Lecture 15

- Learning
- PAC, Version space, Decision trees (part 1)

PAC: definition

Relax this requirement by not requiring that the learning program necessarily achieve a small error but only that it to keep the error small with high probability.

Probably approximately correct (PAC) with probability δ and error at most ε if, given any set of training examples drawn according to the fixed distribution, the program outputs a hypothesis f such that

$$
\operatorname{Pr}(\operatorname{Error}(\mathrm{f})>\varepsilon)<\delta
$$

PAC Training examples

Theorem:

If the number of hypotheses $|\mathrm{H}|$ is finite, then a program that returns an hypothesis that is consistent with

$$
\mathrm{m}=\ln (\delta /|\mathrm{H}|) / \ln (1-\varepsilon)
$$

training examples (drawn according to Pr) is guaranteed to be PAC with probability δ and error bounded by ε.

We want....

- PAC (so far) describes accuracy of the hypothesis, and the chances of finding such a concept.
- How may examples do we need to rule out the "really bad" hypotheses.
- We also want the process to proceed quickly.

PAC learnable spaces

A class of concepts C is said to be PAC learnable for a hypothesis space H if there exists an polynomial time algorithm A such that:
for any $c \in C$, distribution $\operatorname{Pr}, \varepsilon$, and δ,
if A is given a quantity of training examples polynomial in $1 / \varepsilon$ and $1 / \delta$,
then with probability $1-\delta$
the algorithm will return a hypothesis f from H such that

$$
\operatorname{error}(f)<=\varepsilon
$$

Observations on PAC

- PAC learnability doesn't tell us how to find the learning algorithm.
- The number of examples needed grows slowly as the concept space increases, and with other key parameters.

Example

- Target and learned concepts are conjunctions with up to n predicates. (This is our bias.)
- Each predicate might be appear in either positive or negated form, or be absent: 3 options.
- This gives 3^{n} possible conjunctions in the hypothesis space.

Result

- I have such a formula in mind.
- I'll give you some examples.
- You try to guess what the formula is.

A concept that matches all our examples will be PAC if m is at least

$$
\mathrm{n} / \varepsilon \ln (3 / \delta)
$$

How

- How can we actually find a suitable concept?
- One key approach: start with the examples themselves, and try to generalize.
- E.g. Given $f(3,5)$ and $f(5,5)$.
- We might try replacing the first argument with a variable $X: f(X, 5)$.
- We might try replacing both arguments with variables: $\mathrm{f}(\mathrm{X}, \mathrm{Y})$.
- We want to get as general as possible, but not too general.
- The converse of this generalization is specialization.

Version Space [DAA 5.3]

- Deals with conjunctive concepts.
- Consider a concept C as being identified with the set of positive examples it associated with.
- C : even numbered hearts $=\{3 \bullet, 5 \bullet, 7 \bullet, 9 \bullet$ \}.
- A concept C_{1} is a specialization of concept C_{2} if the examples associated with C_{1} are a subset of those associated with C_{2}.
- 3-of-hearts more specialized than odd hearts.

Specialization/Generalization

CS-424 Gregory Dudek

Immediate

- Immediate Specialization: no intermediate.
- Red is not the immediate specialization of 2-ofhearts.
- Red is the immediate specialization of hearts and diamonds.
- Note: This observation depends on knowing the hypothesis space restriction.

Algorithm outline

- Incrementally process training data.
- Keep list of most and least specific concepts consistent with the observed data.
- For two concepts A and B that are consistent with the data,the concept $C=\left(\begin{array}{ll}A & A N D\end{array}\right)$ will also be consistent yet more specific.
- Tied in a subtle way to conjunctions.
- Disjunctive concepts can be obtained trivially by joining examples, but they're not interesting.

Algorithm specifics

- Maintain two bounding concepts:
- The most specialized (DAA: specific boundary)
- The broadest (DAA: general boundary).
- Each example we see is either positive (yes) or negative (no).
- Positive examples (+) tend to make the concept more general (or inclusive). Negative examples (-) are used to make the concept more exclusive (to reject them).
+ -> move "up" the specific boundary
- -> move "down" the general boundary.

Detailed algorithm: DAA p. 191-192.

CS-424 Gregory Dudek

Observations

- It allows you to GENERALIZE from a training set to examples never-before-seen !!!
- In contrast, consider table lookup or rote learning.
- Why is that good?

1 It allows you to infer things about new data (the whole point of learning)
2 It allows you to (potentially) remember old data much more efficiently.

- Version space method is optimal for a conjunction of positive literals.
- How does it perform with noisy data?

Learning Decision Trees

- Decision tree takes as input a set of properties and outputs yes/no "decisions".
- A tree structure such that
- Internal nodes correspond to questions
- Arcs are associated with answers to questions
- Terminal (leaf) nodes are decisions.
- Example:
goal predicate: WillWait
do we want to wait for a table at a restaurant?

Restaurant Selector

Example attributes:

- 1. Alternate
- 2. Bar
- 3. Fri/Sat
- 4. Hungry
- 5. Patrons
- 6. Price
- etc.
forall r Patrons(r, Full) AND WaitEstimate(r,under_10) AND Hungry(r,N) -> WillWait(r)\$

Example 2

Maybe we should have made a reservation? (using a decision tree)

- Restaurant lookup: you've heard Joe's is good.
- Lookup Joe's
-

\cdot
.

Decision trees: issues

- Constructing a decision tree is easy... really easy! - Just add examples in turn.

- Difficulty: how can we extract a simplified decision tree?
- This implies (among other things) establishing a preference order (bias) among alternative decision trees.
- Finding the smallest one proves to be VERY hard. Improving over the trivial one is okay.

CS-424 Gregory Dudek

