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Abstract

We present a robust framework for extracting lines of curvature from point clouds.
First, we show a novel approach to denoising the input point cloud using robust
statistical estimates of surface normal and curvature which automatically rejects
outliers and corrects points by energy minimization. Then the lines of curvature are
constructed on the point cloud with controllable density. Our approach is applicable
to surfaces of arbitrary genus, with or without boundaries, and is statistically robust
to noise and outliers while preserving sharp surface features. We show our approach
to be effective over a range of synthetic and real-world input datasets with varying
amounts of noise and outliers. The extraction of curvature information can benefit
many applications in CAD, computer vision and graphics for point cloud shape
analysis, recognition and segmentation. Here, we show the possibility of using the
lines of curvature for feature-preserving mesh construction directly from noisy point
clouds.
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1 Introduction

Incorporating physical objects that have been scanned into a digital form
is an integral part of many engineering and entertainment applications. The
raw output of most shape acquisition methods is a point cloud sampling of
the scanned surface. Given the increasing popularity of point cloud based
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Fig. 2. Visualization of principal curvature values obtained by our method for a
scanned point cloud model of a hand and a tooth. The visualization is based on
the color scheme suggested in (41). Normals are estimated by locally fitting planes
(17). Renderings are created with PointShop3D.

the curvature tensor field also needs to be pre-smoothed. Marinov and Kobbelt
(31) instead provide a more efficient framework that does not rely on a global
parametrization for anisotropic remeshing. Lai et al. (25) apply an iterative
relaxation scheme which incrementally aligns the mesh edges to the principal
directions without the use of global parametrization of meshes.

Regular remeshing can be achieved in terms of globally parameterizing the
mesh where the parameter lines can also be guided by a given frame field, for
example by principal curvature frames (40; 20). Liu et al. (29) use principal
directions to create conical meshes. Other remeshing techniques have also been
proposed using smooth harmonic scalar fields (9) or Laplacian eigenfunctions
(8; 50).

In our case, we deal with the much more difficult and challenging problem
of handling noisy point clouds surfaces of arbitrary topology with outliers as
well as fine and sharp features. In our case, we make no demands regarding
pre-meshing or globally parameterizing the point cloud surface. The curvature
information can be directly exploited by other point cloud based techniques
e.g., for registration (41), smoothing (27), and shape recognition and segmen-
tation (18) which do not depend on intermediate reconstruction techniques
and need to work directly on point clouds surfaces. In this paper, we also
show how to use the extracted curvature information for feature-preserving
mesh construction.

Our framework relies heavily on the robust estimation of curvature on point
clouds. There is a considerable number of papers in the computer graphics, vi-
sion and engineering literature concerning differential operators on discretized
surfaces, especially polygon meshes (see (12) for a recent survey). Briefly, cur-
vature estimation methods can be categorized as follows: a) curve and patch
fitting methods where low-order curves or patches are fitted locally at each
point of the surface, typically as height functions e.g., (14; 13; 37), b) discrete
differential geometry methods where discrete versions of differential geometry
theorems are developed and applied to one-ring, two-ring or N-ring neigh-



Fig. 3. Visualization of principal curvature values obtained by our method for
analytic examples of torus point clouds using the same color scheme as in Figure 2.
From left to right: Non-noisy torus, torus with random gaussian noise of variance
0.5% of the bounding box diagonal, torus with random gaussian noise of variance
1% of the bounding box diagonal.

borhoods around each vertex of a polygon mesh e.g., (47; 33; 4) and ¢) Per
triangle curvature tensor estimation where the second fundamental form is
fitted per each surface element (41). Kalogerakis et al. presented a method to
estimate principal curvature values and directions over polygon meshes and
point clouds using a robust statistical framework (22). In contrast to previ-
ous approaches, this approach adapts to noise, irregularities and non-uniform
sampling and provides maximum likelihood estimates per surface point. This
method has been shown to have an order of magnitude less error than other
state-of-the-art approaches.

In this paper, we will overview and update this method and we will extend it
in order to remove outlier points and denoise point positions in a principled
fashion. Based on these estimates and statistical weights, we will robustly
extract the lines of curvature directly from point clouds.

3 Statistical estimation of curvature

In (22), it was shown that an IRLS process, in the context of robust M-
estimation, can be used to achieve a highly accurate estimation of curvature,
minimizing the effects of noise for discretized surfaces. M-estimation (15; 46)
consists of robustly fitting a model by minimizing a cost function of the resid-
uals of the samples efficiently with an IRLS scheme. Here, we show an updated
version of this method for point clouds and in the following subsections we
introduce our method to (respectively) remove surface outliers from the input
point set (subsection 4.1) and denoise point positions (subsection 4.2) using
the results from the M-estimation process.

The first step of the algorithm is to determine a minimum neighborhood for
each point p; in the initial dataset (see Figure 4a). As in (19), this minimum
neighborhood is determined by finding the closest points after projecting them
into the local tangent plane of p;, considering one closest point for each of six
60 °slices around p; on this plane. If there are no nearest points in two or



® Sample Points .
a) === Nearest Neighbours b) o L .
No Samples ° ° ° . \‘ An
. .,
Boundary Point *
. s
.
¢ . pl Ky e ¢ .
. Ap
. W - * "‘. L4
.
A of .
.
. . ° o
* B T
. P u .
.
. . °
. .

Fig. 4. (a) Boundary point definition and conditions. (b) Normal variation sample
for curvature estimation.

more contiguous slices around p; within a given threshold (which can easily
be changed interactively in our application), the point is marked as a bound-
ary point. If p; is not a boundary point, we consider all pairs of points and
their associated normals inside their minimum neighborhood. Each such pair
yields a positional variation Ep and normal variation An which constrain the
curvature tensor as follows:
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unknowns

where N is the input normal vector field, and #, v and @ form a local or-
thonormal coordinate frame obtained from the tangent plane (see Figure 4b).

Given enough variation pairs, we obtain an over-constrained system which
lets us solve for the curvature tensor values in a least squares fashion. This
estimation serves as an initial guess to the IRLS process. Then, all normal
variations inside an initial operating region (see below) are sampled and as-
signed a geometric weighting scheme according to the inverse of their average
squared Euclidean distance to the center point p;. This geometric weighting
captures the prior confidence regarding the relative spatial relevance of the
samples. This weighting will be multiplied with the M-estimation weights (see
below) that represent the confidence in the noisiness of the sample. These
confidence weights are necessary to ensure stable curvature tensor fittings,
otherwise the samples would be assumed to be of equal quality and, therefore,
to have constant variance, which is not true. Normally, it is expected that the
further the sample is located from the point of interest, the less geometric
weight it should be assigned. The statistics literature (3) suggests that for
weighted least squares regression, the weights of the samples should be chosen
according to the inverse of the variances of the residuals. As we do not know
the variance of the residuals of the samples a priori, we need to model this
variance with a function of some geometric feature of the sample. In our ex-



