Belief State as an Information State ECSE-506

Pierre-Luc Bacon

February 3, 2014

Consider a particular ω and $y_{1: T}, u_{1: T}$:

$$
\begin{align*}
\pi_{t+1}\left(x_{t+1}\right) & =\mathbb{P}\left(X_{t+1}=x_{t+1} \mid Y_{1: t+1}=y_{1: t+1}, U_{1: t}=u_{1: t}\right) \tag{1}\\
& =\frac{\mathbb{P}\left(X_{t+1}=x_{t+1}, Y_{t+1}=y_{t+1} \mid Y_{1: t}=y_{1: t}, U_{1: t}=u_{1: t}\right)}{\sum_{\widetilde{x}_{t+1}} \mathbb{P}\left(X_{t+1}=\widetilde{x}_{t+1} \mid Y_{1: t}=y_{1: t}, U_{1: t}=u_{1: t}\right)} \tag{2}
\end{align*}
$$

Rewriting the numerator with the law of total probability:

$$
\begin{align*}
& \sum_{\widetilde{x}_{t}} \mathbb{P}\left(Y_{t+1}=y_{t+1} \mid X_{t+1}=x_{t+1}, x_{t}=\widetilde{x}_{t}, Y_{1: t}=y_{1: t}, U_{1: t}=u_{1: t}\right) \tag{3}\\
& \quad \times \mathbb{P}\left(X_{t+1}=x_{t+1} \mid X_{t}=\widetilde{x}_{t}, Y_{1: t}=y_{1: t}, U_{1: t}=u_{1: t}\right) \tag{4}\\
& \quad \times \mathbb{P}\left(X_{t}=\widetilde{x}_{t} \mid Y_{1: t}=y_{1: t}, U_{1: t}=u_{1: t}\right) \tag{5}
\end{align*}
$$

By independence upon the basic random variables, (3) and (4) simplify to:

$$
\begin{aligned}
& \mathbb{P}\left(Y_{t+1}=y_{t+1} \mid X_{t+1}=x_{t+1}, x_{t}=\widetilde{x}_{t}, Y_{1: t}=y_{1: t}, U_{1: t}=u_{1: t}\right)=\mathbb{P}\left(Y_{t+1}=y_{t+1} \mid X_{t+1}=x_{t+1}\right) \\
& \mathbb{P}\left(X_{t+1}=x_{t+1} \mid X_{t}=\widetilde{x}_{t}, Y_{1: t}=y_{1: t}, U_{1: t}=u_{1: t}\right)=\mathbb{P}\left(X_{t+1}=x_{t+1} \mid X_{t}=\widetilde{x}_{t}, U_{t}=u_{t}\right)
\end{aligned}
$$

As for (5), we apply Baye's rule again:

$$
\begin{equation*}
\mathbb{P}\left(X_{t}=\widetilde{x}_{t} \mid Y_{1: t}=y_{1: t}, U_{1: t}=u_{1: t}\right)=\frac{\mathbb{P}\left(X_{t}=\widetilde{x}_{t}, U_{t}=u_{t} \mid Y_{1: t}=y_{1: t}, U_{1: t-1}=u_{1: t-1}\right)}{\sum_{\widehat{x}_{t}} \mathbb{P}\left(X_{t}=\widehat{x}_{t}, U_{t}=u_{t} \mid Y_{1: t}=y_{1: t}, U_{1: t-1}=u_{t-1}\right.} \tag{6}
\end{equation*}
$$

and write the numerator as

$$
\begin{align*}
& \mathbb{P}\left(U_{t}=u_{t} \mid X_{t}=\widetilde{x}_{t}, Y_{1: t}=y_{1: t}, U_{1: t-1}=u_{1: t-1}\right) \times \mathbb{P}\left(X_{t}=\widetilde{x}_{t} \mid W_{1: t}=y_{1: t}, U_{1: t-1}=u_{1: t-1}\right) \tag{7}\\
& =\frac{\mathbf{1}_{u_{t}}\left(g_{t}\left(y_{1: t}, u_{1: t-1}\right) \pi_{t}\left(\widetilde{x}_{t}\right)\right)}{\mathbf{1}_{u_{t}}\left(g_{t}\left(y_{1: t}, u_{1: t-1}\right)\right) \sum_{\widehat{\widehat{x}_{t}}} \pi_{t}\left(\widehat{x}_{t}\right)} \tag{8}\\
& =\pi_{t}\left(\widetilde{x}_{t}\right) \tag{9}
\end{align*}
$$

Under these simplifications, the numerator of (2) becomes:

$$
\begin{equation*}
\sum_{\widetilde{x}_{t}} \mathbb{P}\left(Y_{t+1}=y_{t+1} \mid X_{t+1}=x_{t+1}\right) \times \mathbb{P}\left(X_{t+1}=x_{t+1} \mid X_{t}=\widetilde{x}, U_{t}=u_{t}\right) \times \pi_{t}\left(\widetilde{x}_{t}\right)=A_{t}\left(y_{t+1}, x_{t+1}, u_{t}, \pi_{t}\right) \tag{10}
\end{equation*}
$$

The belief state at $t+1$ is then of the form:

$$
\begin{equation*}
\pi_{t+1}\left(x_{t+1}\right)=\frac{A_{t}\left(y_{t+1}, x_{t+1}, U_{t}, \pi_{t}\right)}{\sum_{\widetilde{x}_{t+1}} A_{t}\left(y_{t+1}, \widetilde{x}_{t+1}, U_{t}, \pi_{t}\right)}=\varphi_{t}\left(\pi_{t}, y_{t+1}, u_{t}\right)\left(x_{t+1}\right) \tag{11}
\end{equation*}
$$

