Learning Decision trees Building them Building good ones Sub-symbolic learning Neural networks CS-424 Gregory Dudek				
Decision trees: issues				
 Constructing a decision tree is easy really easy! Just add examples in turn. 				

• Difficulty: how can we extract a *simplified* decision

- This implies (among other things) establishing a preference order (bias) among alternative decision trees.
- Finding the <u>smallest</u> one proves to be VERY hard. Improving over the trivial one is okay.

CS-424 Gregory Dudek

Office size example

Training examples:

tree?

- 1. large ^ cs ^ faculty -> yes
- 2. large ^ ee ^ faculty -> no
- 3. large ^ cs ^ student -> yes
- 4. small ^ cs ^ faculty -> no
- 5. small ^ cs ^ student -> no

The questions about office size, department and status tells use something about the mystery attribute.

Let's encode all this as a decision tree.

Decision tree #1

CS-424 Gregory Dudek

Decision tree #2

CS-424 Gregory Dudek

Making a tree

How can we build a decision tree (that might be good)?

Objective: an algorithm that builds a decision tree from the root down.

Each node in the decision tree is associated with a set of training examples that are split among its children.

- Input: a node in a decision tree with no children and associated with a set of training examples
- Output: a decision tree that classifies all of the examples i.e., all of the training examples stored in each leaf of the decision tree are in the same class

Procedure: Buildtree

If all of the training examples are in the same class, then quit,
else 1. Choose <u>an attribute</u> to split the examples.

- 2. Create a new child node for each value of the attribute.
- 3. Redistribute the examples among the children according to the attribute values.
- 4. Apply buildtree to each child node.

Is this a good decision tree? Maybe? How do we decide?

CS-424 Gregory Dudek

A "Bad" tree

• To identify an animal (goat,dog,housecat,tiger)

- Max depth 3.
- To get to fish or goat, it takes three questions.ions.
- In general, a bad tree for N categories can take N questions.

• Can't we do better? A good tree?

Cat family?

Dog?

• Max depth 2 questions.

- More generally, log₂(N) questions.

Best Property

CS-424 Gregory Dudek

- Need to select property / feature / attribute
- Goal: find short tree (Occam's razor)
 - 1. Base this on MAXIMUM depth
 - 2. Base this on the AVERAGE depth
 - A) over all \underline{leaves}
 - B) over all queries
- select most informative feature
 - One that <u>best</u> splits (classifies) the examples
- Use measure from **information theory**
 - Claude Shannon (1949)

CS-424 Gregory Dudek

Optimizing the tree

All based on buildtree.

To minimize maximum depth, we want to build a balanced tree.

- Put the training set (TS) into any order.
- For each question Q
 - Construct a K-tuple of 0s and 1s

 •The jth entry in the tuple is

 -1 if the jth instance in the TS has answer YES
 - to Q -0 if it has answer NO .Discard al questions of only one answer (all 0 or 1's).

	,	1	
4	/	ı	

Min Max Depth

- Minimize max depth:
- At each query, come as close as possible to cutting the number of samples in the subtree in half.
- This suggests the number of questions per subtree is given by the log₂ of the number of sample categories to be subdivided.
 - Why log₂ ??

CS-424 Gregory Dudek

Entropy

Measures the (im) purity in collection S of examples

 $\begin{aligned} & Entropy(S) = \\ & - \left[\ p_{+} \log_{2}\left(p_{+}\right) + p_{-} \log_{2}\left(p_{-}\right) \ \right] \end{aligned}$

- p₊ is the proportion of positive examples.
- p_ is the proportion of negative examples.

N.B. This is not a fully general definition of entropy.

CS-424 Gregory Dudek

Example

• S, 14 examples, 9 positive, 5 negative

Entropy([9+,5-]) =
$$-(9/14) \log_2(9/14) - (5/14) \log_2(5/14) = 0.940$$

Intuition / Extremes

- Entropy in collection is zero if all examples in same
- Entropy is 1 if equal number of positive and negative examples.

Intuition:

If you pick random example, how many bits do you need to specify what class the example belongs too?

CS-424 Gregory Dudek

Entropy: definition

- Often referred to a "randomness".
- How useful is a question:
 - How much guessing does knowing an answer save?
- How much "surprise" value is there in a question.

CS-424 Gregory Dudek

Information Gain

General definition						
• Entropy(S) =						
c						
1						
	$p_i \log_2(p_i)$					

CS-424 Gregory Dudek

• In this lecture we consider some alternative hypothesis spaces based on continuous functions. Consider the following boolean circuit.

CS-424 Gregory Dudek

The topology is fixed and logic elements are fixed so there is a single Boolean function.

Is there a fixed topology that can be used to represent a family of functions?

Yes! Neural-like networks (aka artificial neural networks) allow us this flexibility and more; we can represent arbitrary families of continuous functions using fixed topology networks.

The idealized neuron

- Artificial neural networks come in several "flavors".
 - Most of based on a simplified model of a neuron.
- A set of (many) inputs.One output.
- Output is a function of the sum on the inputs.
 Typical functions:
 Weighted sum
 Threshold
 - - Gaussian