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Lecture 14

• Learning
– Inductive inference
– Probably approximately correct learning
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What is learning?
Key point: all learning can  be seen as learning the

representation of a function.
Will become clearer with more examples!
Example representations:
•  propositional if-then rules
•  first-order if-then rules
•  first-order logic theories
•  decision trees
•  neural networks
•  Java programs
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Learning: formalism

Come up with some function f   such that

• f(x) = y
for all training examples (x,y) and

•  f  (somehow) generalizes to yet unseen examples.

– In practice, we don’t always do it perfectly.
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Inductive bias: intro
• There has to be some structure apparent in the inputs

in order to support generalization.
• Consider the following pairs from the phone book.

Inputs Outputs
Ralph Student 941-2983
Louie Reasoner 456-1935
Harry Coder 247-1993
Fred Flintstone ???-????

There is not much to go on here.
•Suppose we were to add zip code information.
•Suppose phone numbers were issued based on the spelling
of a person's last name.
•Suppose the outputs were user passwords?
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Example 2
• Consider the problem of fitting a curve to a set of

(x,y) pairs.
|    x  x
|-x----------x---
|    x
|__________x_____

– Should you fit a linear, quadratic, cubic, piece-wise linear
function?

– It would help to have some idea of how smooth the target
function is or to know from what family of functions (e.g.,
polynomials of degree 3) to choose from.

– Does this sound like cheating?  What's the alternative?
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Inductive Learning

Given a collection of examples (x,f(x)), return  a
function h that approximates  f.

h is called the hypothesis and is chosen from the
hypothesis space.

• What if f  is not in the hypothesis space?
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Inductive Bias: definition
• This "some idea of what to choose from" is called an

inductive bias.
• Terminology

H, hypothesis space - a set of functions to choose from
C, concept space - a set of possible functions to learn

• Often in learning we search for a hypothesis f  in H
that is consistent with the training examples,
 i.e., f(x) = y for all training examples (x,y).

• In some cases, any hypothesis consistent with the
training examples is likely to generalize to unseen
examples. The trick is to find the right bias.
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Bias explanation
How does learning algorithm decide
 Bias leads them to prefer one hypothesis over another.
Two types of bias:
• preference bias (or search bias) depending on how

the hypothesis space is explored, you get different
answers

• restriction bias (or language bias), the “language”
used: Java, FOL, etc.  (h is not equal to c).

• e.g. language: piece-wise linear functions: gives
(b)/(d).
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Issues in selecting the bias
Tradeoff (similar in reasoning):

more expressive the language, the harder to find
(compute) a good hypothesis.

Compare: propositional Horn clauses with first-order
logic theories or Java programs.

• Also, often need more examples.
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Occam’s Razor
• Most standard and intuitive preference bias:

Occam’s Razor
(aka Ockham’s Razor)

The most likely hypothesis is
the simplest one that is
consistent will all of the

observations.

• Named after Sir William of Ockham.
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Implications
• The world is simple.

• The chances of an accidentally correct explanation
are low for a simple theory.
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Probably Approximately Correct
(PAC) Learning

Two important questions that we have yet to address:

• Where do the training examples come from?
• How do we test performance, i.e., are we doing a

good job learning?

• PAC learning is one approach to dealing with these
questions.
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Classifier example
Consider learning the predicate Flies(Z)  = { true, false}.
We are assigning objects to one of two categories: recall we call

this a classifier.
Suppose that X = {pigeon,dodo,penguin,747}, Y = {true,false},

and that

 Pr(pigeon) = 0.3        Flies(pigeon) = true
   Pr(dodo) = 0.1    Flies(dodo) = false
Pr(penguin) = 0.2    Flies(penguin) = false
    Pr(747) = 0.4    Flies(747) = true

Pr  is the distribution governing the presentation of training
examples (how often do we see such examples).

We will use the same distribution for evaluation purposes.
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• Note that if we mis-classified dodos but got
everything else right, then we would still be doing
pretty well in the sense that 90% of the time

• we would get the right answer.

• We formalize this as follows.
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• The approximate error associated with a hypothesis f
is

• error(f) = ∑ {x | f(x) not= Flies(x)} Pr(x)

• We say that a hypothesis is
approximately correct with error at most ε

if
error(f) =< ε
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• The chances that a theory is correct increases with
the number of consistent examples it predicts.

• Or….

• A badly wrong theory will probably be uncovered
after only a few tests.
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PAC: definition
Relax this requirement by not requiring that the learning

program necessarily achieve a small error but only that it to
keep the error small with high probability .

Probably approximately correct (PAC) with
probability δ and error at most ε if, given any set of
training examples drawn according to the fixed
distribution, the program outputs a hypothesis f such
that

Pr(Error(f) > ε) < δ
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PAC
• Idea:

• Consider space of hypotheses.

• Divide these into “good” and “bad” sets.

• Want to assure that we can close in on the set of
good hypotheses that are close approximations of the
correct theory.
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PAC Training examples

Theorem:
 If the number of hypotheses |H| is finite, then a

program that returns an hypothesis that is consistent
with

ln(δ /|H|)/ln(1- ε)
training examples (drawn according to Pr) is

guaranteed to be PAC with probability δ and error
bounded by ε.
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PAC theorem: proof
If f is not approximately correct then Error(f) > ε so the probability of f being

correct on one example is < 1 - ε and the probability of being correct on m
examples is < (1 - ε )m.

Suppose that H = {f,g}. The probability that f correctly classifies all m
examples is < (1 - ε )m.  The probability that g correctly classifies all m
examples is < (1 - ε )m.  The probability that one of f or g correctly
classifies all m examples is < 2 * (1 - ε )^m.

To ensure that any hypothesis consistent with m training examples is correct
with an error at most ε with probability δ, we choose m so that
2 * (1 - ε )^m < δ.
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Generalizing, there are |H| hypotheses in the restricted
hypothesis space and hence the probability that there is some
hypothesis in H that correctly classifies all m examples is
bounded by

|H|(1- ε )m.

Solving for m in
|H|(1- ε )m < δ

we obtain
m >= ln(δ /|H|)/ln(1- ε ).

QED
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Stationarity
• Key assumption of PAC learning:
Past examples are drawn randomly from the same

distribution as future examples: stationarity.

The number m  of examples required is called the
sample complexity.
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A class of concepts C is said to be PAC learnable for  a
hypothesis space H if (roughly) there exists an
polynomial time algorithm such that:

for any c in C, distribution Pr, epsilon, and delta,

if the algorithm is given a number of training examples
polynomial in 1/epsilon and 1/delta then with
probability 1-delta the algorithm will return a
hypothesis f from H such that

Error(f) =< epsilon.
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Overfitting
Consider error in hypothesis h over:
• training data: error train (h)
• entire distribution D of data: errorD (h)

• Hypothesis h \in H  overfits training data if
– there is an alternative hypothesis h’ \in H such

that
• errortrain (h) < errortrain (h’)

but
• errorD (h) > errorD (h’)


