
1

CS-424 Gregory Dudek

• Learning
– Decision trees

• Building them
• Building good ones

– Sub-symbolic learning
• Neural networks

CS-424 Gregory Dudek

Decision trees: issues
• Constructing a decision tree is easy… really easy!

– Just add examples in turn.

• Difficulty: how can we extract a simplified decision
tree?
– This implies (among other things) establishing a

preference order (bias) among alternative decision trees.
– Finding the smallest one proves to be VERY hard.

Improving over the trivial one is okay.

CS-424 Gregory Dudek

Office size example
Training examples:
 1. large ^ cs ^ faculty -> yes
 2. large ^ ee ^ faculty -> no
 3. large ^ cs ^ student -> yes
 4. small ^ cs ^ faculty -> no
 5. small ^ cs ^ student -> no

The questions about office size, department and status
tells use something about the mystery attribute.

Let’s encode all this as a decision tree.

2

CS-424 Gregory Dudek

Decision tree #1

 size
 / \
 large small
 / \
 dept no {4,5}
 / \
 cs ee
 / \
 yes {1,3} no {2}

CS-424 Gregory Dudek

Decision tree #2

 status
 / \
 faculty student
 / \
 dept dept
 / \ / \
 cs ee ee cs
 / \ / \
 size no ? size
 / \ / \
 large small large small
 / \ / \
 yes no {4} yes no {5}

CS-424 Gregory Dudek

Making a tree
How can we build a decision tree (that might be good)?

Objective: an algorithm that builds a decision tree from the root
down.

Each node in the decision tree is associated with a set
 of training examples that are split among its children.

• Input: a node in a decision tree with no children
 and associated with a set of training examples
• Output: a decision tree that classifies all of the examples
 i.e., all of the training examples stored in each leaf
 of the decision tree are in the same class

3

CS-424 Gregory Dudek

Procedure: Buildtree

If all of the training examples are in the same class,
 then quit,
else 1. Choose an attribute to split the examples.
 2. Create a new child node for each value of the attribute.
 3. Redistribute the examples among the children
 according to the attribute values.
 4. Apply buildtree to each child node.

Is this a good decision tree? Maybe? How do we decide?

CS-424 Gregory Dudek

A “Bad” tree
• To identify an animal (goat,dog,housecat,tiger)

Is it a wolf?

Is it in the cat family?

Is it a tiger?

wolf

cat

tiger

dog

no
yes

yes

yes

no

no

CS-424 Gregory Dudek

• Max depth 3.

• To get to fish or goat, it takes three questions.ions.

• In general, a bad tree for N categories can take N
questions.

4

CS-424 Gregory Dudek

• Can’t we do better? A good tree?

• Max depth 2 questions.
– More generally, log2(N) questions.

Cat family?

Tiger? Dog?

CS-424 Gregory Dudek

Best Property

• Need to select property / feature / attribute
• Goal: find short tree (Occam's razor)

1. Base this on MAXIMUM depth
2. Base this on the AVERAGE depth

A) over all leaves
B) over all queries

• select most informative feature
– One that best splits (classifies) the examples

• Use measure from information theory
– Claude Shannon (1949)

CS-424 Gregory Dudek

Optimizing the tree
All based on buildtree.
To minimize maximum depth, we want to build a

balanced tree.
• Put the training set (TS) into any order.
• For each question Q

– Construct a K-tuple of 0s and 1s
•The jth entry in the tuple is

–1 if the jth instance in the TS has answer YES
to Q

–0 if it has answer NO

•Discard al questions of only one answer (all
0 or 1’s).

5

CS-424 Gregory Dudek

Min Max Depth
• Minimize max depth:

• At each query, come as close as possible to cutting
the number of samples in the subtree in half.

• This suggests the number of questions per subtree is
given by the log2 of the number of sample categories
to be subdivided.
– Why log2 ??

CS-424 Gregory Dudek

Entropy

Measures the (im) purity in collection S of examples

Entropy(S) =
- [p+ log2 (p+) + p- log2 (p-)]

• p+ is the proportion of positive examples.
• p- is the proportion of negative examples.

N.B. This is not a fully general definition of entropy.

CS-424 Gregory Dudek

Example
• S, 14 examples, 9 positive, 5 negative

Entropy([9+,5-]) =
-(9/14) log2(9/14) - (5/14)log2(5/14) =

0.940

6

CS-424 Gregory Dudek

Intuition / Extremes
• Entropy in collection is zero if all examples in same

class.
• Entropy is 1 if equal number of positive and

negative examples.

Intuition:
If you pick random example, how
many bits do you need to
specify what class the example
belongs too?

CS-424 Gregory Dudek

Entropy: definition
• Often referred to a “randomness”.

• How useful is a question:
– How much guessing does knowing an answer save?

• How much “surprise” value is there in a question.

CS-424 Gregory Dudek

Information Gain

7

CS-424 Gregory Dudek

General definition
• Entropy(S) =

 c

∑ 1

pi log2 (pi)

CS-424 Gregory Dudek

• In this lecture we consider some alternative
hypothesis spaces based on continuous functions.
Consider the following boolean circuit.

 x1 ---------------|\

 |\ | ----+
 x2 ---+--| -------|/ +------|\
 | |/ NOT AND | ----- f(x1,x2,x3)
 +-----------|\ +------|/
 | ----+ OR
 x3----------------|/
 AND

CS-424 Gregory Dudek

The topology is fixed and logic elements are fixed so
there is a single Boolean function.

Is there a fixed topology that can be used to represent
a family of functions?

Yes! Neural-like networks (aka artificial neural
networks) allow us this flexibility and more; we can
represent arbitrary families of continuous functions
using fixed topology networks.

8

CS-424 Gregory Dudek

The idealized neuron
• Artificial neural networks come in several “flavors”.

– Most of based on a simplified model of a neuron.

• A set of (many) inputs.
• One output.

• Output is a function of the sum on the inputs.
– Typical functions:

• Weighted sum
• Threshold
• Gaussian

