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" POMDP example: Sequential hypothesis testing

Description

Example:
ho : Yy ~ N(0, 0%)
hi @ Yy ~ N(n, 0?)
Example:
ho : Yy ~ Ber(p)
hy : Yy ~ Ber(q)

Cost per obs. ¢
Type-l error  £(hy, hy)
Type-Il error £(ho, hy)

Usually:
€(ho, ho) = £(hy, hy) =0.

A decision maker (DM) makes a series of i.i.d. observations which may
be distributed according to PDF f, or f;. Let Y. denote the decision
maker’s t-th observation. In this example, time denotes the number of
observations that the DM has made so far.

The DM wants to differentiate between the two hypothesis:
ho:Yt’\fo, and h] :thf].

Let the random variable H denote the value of the hypothesis. The

a priori probabilicy P(H = hy) = p.

The system continues for a fnite time T. At each t < T, the DM has
three options: stop and declare hy, stop and declare h;, or continue and
take another measurement. At time T, the last alternative is unavailable.

Let T be the time when the DM stops and v be his final decision. The
cost of running the system is ct + £(v, H). Find the optimal stopping
strategy for the DM that minimizes expected value of this cost.
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" POMDP
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example: Sequential hypothesis testing A

State : X¢ = (H, S¢) € {ho,hy} x {0, 1}

St = 1 implies that the process has stopped.
Observation: Under H = hy : Y; ~ fo; under H = hy : Y ~ fy.
Control :Fort<T, U € {hpy,hy,C}

Fort=T, U € {hy,h;}

St = LSt =11+ 1{Sy = 0} 1{U, € {ho,hy}}, where U = g¢(Y14)

Measurement cost, u; € C: ¢((X,C) =c¢
Stopping cost u; € {ho, i} c¢(Xe, wy) = €(H, wy)

Observations Y; ~ Ber(q;), where qo = 0.5 and q; = 0.3.
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denotes P(H = ho|Yi+)

Y; ~ Ber(0.5) Y; ~ Ber(0.3)
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& Sequential hypothesis testing is a POMDP

System
Dynamics

Observation

Information
Structure

Objective
Function

Per-step cost

POMDP Dynamic Model Sequential Hypothesis Testing

Xt — (H’m St).

X1 = Tt (X, U, W,
t+1 = Fe(Xe, Uy, Wi) Heor = Hy,  Sepq = Func(Se, Uy)

Y = he(X¢, Ny) Y; = Func(H¢, Ny)
Uy = ge(Yi:ey Upip—1) Uy = ge(Yie), vt < t, Uy =C,
T
E|> culXy, Ut)] E [ct+ £(H, Uy)]
t=1

Define a per-step cost function p(x¢, 1) as

function 0 iFs—1
p((h,s),u): C iFs=0andu=C
L(h,u) ifFs=0andue{hyh}
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& Sequential hypothesis testing is a POMDP I

Information The state X; has two components, an unobservable H and observable
state S;. Defne information state (7, s;) where
mi(h) = P(H="h| Yi.).

7 is equivalent to py = 7¢(0), which evolves as follows:
Pl = @(pr,Yt) = Ptfo(yt)/(Ptfo(yt) + (T —pdf (Ut))

Structure of Since we only take a decision when S; = 0, there is no loss of optimality
Controller in using strategies of the form:
Ui = gi(pt)

Dynamic Vi(p) = max {pl(ho, ho) + (1 — p)e(hy, ho),
program pl(hg, hy) + (1 — p)e(hr, hi)}
Vi(p) = max { e+ E[Viri(@(p, Yes1)) | pe =],
pl(ho, ho) + (1 —p)€(ha, ho).
pllho, hy) + (1 —p)e(hy, )}

-
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& Qualitative properties of the value function B

Definition Wir(p) = oo
Wi(p) = c+ E[Via(e(p, Yo) | pr = Pl

Theorem Vi(p) and W,(p) are » Vt, concave in p » Vp, increasing in t

Proof of Proceed by backward induction.
concavity in p » Basis: Vq(p) is minimum of two linear functions, and hence concave.
Wi (p) is a constant, and hence concave.
» Induction hypothesis: Vi.(p) and W, (p) are concave in p.
» Induction step: Properties of convex functions: (i) if f(x) is concave
in x, then tf(x/t), the perspective of f, is concave in (x,t) for t > 0.

Minimum of two linear (i) sum of concave functions is concave. Hence,
and one concave function

- 3 pfoly) >
Wi(p) _c+J [pfo(y) + (1 = P)f1 (Y Visy (pfo(y) O—phw)) Y
Yy

is concave in p. Thus, V;(p) is a minimum of three functions, two linear
in p and one concave in p. Hence, V;(p) is also concave in p.

-
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& Qualitative properties of the value function B
Definition Li(p) = pl(hi, ho) + (1 —p)e(hi, i),  ie€{1,2}

Proof of Proceed by backward induction.
increasing in t » Basis: By construction, Wr_1(p) < Wr(p). Moreover,

Vi1 (p) = min{Wr 4 (p), Lo(p), Li (p)}
< min{Lo(p), Li (p)} = Vr(p)
» Induction hypothesis: Vi1(p) < Vii2(p) and Wiy (p) < Wipa(p).
» Induction step:
Wi(p) = ¢+ ElVeisa(o(p, Yi)) | pe = P]

<c+ EVia(e(p, Y1) | peo = pl = Wi (p)

and
Vi(p) = min{W,(p), Lo(p), Li(p)}

< min{We(p), Lo(p), Li(p)} = Visa (p)

Alternate proof The set of strategies increases with horizon. Hence V;(p) < Vi1 (p).
Monotonicity of expectation implies W, (p) < W1 (p).

Yo
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& Qualitative properties of optimal control law

Definition

Theorem

Proof

Stopping set S¢(h) ={p € [0,1]: g¢(p) =h}, h € {ho,y}.

For all t and h € {hy, hy}, the set S;(h) is convex.

To show that S;(hg) is convex, it suffices to show that:

For any p'%, p!" € Si(hy) and A € [0, 1],

)

the information state p™ = (1 —A)p© + ApV isin S¢(ho).

» Since p € S¢(ho),i=0,1:

Lo(p™) < min{Li (p™), Wi(p™)}, 1=0,1.
» Since Li(p) is linearin p,1=0,1:

(0 =ML?) +ALED) < LE™), i=0,1.
» Since W, (p) is concave in p:

(1— A)Wt(P(o)) + AWt(p(])) = Wt(Pm)

Combining the above three, we have
Lo(p™) < min{L; (p™), Wi (p™)}

Hence, p» € S;(hy). Consequently, S (hy) is convex.
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& Optimal control law has a threshold property B
Assumption (A1) £(ho,hy) < ¢ < {(ho,hy) and £(hy,hy) < ¢ < £(hy, hy).
Theorem Under (A1): 0 € Si(hy) and 1 € S (hy)

Proof Ly(0) = €(ho, hy), L1(0) = £(hy, hy), and W4 (0) > c. Thus
L;(0) < min{Ly(0), W;(0)} = 0 € S¢(1).

Definition Tl =max{p € [0,1] : ge(p) = hy}

™ = min{p € [0,1] : g¢(p) = ho}

Threshold Under (A1), the optimal control law has the following form
property h, ifp<nl
gi(p) = { C, iftd<p<t
hy, iFeY <p

8
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& Optimality of sequential likelihood ratio test
Likelihood ratio 7 (0)/m:(1) = p/(1 —pe) = At

Likelihood Under (A1), the optimal control law has the following form
ratio test hy, iF?\ﬁTi/(] _T‘l)
gA) =< C, ift/1—1)<A</(1-10)
ho, FTY/(1—19) <A

Proof of Fora,b € [0,1],

optimality a<bes & o b ‘
l—a “1-—-D
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" Decision thresholds are monotone in time I

Theorem Forallt, tf <7}, and ) >0,

Proof Since W, (p) is monotone increasing in t: W, (t!) < Wy,1(T!). Hence,
Ly (7]) < min{Lo(t}), Wi(t])} < min{Lo(t{), Wepi (T])}
Therefore, t{ € Si;1(hy) which implies ©{ < (..

By a similar argument, t{ € Si.1(ho) which implies 0 > 0.
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" Infinite horizon setup B

Model

Theorem

Proof

Corollary

Assume T — oo so that the continuation alternative is always available.
An optimal stopping rule exists, is time-invariant (stationary), and is

given by the solution to the following fixed point equation
V(p) = min{Lo(p), Li (p), W(p)}

where W(p) =c + [[pfo(y) + (1 —p)f1(y)IV(e(p,y))dy.
y

Follows from standard results on non-negative dynamic programming.

The thresholds t' and t° are time-invariant.

1%
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& Sequential hypothesis testing: Further Reading I

1. For more details on this problem, including an approximate method to determine the
thresholds, read: Abraham Wald, “Sequential tests of statistical hypothesis”, Annals of
Mathematical Statistics, pp. 117-186, 1945.
http://projecteuclid.org/euclid.aoms/1177731118

2. The model described in these notes was frst considered by: Arrow, Blackwell. and
Girshick, “Bayes and Minimax Solutions of Sequential Decision Problems”, Econometrica,
pp. 213-244, Jul.-Oct., 1949.
http://www.jstor.org/stable/1905525
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