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The Motion Planning Problem

• Intuition: Find a safe path/trajectory from start to goal

• More precisely:
• A path is a series of robot configurations (e.g., joint angles, points in x-y-

theta, 6-DOF poses, etc)

• A trajectory is a path indexed by time

• We express safety as a set of constraints (e.g., walls, impassable terrain, 
unsafe flight configurations, self-penetration of arm links, etc.) 



Planning Algorithm Properties

• We can measure the performance of our planning algorithms in a 
number of ways:

• Complete: returns a path if one exists. Variants include:
• Resolution complete

• Probabilistically complete 

• Optimal: the path returned is the “best” one under some condition (usually 
path length, but we can consider others)

• Computational complexity:
• Measured w.r.t. number of dimensions of configuration space, size of the world, number 

of steps in the returned path, etc.

• Nature of constraints handled:
• Holonomic

• Non-holonomic

• Uncertainty awareness



Challenges for motion planning

• Robots are often high dimensional (e.g., humanoid, robot arm, 
quadruped) useful paths can require very many motions, and there 
can be tight constraints between each location (e.g., piano moving)

• The constraints formed by the robot and its environment do not take 
a clean form that we can easily optimize over 

• Example: if we have a square obstacle on the 2D plane, what is the shape of 
the constraint in the 6 degree-of-freedom joint space of a manipulator?

• Motion planning research:
• One of the oldest topics in robotics

• For many years we did not have efficient algorithms to handle the problems 
posed by the hardware – approximations and heuristics were abundant

• Today: recent breakthroughs mean that good libraries exists for many of the 
problems of interest. Research on pure geometric planning is slightly less and 
we are ready to tackle uncertainty, differential control, learned models, etc.



Starting Simple: Breadth-first search planning

• Breadth-first search applied to a discrete planning problem:
• From the start, try every possible action and record the result, along with 

book-keeping, in an “open list” (queue)

• Until we reach the goal, pop from the open list, try every possible action, and 
place the results back at the end of the open list

• BFS is a complete planner, it explores all possible paths

• It scales very badly with dimension and path length

• Can only handle discrete or discretized environments



A* Planning

• Same structure as BFS, but add a heuristic function that estimates the 
cost-to-goal from each location

• The open-list becomes a priority queue on the function:
• 𝑓 𝑛 = 𝑔 𝑛 + ℎ 𝑛

• With g the cost so far and h the heuristic

• The heuristic guides our computation to open nodes in the direction 
of the goal first

• As long as h is admissible (it never over-estimates), we are 
guaranteed an optimal solution when we first open the goal

• Still a complete planner as we eventually open all nodes regardless of 
h



A-star

• A* is used very often as a long-
term planner in robotics, when the 
world can be considered discrete 
and controls are ignored

• Examples: 

• Self-driving car routes through city 
maps

• Navigation through indoor hallways



Issues with A-star

● Re-using computation:

– In robotics, map is 
often evolving (D*, 
Stentz et al.)

– Same path segments 
will be shared by 
many paths (roadmaps 
and decompositions, 
soon)

Poor scaling to higher 

dimensions



Robot-Specific Methods

(4) Roadmap approaches

(1) Cell decomposition

(2) Potential Fields

(3) Bug algorithms

Goal reduce the N-dimensional

configuration space to a set of

one-D paths to search.

Goal account for all of the free space

Goal Create flexible local control strategies

Limited knowledge path planning

with a behavioral approach



Cell Decomposition Planners

• Basic idea, decompose the overall planning process into local regions 

• Simple computations can tell us the path through the region (may or 
may not be optimal)

• A global computation can be performed to re-assemble the entire 
path, and often we can re-use our local computation for multiple 
queries

• Examples:
• Voronoi diagrams

• Visibility graphs



The Visibility Graph

• Opened vertices = {start}. Repeat until you’re done:
- Add edges from opened vertices to visible obstacles
- If goal visible from latest vertex added, you’re done.

start

goal

Since the map was inC-space, each line potentially represents part of a path

from the start to the goal.



Potential Field Planners

• A more local and reactive method: utilize the constraints and 
information nearby to form a simple local motion decision

• Questions:
• How to formulate these local decisions in a coherent way?

• Can we prove any properties or guarantees about the overall plans?

• Potential fields are an intuitive approach based on the motions of 
physical bodies propelled by smooth forces



51

Potential Field Method

Potential Field (Working Principle)

– The goal location generates an attractive potential – pulling the robot

towards the goal

– The obstacles generate a repulsive potential – pushing the robot away

from the obstacles

– The negative gradient of the total potential

is treated as a force applied to the robot

-- Let the sum of the forces control the robot

C-obstacles



Local techniques

Potential Field methods

• compute a repulsive force away from obstacles

• compute an attractive force toward the goal



• Compute an attractive force toward the goal

Potential Field Method

C- obstacles

Attractive potential



Random search

Random walks

Often combined with potential field methods to escape minima

random walks are not perfect...

“Filling in” local minima



Bug Algorithms

• Idea: can we come up with a 
simple set of rules that allow 
us to perform behavior-based 
travel to goal (no explicit global 
plan?)

• Yes: follow the intuition of 
human labyrinth solving: 
“Always turn left”

• For the most part, this works 
well, but we can devise 
adversarial complex obstacles 
where smarts are needed:

• BUG B approach…



Probabilistic Roadmaps (PRMs)
Kavraki, Latombe, Overmars, Svestka, 1994

Developed for high-dimensional spaces

Avoid pitfalls of classical grid search

Random sampling of C
free

Find neighbors of each sample

(radius parameter)

Local planner attempts connections

“Probabilistic completeness" achieved

Other PRM variants: Obstacle-Based PRM (Amato, Wu, 1996); Sensor-based PRM (Yu,

Gupta, 1998); Gaussian PRM (Boor, Overmars, van der Stappen, 1999); Medial axis

PRMs (Wilmarth, Amato, Stiller, 1999; Pisula, Ho, Lin, Manocha, 2000; Kavraki,

Guibas, 2000); Contact space PRM (Ji, Xiao, 2000); Closed-chain PRMs (LaValle,

Yakey, Kavraki, 1999; Han, Amato 2000); Lazy PRM (Bohlin, Kavraki, 2000); PRM for

changing environments (Leven, Hutchinson, 2000); Visibility PRM (Simeon, Laumond,

Nissoux, 2000).



• A point P in C is randomly chosen.

• The nearest vertex in the RRT is selected.

• A new edge is added from this vertex in the

direction of P, at distance

• The further the algorithm goes, the more
space is covered.





Start

Goal



Random vertex





We greedily connect the

bottom tree to our new vertex









Obstacle found !



Now we swap roles !



Now we swap roles !



We grow the bottom tree



Now we greedily try to

connect

And we continue…













































Connection made !



Now we have a solution !



Last step: path smoothing



Last step: path smoothing





Using RRTs

How can RRTs be used to help find paths?

- Can be used on their own (eventually will get close to the goal)

- Can be used with potential field methods

- Every so often (1 in 20 times), choose the goal to be the

next free-space point chosen

- Bias the random configuration chosen toward the goal.

http://janowiec.cs.iastate.edu/~lavalle



Additional complexity

Nonholonomic   vs.   Locally Uncontrollable

Also: moving obstacles

dynamic constraints

forward-only left-only car



Conclusion and readings

• RRTs are one of the most attractive planners developed to date

• Much research has been generated from applying them to a variety 
of problems in robotics and AI, beyond simple motion planning

• Next Tuesday, we will read two recent research papers that follow-on 
from concepts in optimal control and planning:

• LQR-Trees: Feedback Motion Planning on Sparse Randomized Trees by Russ 
Tedrake.

• Sampling-based Algorithms for Optimal Motion Planning by Sertac Karaman
and Emilio Frazzoli.

• Unless presenters appear over the weekend, I will lead the 
discussions, but please be prepared with questions!


