Lecture 7/

e Review
 Blind search
e Chess & search

CS-424 Gregory Dudek

Depth First Search

o Key idea: pursue a sequence of successive states
long as possible.

unmark all vertices
choose sone starting vertex X

mar kK X
list L = X
tree T = X

while L nonenpty
choose the vertex v fromfront of |1 st
Visit v
for each unmar ked nei ghbor w
mar k. w
add it to front of |1 st
add edge (v,w) to T

CS-424 Gregory Dudek

BFS

o Key: explore nodes at the same distance from the
start at the same time

unmar k al |
choose
mar k x
l1st L
tree T

vertices
sone starting vertex X

X
X

while L nonenpty

choose the vertex v fromfront of

Visit v

for each unmar ked nei ghbor w

mar k w
add 1t to end of |1 st
add edge (v,w) to T

CS-424 Gregory Dudek

| 1 st

Key Issues In search

Here’s what to keep in mind.

Completeness: are we assured to find a solution (if
one exists)?

Space complexity: how much storage do we need?

Time complexity: how many operations do we need?

Solution guality: how good is the solution

Also...
— Can we expect an interim solution?
— Can we refine a partial/inadequate solution?
— Can we cope with imperfect knowledge?

CS-424 Gregory Dudek

)

Search performance

o Key Issues that determine the nature of the

problem are:
— Branching factor of the search space: how many
options do we have at any time?

e Typically summarized by the worst-case
braching factor, which may be quite
pessimistic.

— Solution depth how long is the path to the first
solution?

CS-424 Gregory Dudek

Example: knight’s tour

Tour executed by a chess knight to cover (touch)

every square on a chess board.
— Sub-problem: Find a path from one position to another.

States: possible positions on the chess board.
Operators: the ways a knight moves.
Goal: the positions of the pawns.

Path cost: the number of moves used to get to a
position.

CS-424 Gregory Dudek

Knight’s

 How large is the state space?

— A knight has up to 8 moves per turn.

— Each possible tour must be verified up to the end of the
trip. For a board of width N, there are N*N squares.

e Thus, each tour can be up to N*N states in length.

— If the correct solutions is found last, we might consider up
every wrong tour first.

O(8Y") states to examine!

What does this say about BFS? DFS?

CS-424 Gregory Dudek

Example: Knight’s heuristics

e Zero: aboard can be considered a dead end if any
sguare has zero paths remaining to it. Any square
with no paths to it would be unreachable, so no
Knight's Tour would exist.

 Two ones a board with more than one square with
only one path to it is a dead end. A square with one
path left is necessarily a dead end, so two of them
iIndicate a dead end position.

 Move to one the move finder should never choose
a move to a square with one path left unless it is the

last move; such a choice would otherwise lead to a
dead end.

CS-424 Gregory Dudek

random tours

CS-424 Gregory Dudek

B3 Aprlet Viewer: Hw3_23¢.class

Applet

Full tour produced at 3724122

The Distribution of Tour Length:

1
0

g
100949

17
34021

25
747452

33
124064

41
133214

49
598749

ayr
3063

2
0

10
14776

18
442232

26
91527

34
143282

42
142374

a0
53945

a8
1784

3
0

11
14734

19
42591

27
87h30

35
132906

43
12166E

a1
37838

29
723

Total elapsed time: 4.802983%5 hour

2184

12
20561

20
54671

28
105141

36
150826

44
126676

52
319449

&0
a2l

2048

13
198494

21
52473

29
100167

a7
137544

45
104952

53
20887

B1
96

6187

14
271249

22
Ba744

a0
119356

38
1534940

46
104410

24
145887

G2
3b

5890

15
26337

23
E3380

al
112681

39
138422

47
g23146

25
9171

B3

9887

16
24764

24
78348

32
132464

40
1914938

48
791496

ald
E208

b4

 Three heuristics based on the number of paths remaining to
each square were implemented and tested in combination, as
well as a representational speedup. The optimal combination
of the heuristics is to eliminate boards with either a square
with zero paths remaining or a square with two ones
remaining; this combination led to a 950-fold speedup on a
6x6 board. The representational speedup led to a 2.5-fold
additional speedup on a 6x6 board.
— Michael Bernstein

CS-424 Gregory Dudek

Heuristics: Knight's Performance

ZERO | TWO ONES | MOVE TO ONE Timne
() { {} 9h(K) ms
1 {) {} 415 ms
() 1 {} 13.7 ms
{} {} 1 6430} ms
{} 1 1 13.2 m=
1 1 {} 100.0} ms
1 { 1 390 ms
1 1 1 1{}.4 ms

CS-424 Gregory Dudek

BFS

« Consider a state space with a uniform branching
factor ofb
* At each level we have b nodes for every node we

had before

1+b+ B +P +0....+F

So, solution at depth d implies we must expand

QA b%) nodes!
 Internal nodes (b**d-1)/(b-1)
e Leaf nodes (omveragg: (b**d+1)/2

CS-424 Gregory Dudek

BFS: solution quality

How good is the solution quality from BFS?

Remember that edges in the search tree can have
weights

BES will always find the shallowest (shortest depth)
solution first.
This will also be the minimum-cost solution |if...

the cost Is a non-decreasing function of the depth.
E.qg. if the cosg(n) is a linear function of the depth.

CS-424 Gregory Dudek

BFS & Memory

e For BFS, we must record all the nodes at the current

level.
— BFS can have large (enormous) memory requirements!

« Memory can be a worst constraint than time.

 When the problem is exponential, however, we're In
trouble either way.

CS-424 Gregory Dudek

Depth Nodes Time Memory
0 1 1 millisecond 100 bytes
2 111 1 seconds 11 kilobytes
4 11,111 11 seconds 1 megabyte
6 10° 18 minutes 111 megahytes
8 10° 31 hours 11 gigabytes
10 10% 128 days 1 terabyte
12 10% 35 years 111 terabytes
14 10 3500 years 11,111 terabytes

CS-424 Gregory Dudek

Comparison to DFS?

e \Worst case:

— If the search tree can be arbitrarily deep, DFS may never
terminate!

— If the search tree has maximum-deptithe DFS (at
worst) visits every node up to depth

— Time complexityO(km)
 |f there are lots of solutions (or you're lucky), DFS

may do better then BFS.

— If it gets a solution on the first try, it only lookschat
nodes.

e Very good in space usage.
Exactly how many nodes? See DAA p. 139.

CS-424 Gregory Dudek

Uniform Cost Search

Note the edges in the search tree may have costs.
All nodes as a given depth may not have the same
cost, or desirability.

Uniform cost search expand nodes in order of

Increasing cost from the start

This is assured to find tleleapest path first, so long
as
there arao negative costs

CS-424 Gregory Dudek

lterative-Deepening

 Combine benefits of DFS (less memory) and BFS (best
solution depth/time).

* Repeatedly apply DFS up to a maximum
depth ‘diameter”.

* Incrementally increase the diameter.
Unlike BFS wedo not store the leaves

CS-424 Gregory Dudek

lterative-Deepening Performance

ldea: expand the same nodes as B, in the same
order as BFS!

Don’t save intermediate results, so nhodes must be re-
expanded.

How can this be good?!

This Is a classic time-space tradeoff.

Because the search tree Is exponential, wasted work
near the top doesn’t matter much

Asymptotically optimal, complete.
Time O(b¥) like BFS Spac®(bd)like DFS

Not alwayspreferred (if space small or depth known, or

other knowledge available).
CS-424 Gregory Dudek

Background & tomorrow’s semiar

Presentation on Deep Blue and Chess
Courtesy Kautz&Selman (not available here)

Combinatorics of Chess

Opening book
Endgame

e database of all 5 piece endgames exists;
database of all 6 piece games being built

Middle game
e branching factor of 30 to 40

e 10000@2) positions
— 1 move by each player = 1,000
— 2 moves by each player = 1,000,000
— 3 moves by each player = 1,000,000,000

Positions with Alpha-Beta Pruning

Search Depth Positions

2 60
4 2,000
6 60,000
8 2,000,000
10 (<1 second DB) 60,000,000
12 2,000,000,000
14 (5 minutes DB) 60,000,000,000

16 2,000,000,000,000

Formal Complexity of Chess

How hard I1s chess?

e Obvious problem: standard complexity
theory tells us nothing about finite games!

* Generalizing chess to NxN board: optimal
play is PSPACE-hard

 What is the smallest Boolean circuit that
plays optimally on a standard 8x8 board?

Fisher: the smallest circuit for a particular 128 bit
function would require more gates than there are
atoms in the universe

History of Search Innovations

Shannon, Turing Minimax search 1950
Kotok/McCarthy Alpha-beta pruning 1966

MacHack Transposition tables 1967
Chess 3.0+ lterative-deepening 1975
Belle Special hardware 1978
Cray Blitz Parallel search 1983
Hitech Parallel evaluation 1985

Deep Blue ALL OF THE ABOVE 1987

Bidirectional search

e Remember that the bottom of the search tree
where most of the work Is.

e |dea:
— keep the tree smaller
— Search fronboth the initial state and the goal.
* Recall forwards + backwards chaining.
— Each leads to a half-size tree (and with luck, they meet)!

 Ifthe goal is at deptll time isO(B(%2) (space too)

— Must be able to define predecessors

— Must haveexplicit notion of the goal(s), and not too many
of them.

— Must be able to efficiently check for a match

CS-424 Gregory Dudek

