

	The ideal case:
	The lucal case.
	- We have an a continuous world (at macroscopic scales).
	- We have continuous images to that world.
	- Images are 2-dimensional projections of a three-dimensional world.
	• In addition, there are other key factors in the world that
	determine the image:
	 Object reflectance properties (white or gray shirt?)
	 Light source position
	» Alters intensities (day/night, shading & chiaroscuro)
	» Alters shadows
•	In practice:
	– Discrete sampling of "the" continuous image.
	– Each pixel is an average.
	- The image is a big array of numbers representing
	intensities or sometimes triples representing colors too
	intensities, or sometimes inples representing colors too.
	CS-424 Gregory Dudek

The Human Visual System

• Digression of the biology of the early human visual system.

(On blackboard: no notes available.)

What is vision?

In general, vision involves the recovery of all those things that determine the world:

- Material properties, shadows, etc.

as well as the functional and categorical relationships between or pertaining to objects!

Filtering in 2D Note that filtering applies in essentially the same way in 1-D signals, 2-D images, or even higher dimensional spaces.

E.g. Blurring Convolve the input with a kernel that combines information from a range of spatial locations. What is the precise shape of the kernel? Why might this be useful?

Example: Median Filtering

- A classical non-linear filter.
- Over a window, compute the median value of the signal.
- This is the value of the filter.
- This can be considered a non-linear form of averaging.

Note it never produces values that weren't already in the input!

