Intelligence implies....

- Reasoning (plan)
 - Modelling the world: objects and interactions
 - Inferring implicit relationships
 - Problem solving, search for an answer, planning
- Interaction with the outside world (sense & act)
 - Perception: the inference of objects and relationships from what sensors deliver.
 - Sensors deliver "arrays of numbers"
 - Intelligent behavior
- Learning
 - Systems that acquire and incorporate new data
 - Systems that take instructions (from us)
 - Knowing what we are doing wrong

Early Chronology

- George Boole, Gottlob Frege, Alfred Tarski: human thought
- Alan Turing, John von Neumann, Claude Shannon:
 - Cybernetics
 - Equivalence/analogy between computation and thought !!!
- AI: The 40s and 50s
 - McCulloch and Pitts: Describe neural networks that could compute any computable function
 - Samuels: Checker playing machine that learned to play better.
 - "Dartmouth Conference" (1956): McCarthy: coined term "Artificial Intelligence"
 - McCarthy:Defined LISP.
 - Newell and Simon: The Logic Theorist. It was able to prove most of the theorems in Russell and Whiteheadís Principia Mathematica. Bounded Rationality, Logic Theorist becomes General Problem Solver.

- Early Successes
- Minksy: microworlds
- Evan's ANALOGY solved geometric analogy problems that appear on IQ tests
- Bobrow's STUDENT solved algebra world problems
- Gelernter: Geometry Theorem Prover used axioms plus diagram information.
- Early success with neural networks.

Expert Systems and the Commercialization of AI

- Buchanan and Feigenbaum: DENDRAL (1969)
- MYCIN (1976): diagnose infections.
- LUNAR (1973): First natural language question/answer system used in real life
- Rejuvenation of neural nets
 - In theory, they can learn almost any function.
 - In practice, it might take a millenium.
 - Neural nets, while having obvious limitations, have surpassed handcrafted systems in some key domains.

State-of-the-Art

- Almost grandmaster chess (ask me about checkers).
- Real-time speech recognition
- Expert systems "aren't really AI anymore", but many exist

The Bad News

- Heavily oversold, with ensuing backlash.
- Almost every AI problem in NP-complete.
 - Lighthill report (1973).
- Perceptrons (a kind of neural network) shown to have extremely limited representation ability (Minsky and Papert).
- Some of AI seen as poorly formalized hackery or an mathematical self-indulgence..

An early intelligent system: the brain

- "Intelligent" processing in the brain is carried out by neurons, mainly in the cerebral cortex.
 - Roughly 10¹² neurons (10¹¹ if you participated in frosh week) and thousands of *connections* per neuron.
 - "Clock speed" (refractory period): 1 to 10 milliseconds
 - Processing involves massive parallelism and distributed representation.
- 5 to 7 rule
 - You can simultaneously conceptualize only 7 objects at once.

Comparison

- Computers
 - Roughly 10 million transistors per chip
 - Parallel machines: hundreds of CPU elements, 1010 bits of RAM
 - Clock speed: roughly 1 nanosecond
 - Recall rate (for stored data) appears *much* faster.
- Does the different hardware imply that fundamentally different approaches must be used?
 - Neural nets people suggest "no".
 - Some suggest "yes".

What is intelligence?

- Stock answer: "the ability to learn and to solve problems" [Webster's]
 - The ability to adapt to new situations.
- Your answers (paraphrased):
 - "The ability to laugh at humorous situations."
 - "Understanding how other agents behave..."
 - "The ability to analyze and solve a problem" *
 - "The ability to work with abstract concepts" *
 - "The ability to recognize patterns..."
 - "The ability to use new information/experience to make decisions"
 - "Something that defines humanity."
 - "The ability to solve an **under-specified** problem."

What does the future hold?

- Many of you thought artificially intelligent systems were a long way off.
 - "Never"
 - "In some timescale comparable to the evolution of intelligence in animals"
 - "In 50 years"
 - "Not very soon"
- Some of the same people said things like:
 - "Intelligence is the ability to solve problems that would be complex for a human being."

Playing Chess

- In 1997 the computer "Deep Blue" played the human world chess champion "Garry Kasparov"
 - (whom some have claimed is the best chess player in history!)
 - DB: 200 board positions per move.
 - 11 ply
 - GK: 7 ply?

Monty Newborne at SOCS/McGill has been a pioneer in computer chess. Moderated the DB/GK match.

"We'll never really have artificial intelligence"

- Garry Kasparov:
 - "I could feel -- I could smell -- a new kind of intelligence across the table."
- Drew McDermott
- "Saying Deep Blue doesn't really think about chess is like saying an airplane doesn't really fly because it doesn't flap it's wings."

[Yale CS, quoted in NY Times, May 1997]

• Robbins' problem:

- In 1932 E. V. Huntington presented a basis for Boolean algebra: commutativity, associativity and the Huntington equation.
- Herbert Robbins conjectured it could be replaced by one simpler equation (the Robbins equation), leading (later) to Robbins algebras. Are all Robbins algebras Boolean algebras?
- Despite work by Robbins and Huntington and Tarski and other, no solution was found.

In November 1997, a computer solves the Robbins conjecture.

- First "creative" proof by computer.
 - Qualitative difference from prior results based more heavily of exhaustive search such as the four-color theorem:
 - Any planar map can be colored in using 4 colors so that no two edge-adjacent regions have the same color
 - Proven in 1976 with a combination of human effort and "sophisticated computing" that enumerated many different special cases.

Learning

• Backgammon:

TD-gammon [Tesauro]

- Plays world-champion level backgammon.
- Learns suitable strategies by playing games against itself.
- Plays millions of games.
- Based on a neural network trained using "backpropagation": incremental changes based on observed errors.
- Method as not generalized too well to other games
 - Eg. Neuro-chess loses to gnu-chess most of the time, and gnu-chess isn't tops.

Important challenges

- Domain specificity:
 - Successful systems are restricted to a narrow domains and specific tasks.
- Coping with noisy data
 - Most successes have been in domains where the objectives and the "rules" were closely specified and formalized.
- Incorporation of commonsense knowledge
 - Does every little thing have to be encoded or derived explicitly?
 - Compare deep-blue to human performance re. pruning.

Domain specificity

- Natural language systems work "well" only when the "domain of discourse" is restricted.
- If not, things get very hard very fast.
- Consider these alternative meanings of "give":
 - John have Pete a book. [tangible object delivered]
 - John gave Pete a hard time. [mode of behavior]
 - John gave Pete a black eye. [specific action]
 - John gave up.
 - John gave in.
 - John doesn't give a hoot about his courses.
 - I give him a week before he quits.
 - He'll quit next month, give or take a week.

Problem progression in Speech

- "Word spotting" is good today. Key is to ignore all of an utterance except keywords of interest.
- Speaker dependent continuous speech: quite good.
- Speaker *independent* continuous speech is getting good. Works well with a limited vocabulary.
- Speech *understanding* has proved to be very difficult, and is still not very good.
 - Especially is the speech is unrestricted,
- Apocyrphal example: "The spirit is willing but the flesh is weak" translated into Russian as "The vodka is good, but the meat is rotten."

Topic 2: Propositional logic

How to we **explicitly** represent our knowledge about the world?

References:

Dean, Allen, Aloimonos, Chapter 3 Russell and Norvig: Chapter 6

One of two or three logical languages we will consider.

Logical languages are analogous to programming languages: systems for describing knowledge that have a rigid syntax.

Logical languages (unlike programming languages) emphasize syntax. In principle, the semantics is irrelevant (in a narrow sense).

Knowledge Representation

- Most programs are a set of procedures that accomplish something using rules and "knowledge" embedded in the program itself.
- This is an example of

implicitly encoded information

- If you want to change the way Microsoft Word implements variables in macros, you have to hack the code.
- When my tax program needs to be upgraded for a new tax rule, the code needs to be rewritten.
- In contrast, when my accountant incorporates the same new rule, little of no brain surgery is required.

Explicit knowledge

When we encode rules in a separate rule book or **Knowledge Base (KB)**

we have

explicitly encoded

(some of) the information of interest.

- i.e. the rules are separate from the procedures for interpreting them.
 - Explicit knowledge encoding, in general, makes it easier to update and manipulate (assuming the encoding is good).
 - Q. Is a "plug-in" implicit or explicit knowledge?

Knowledge and reasoning

Objective: to <u>explicitly</u> represent knowledge about the world.

- So that a computer can use it efficiently....
 - Simply to use the facts we have encoded
 - To make **inferences** about things it doesn't know yet
- So that we can easily enter facts and modify our knowledge base.
- The combination of a formal language and a reasoning mechanism is a **logic**.
- Each fact: encoded as a <u>sentence</u>.

Wff's

- In practice, with logical languages we combine symbols to express truths, or relationships, about the world.
- If we put the symbols together in a permitted way, we get a well-formed formula or wff
- A proposition is another term for an allowed formula.
- A **propositional variable** is a proposition that is atomic: that it, it cannot be subdivided into other (smaller) propositions.
- We can combine propositional variables into compound statements (wffs) using <u>truth-functional connectives</u>.

AND, OR, NOT, IMPLIES, EQUIVALENCE

• Formuli are made from propositional variables and the connectives.

Terminology

- A set of wffs connected by AND's is a **conjunction**.
- A set of wffs connected by OR's is a **disjunction**.
- <u>Literals</u> plain propositional variables, or their negations: P and ¬ P.

Semantics

- We attach meaning to wffs in 2 steps: 1. By assigning truth values to the propositional variables 2. By associating real-world concepts with symbols
- Step 1, assigning truth values, is called an **interpretation**.
- Step 2 is called **symbol grounding**, and is not related to the logical consistency or mathematical soundness of the logical system.

Discovering "new" truths

- Want to be able to generate new sentences that must be true, given the facts in the KB.
- Generation of new true sentences from the KB is called

entailment.

- We do this with an inference procedure.
- If the **inference procedure** works "right": only get entailed sentences. Then the procedure is **sound** or **truth-preserving**.
 - Q. Why would we ever consider any other kind of inference?

Knowing about knowing

- We would like to have knowledge both about the world, as well as the state of our own knowledge (i.e. **meta-knowledge**).
- Ontological commitments refer to the guarantees given by our logic and KB regarding the real world.
- **Epistemological commitments** relate to the states of knowledge, or kinds of knowledge, that a system can represent.

A particular set of truth assignments associated with propositional variables is a **model** IF THE ASSOCIATED FORMULA (or formuli) come out with the value true.

e.g. For the formula

(A and B) implies (C and D)

the assignment

A=true B=true C=true D=true

is a model.

The assignment

A=false B=true C=true D=true

is another model, but the assignment

A=true B=true C=true D=false

is not a model.

Satisfiability

- If *no model is possible * for a formula, then the formula is NOT **SATISFIABLE**, otherwise it is satisfiable.
- A **Theory** is a set of formuli (in the context of propositional logic).
- If no model is possible for the negation of a formula, then we say the original formula is **valid** (also a formula is always true, it is a *tautology*).
- An axiom is a wff that states a priori information.
- Proper axioms state facts.