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• Learning
– Decision trees

• Building them
• Building good ones

– Sub-symbolic learning
• Neural networks
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Decision trees: issues
• Constructing a decision tree is easy…  really easy!

– Just add examples in turn.

• Difficulty: how can we extract a simplified decision
tree?
– This implies (among other things) establishing a

preference order (bias) among alternative decision trees.
– Finding the smallest one proves to be VERY hard.

Improving over the trivial one is okay.
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Office size example
Training examples:
        1. large ^ cs ^ faculty     ->  yes
        2. large ^ ee ^ faculty    -> no
        3. large ^ cs ^ student    -> yes
        4. small ^ cs ^ faculty    -> no
        5. small ^ cs ^ student    -> no

The questions about office size, department and status
tells use something about the mystery attribute.

Let’s encode all this as a decision tree.
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Decision tree #1

                               size
                              /    \
                           large   small
                            /         \
                          dept        no {4,5}
                         /    \
                        cs     ee
                       /        \
                     yes {1,3}   no {2}
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Decision tree #2

                                 status
                                /      \
                            faculty   student
                              /          \
                          dept        dept
                         /    \          /    \
                        cs  ee       ee     cs
                       /        \      /        \
                    size     no   ?         size
                   /    \                       /   \
                large small       large  small
                 /        \                   /       \
               yes      no {4}        yes     no {5}
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Making a tree
How can we build a decision tree (that might be good)?

Objective: an algorithm that builds a decision tree from the root
down.

Each node in the decision tree is associated with a set
         of training examples that are split among its children.

• Input: a node in a decision tree with no children
         and associated with a set of training examples
• Output: a decision tree that classifies all of the examples
         i.e., all of the training examples stored in each leaf
         of the decision tree are in the same class
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Procedure: Buildtree

If all of the training examples are in the same class,
      then quit,
else     1. Choose an attribute to split the examples.
           2. Create a new child node for each value of the attribute.
           3. Redistribute the examples among the children
              according to the attribute values.
           4. Apply buildtree to each child node.

Is this a good decision tree?  Maybe?  How do we decide?
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A “Bad” tree
• To identify an animal (goat,dog,housecat,tiger)

Is it a wolf?

Is it in the cat family?

Is it a tiger?

wolf

cat

tiger

dog

no
yes

yes

yes

no

no
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• Max depth 3.

• To get to fish or goat, it takes three questions.ions.

• In general, a bad tree for N categories can take N
questions.
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• Can’t we do better? A good tree?

• Max depth 2 questions.
– More generally,  log2(N)  questions.

Cat family?

Tiger? Dog?
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Best Property

• Need to select property / feature / attribute
• Goal: find short tree (Occam's razor)

1. Base this on MAXIMUM depth
2. Base this on the AVERAGE depth

A) over all leaves
B) over all queries

• select  most informative feature
– One that best splits (classifies) the examples

• Use measure from  information theory
– Claude Shannon (1949)
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Optimizing the tree
All based on buildtree.
To minimize maximum depth, we want to build a

balanced tree.
• Put the training set (TS) into any order.
• For each question Q

– Construct a K-tuple of 0s and 1s
•The jth entry in the tuple is

–1 if the jth instance in the TS has answer YES
to Q

–0 if it has answer NO

•Discard al questions of only one answer (all
0 or 1’s).
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Min Max Depth
• Minimize max depth:

• At each query, come as close as possible to cutting
the number of samples in the subtree in half.

• This suggests the number of questions per subtree is
given by the log2 of the number of sample categories
to be subdivided.
– Why log2  ??
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Entropy

Measures the (im) purity in collection S of examples

Entropy(S) =
- [ p+ log2 (p+) + p- log2 (p-) ]

• p+   is the proportion of positive examples.
• p-    is the proportion of negative examples.

N.B. This is not a fully general definition of entropy.
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Example
• S, 14 examples, 9 positive, 5 negative

Entropy([9+,5-]) =
-(9/14) log2(9/14) - (5/14)log2(5/14)  =

0.940
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Intuition / Extremes
• Entropy in collection is zero if all examples in same

class.
• Entropy is 1 if equal number of positive and

negative examples.

Intuition:
If you pick random example, how
many bits do you need to
specify what class the example
belongs too?
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Entropy: definition
• Often referred to a “randomness”.

• How useful is a question:
– How much guessing does knowing an answer save?

• How much “surprise” value is there in a question.
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Information Gain
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General definition
• Entropy(S) =

     c

∑ 1

pi   log2 (pi)
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• In this lecture we consider some alternative
hypothesis spaces based on continuous functions.
Consider the following boolean circuit.

       x1 ---------------|\

                     |\       | ----+
            x2 ---+--| -------|/    +------|\
                  |  |/ NOT     AND        | ----- f(x1,x2,x3)
                  +-----------|\    +------|/
                              | ----+        OR
            x3----------------|/
                                AND
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The topology is fixed and logic elements are fixed so
there is a single Boolean function.

Is there a fixed topology that can be used to represent
a family of functions?

Yes! Neural-like networks (aka artificial neural
networks) allow us this flexibility and more; we can
represent arbitrary families of continuous functions
using fixed topology networks.
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The idealized neuron
• Artificial neural networks come in several “flavors”.

– Most of based on a simplified model of a neuron.

• A set of (many) inputs.
• One output.

• Output is a function of the sum on the inputs.
– Typical functions:

• Weighted sum
• Threshold
• Gaussian


