dudek

Perceptron learning
• Perceptron learning:

– Have a set of training examples (TS) encoded as input
values (I.e. in the form of binary vectors)

– Have a set of desired output values associated with these
inputs.

• This is supervised learning.

– Problem: how to adjust the weights to make the actual
outputs match the training examples.

• NOTE: we to not allow the topology to change! [You
should be thinking of a question here.]

• Intuition: when a perceptron makes a mistake, it’s weights
are wrong.
– Modify them so make the output bigger or smaller, as desired.

CS-424 Gregory Dudek

Learning algorithm
• Desired Ti Actual output Oi
• Weight update formula (weight from unit j to i):

Wj,i = Wj,I + k* xj * (T i - Oi)
Where k is the learning rate.

• If the examples can be learned (encoded), then the
perceptron learning rule will find the weights.
– How?
Gradient descent.

Key thing to prove is the absence of local minima.

CS-424 Gregory Dudek

Perceptrons: what can they learn?
• Only linearly separable functions [Minsky &

Papert 1969].

• N dimensions: N-dimensional hyperplane.

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)and or xor

0 1

0

1

0

1 1

0

0 1 0 1

I 2I 1I 1 I 2I 1 I 2

7

CS-424 Gregory Dudek

More general networks
• Generalize in 3 ways:

– Allow continuous output values [0,1]
– Allow multiple layers.

• This is key to learning a larger class of functions.
– Allow a more complicated function than thresholded

summation
[why??]

Generalize the learning rule to accommodate this: let’s
see how it works.

CS-424 Gregory Dudek

The threshold
• The key variant:

– Change threshold into a differentiable function

– Sigmoid, known as a “soft non-linearity” (silly).

M = ∑xiwi

O = 1 / (1 + e -k M)

