
CS-424 Gregory Dudek

Lecture 7

• Review
• Blind search
• Chess & search

CS-424 Gregory Dudek

Depth First Search
• Key idea: pursue a sequence of successive states as

long as possible.
 unmark all vertices
 choose some starting vertex x
 mark x
 list L = x
 tree T = x
 while L nonempty
 choose the vertex v from front of list
 visit v
 for each unmarked neighbor w
 mark w
 add it to front of list
 add edge (v,w) to T

CS-424 Gregory Dudek

BFS
• Key: explore nodes at the same distance from the

start at the same time
 unmark all vertices
 choose some starting vertex x
 mark x
 list L = x
 tree T = x
 while L nonempty
 choose the vertex v from front of list
 visit v
 for each unmarked neighbor w
 mark w
 add it to end of list
 add edge (v,w) to T

CS-424 Gregory Dudek

Key issues in search
• Here’s what to keep in mind.
• Completeness: are we assured to find a solution (if

one exists)?
• Space complexity: how much storage do we need?
• Time complexity: how many operations do we need?
• Solution quality: how good is the solution

• Also…
– Can we expect an interim solution?
– Can we refine a partial/inadequate solution?
– Can we cope with imperfect knowledge?

CS-424 Gregory Dudek

Search performance
• Key issues that determine the nature of the

problem are:
– Branching factor of the search space: how many

options do we have at any time?
• Typically summarized by the worst-case

braching factor, which may be quite
pessimistic.

– Solution depth: how long is the path to the first
solution?

CS-424 Gregory Dudek

Example: knight’s tour
• Tour executed by a chess knight to cover (touch)

every square on a chess board.
– Sub-problem: Find a path from one position to another.

• States: possible positions on the chess board.
• Operators: the ways a knight moves.
• Goal: the positions of the pawns.
• Path cost: the number of moves used to get to a

position.

CS-424 Gregory Dudek

Knight’s
• How large is the state space?

– A knight has up to 8 moves per turn.
– Each possible tour must be verified up to the end of the

trip. For a board of width N, there are N*N squares.
• Thus, each tour can be up to N*N states in length.

– If the correct solutions is found last, we might consider up
every wrong tour first.

O(8N^2) states to examine!

What does this say about BFS? DFS?

CS-424 Gregory Dudek

Example: Knight’s heuristics
• Zero: a board can be considered a dead end if any

square has zero paths remaining to it. Any square
with no paths to it would be unreachable, so no
Knight's Tour would exist.

• Two ones: a board with more than one square with
only one path to it is a dead end. A square with one
path left is necessarily a dead end, so two of them
indicate a dead end position.

• Move to one: the move finder should never choose
a move to a square with one path left unless it is the
last move; such a choice would otherwise lead to a
dead end.

CS-424 Gregory Dudek

• How well will we do if we use “blind” DFS?
• That is, if we consider random tours?

CS-424 Gregory Dudek

CS-424 Gregory Dudek

• Three heuristics based on the number of paths remaining to
each square were implemented and tested in combination, as
well as a representational speedup. The optimal combination
of the heuristics is to eliminate boards with either a square
with zero paths remaining or a square with two ones
remaining; this combination led to a 950-fold speedup on a
6x6 board. The representational speedup led to a 2.5-fold
additional speedup on a 6x6 board.
– Michael Bernstein

CS-424 Gregory Dudek

Heuristics: Knight’s Performance

CS-424 Gregory Dudek

BFS
• Consider a state space with a uniform branching

factor of b
• At each level we have b nodes for every node we

had before
1 + b + b2 + b3 + b4 …. + bd

So, solution at depth d implies we must expand

O(bd) nodes!
• internal nodes (b**d-1)/(b-1)
• Leaf nodes (on average): (b**d+1)/2

CS-424 Gregory Dudek

BFS: solution quality
• How good is the solution quality from BFS?

• Remember that edges in the search tree can have
weights.

• BFS will always find the shallowest (shortest depth)
solution first.

• This will also be the minimum-cost solution if…
 the cost is a non-decreasing function of the depth.
• E.g. if the cost g(n) is a linear function of the depth.

CS-424 Gregory Dudek

BFS & Memory
• For BFS, we must record all the nodes at the current

level.
– BFS can have large (enormous) memory requirements!

• Memory can be a worst constraint than time.

• When the problem is exponential, however, we’re in
trouble either way.

CS-424 Gregory Dudek

Depth Nodes Time Memory

0 1 1 millisecond 100 bytes
2 111 .1 seconds 11 kilobytes
4 11,111 11 seconds 1 megabyte
6 106 18 minutes 111 megabytes
8 108 31 hours 11 gigabytes

10 1010 128 days 1 terabyte
12 1012 35 years 111 terabytes
14 1014 3500 years 11,111 terabytes

CS-424 Gregory Dudek

Comparison to DFS?
• Worst case:

– If the search tree can be arbitrarily deep, DFS may never
terminate!

– If the search tree has maximum-depth m, the DFS (at
worst) visits every node up to depth m.

– Time complexity O(bm)
• If there are lots of solutions (or you’re lucky), DFS

may do better then BFS.
– If it gets a solution on the first try, it only looks at d

nodes.

• Very good in space usage.
Exactly how many nodes? See DAA p. 139.

CS-424 Gregory Dudek

Uniform Cost Search
• Note the edges in the search tree may have costs.
• All nodes as a given depth may not have the same

cost, or desirability.
• Uniform cost search: expand nodes in order of

increasing cost from the start.

• This is assured to find the cheapest path first, so long
as ….

 there are no negative costs.

CS-424 Gregory Dudek

Iterative-Deepening
• Combine benefits of DFS (less memory) and BFS (best

solution depth/time).

• Repeatedly apply DFS up to a maximum
depth “diameter”.

• Incrementally increase the diameter.
Unlike BFS we do not store the leaves

CS-424 Gregory Dudek

Iterative-Deepening Performance
Idea: expand the same nodes as BFS, and in the same

order as BFS!
Don’t save intermediate results, so nodes must be re-

expanded.
How can this be good?!

This is a classic time-space tradeoff.
Because the search tree is exponential, wasted work

near the top doesn’t matter much.
Asymptotically optimal, complete.

Time O(bd) like BFS Space O(bd) like DFS
Not always preferred (if space small or depth known, or

other knowledge available).

CS-424 Gregory Dudek

SEMINAR
Deep Blue: IBM's Massively Parallel Chess

Machine
Wednesday, September 23, 1998
TIME: 11:00 A.M.
Strathcona Anatomy and Dentistry Building
3640 University Street
Room M-1

Dr. Gabriel M. Silberman
Program Director

Centre for Advanced Studies (CAS), IBM Toronto

CS-424 Gregory Dudek

Seminar abstract
IBM's premiere chess system, based on an IBM RS/6000 SP scalable parallel

processor, made history by defeating world chess champion. Garry
Kasparov. Deep Blue's chess prowess stems from its capacity to examine
over 200 million board positions per second, utilizing the computing
resources of a 32-node IBM RS/6000-SP, populated with 512 special
purpose chess accelerators.

In this talk we describe some of the technology behind Deep Blue, how chess
knowledge was incorporated into its software, as well as the attitude of
the media and general public during the match.

• GABBY SILBERMAN'S BIO
• Gabriel M. Silberman is Program Director for the Centre for Advanced

Studies (CAS) at the IBM Toronto Laboratory. Dr. Silberman comes to
CAS from the IBM T.J. Watson Research Center, Yorktown Heights,
NY, where he held various research positions from 1990 to 1997.

CS-424 Gregory Dudek

Computer Chess & DB
• Background for tomorrow’s seminar

– Presentation on Deep Blue and Chess
Courtesy Kautz&Selman (not available here)

Not intext

Combinatorics of ChessCombinatorics of Chess

Opening book
Endgame

• database of all 5 piece endgames exists;
database of all 6 piece games being built

Middle game
• branching factor of 30 to 40
• 1000(d/2) positions

– 1 move by each player = 1,000
– 2 moves by each player = 1,000,000
– 3 moves by each player = 1,000,000,000

Positions with Alpha-Beta PruningPositions with Alpha-Beta Pruning

Search Depth Positions

2 60
4 2,000
6 60,000
8 2,000,000
10 (<1 second DB) 60,000,000
12 2,000,000,000
14 (5 minutes DB) 60,000,000,000
16 2,000,000,000,000

Formal Complexity of ChessFormal Complexity of Chess

How hard is chess?
• Obvious problem: standard complexity

theory tells us nothing about finite games!
• Generalizing chess to NxN board: optimal

play is PSPACE-hard
• What is the smallest Boolean circuit that

plays optimally on a standard 8x8 board?

Fisher: the smallest circuit for a particular 128 bit
function would require more gates than there are
atoms in the universe

History of Search InnovationsHistory of Search Innovations

Shannon, Turing Minimax search 1950
Kotok/McCarthy Alpha-beta pruning 1966
MacHack Transposition tables 1967
Chess 3.0+ Iterative-deepening 1975
Belle Special hardware 1978
Cray Blitz Parallel search 1983
Hitech Parallel evaluation 1985
Deep Blue ALL OF THE ABOVE 1987

CS-424 Gregory Dudek

Bidirectional search
• Remember that the bottom of the search tree is

where most of the work is.
• Idea:

– keep the tree smaller
– Search from both the initial state and the goal.

• Recall forwards + backwards chaining.
– Each leads to a half-size tree (and with luck, they meet)!

• If the goal is at depth d time is O(b(d/2)) (space too)
– Must be able to define predecessors
– Must have explicit notion of the goal(s), and not too many

of them.
– Must be able to efficiently check for a match

Not intext

