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Example:

h0 : Yt ∼ 𝒩(0, σ2)

h1 : Yt ∼ 𝒩(μ, σ2)

Example:

h0 : Yt ∼ Ber(p)

h1 : Yt ∼ Ber(q)

Cost per obs. c

Type-I error ℓ(h1, h0)

Type-II error ℓ(h0, h1)

Usually:
ℓ(h0, h0) = ℓ(h1, h1) = 0.

POMDP example: Sequential hypothesis testing

Description A decision maker (DM) makes a series of i.i.d. observations which may
be distributed according to PDF f0 or f1. Let Yt denote the decision
maker’s t-th observation. In this example, time denotes the number of
observations that the DM has made so far.

The DM wants to differentiate between the two hypothesis:
h0 : Yt ∼ f0, and h1 : Yt ∼ f1.

Let the random variable H denote the value of the hypothesis. The
a priori probability ℙ(H = h0) = p.

The system continues for a finite time T. At each t < T, the DM has
three options: stop and declare h0, stop and declare h1, or continue and
take another measurement. At time T, the last alternative is unavailable.

Let τ be the time when the DM stops and υ be his final decision. The
cost of running the system is cτ + ℓ(υ,H). Find the optimal stopping
strategy for the DM that minimizes expected value of this cost.
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denotes ℙ(H = h0|Y1:t)

Yt ∼ Ber(0.5) Yt ∼ Ber(0.3)

POMDP example: Sequential hypothesis testing

Notation State : Xt = (H, St) ∈ {h0, h1} × {0, 1}
St = 1 implies that the process has stopped.

Observation: Under H = h0 : Yt ∼ f0; under H = h1 : Yt ∼ f1.
Control : For t < T, Ut ∈ {h0, h1,𝖢}

For t = T, Ut ∈ {h0, h1}

Dynamics St+1 = 𝟙{St = 1} + 𝟙{St = 0}𝟙{Ut ∈ {h0, h1}}, where Ut = gt(Y1:t)

Costs Measurement cost, ut ∈ 𝖢 : ct(Xt,𝖢) = c
Stopping cost ut ∈ {h0, h1}: ct(Xt, ut) = ℓ(H, ut)

Illustration Observations Yt ∼ Ber(qi), where q0 = 0.5 and q1 = 0.3.
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Sequential hypothesis testing is a POMDP
POMDP Dynamic Model Sequential Hypothesis Testing

System
Dynamics

Xt+1 = ft(Xt, Ut,Wt)
Xt = (Ht, St),
Ht+1 = Ht, St+1 = Func(St, Ut)

Observation Yt = ht(Xt, Nt) Yt = Func(Ht, Nt)

Information
Structure

Ut = gt(Y1:t, U1:t−1) Ut = gt(Y1:t), ∵ ∀t′ < t, Ut′ = 𝖢,

Objective
Function

𝔼 [
T
∑
t=1
ct(Xt, Ut)] 𝔼 [cτ + ℓ(H,Uτ)]

Per-step cost
function

Define a per-step cost function ρ(xt, ut) as

ρ((h, s), u) =
⎧⎪
⎨⎪
⎩

0 if s = 1
c if s = 0 and u = 𝖢
ℓ(h, u) if s = 0 and u ∈ {h0, h1}
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Sequential hypothesis testing is a POMDP

Information
state

The state Xt has two components, an unobservable H and observable
St. Define information state (πt, st) where

πt(h) = ℙ(H = h | Y1:t).

πt is equivalent to pt = πt(0), which evolves as follows:
pt+1 = φ(pt, yt) = ptf0(yt)/(ptf0(yt) + (1 − pt)f1(yt))

Structure of
Controller

Since we only take a decision when St = 0, there is no loss of optimality
in using strategies of the form:

Ut = gt(pt)

Dynamic
program

VT(p) = max{pℓ(h0, h0) + (1 − p)ℓ(h1, h0),

pℓ(h0, h1) + (1 − p)ℓ(h1, h1)}

Vt(p) = max{ c + 𝔼[Vt+1(φ(p, Yt+1)) | pt = p] ,

pℓ(h0, h0) + (1 − p)ℓ(h1, h0).

pℓ(h0, h1) + (1 − p)ℓ(h1, h1)}
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Minimum of two linear
and one concave function

Qualitative properties of the value function

Definition WT(p) = ∞

Wt(p) = c + 𝔼[Vt+1(φ(p, Yt) | pt = p]

Theorem Vt(p) and Wt(p) are ∀t, concave in p ∀p, increasing in t

Proof of
concavity in p

Proceed by backward induction.
Basis: VT(p) is minimum of two linear functions, and hence concave.
WT(p) is a constant, and hence concave.
Induction hypothesis: Vt+1(p) and Wt+1(p) are concave in p.
Induction step: Properties of convex functions: (i) if f(x) is concave
in x, then tf(x/t), the perspective of f, is concave in (x, t) for t > 0.
(ii) sum of concave functions is concave. Hence,

Wt(p) = c + 󰀕
y

[pf0(y) + (1 − p)f1(y)]Vt+1(
pf0(y)

pf0(y) + (1 − p)f1(y))
dy

is concave in p. Thus, Vt(p) is a minimum of three functions, two linear
in p and one concave in p. Hence, Vt(p) is also concave in p.
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Qualitative properties of the value function

Definition Li(p) = pℓ(hi, h0) + (1 − p)ℓ(hi, h1), i ∈ {1, 2}

Proof of
increasing in t

Proceed by backward induction.
Basis: By construction, WT−1(p) ≤ WT(p). Moreover,

VT−1(p) = min{WT−1(p), L0(p), L1(p)}

≤ min{L0(p), L1(p)} = VT(p)

Induction hypothesis: Vt+1(p) ≤ Vt+2(p) and Wt+1(p) ≤ Wt+2(p).
Induction step:

Wt(p) = c + 𝔼[Vt+1(φ(p, Yt)) | pt = p]

≤c + 𝔼[Vt+2(φ(p, Yt+1)) | pt+1 = p] = Wt+1(p)
and

Vt(p) = min{Wt(p), L0(p), L1(p)}

≤ min{Wt+1(p), L0(p), L1(p)} = Vt+1(p)

Alternate proof The set of strategies increases with horizon. Hence Vt(p) ≤ Vt+1(p).
Monotonicity of expectation implies Wt(p) ≤ Wt+1(p).
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p(0) p(1)p(λ)
L0(⋅)

L1(⋅)

Wt(⋅)

Qualitative properties of optimal control law

Definition Stopping set St(h) = {p ∈ [0, 1] : gt(p) = h}, h ∈ {h0, h1}.

Theorem For all t and h ∈ {h0, h1}, the set St(h) is convex.

Proof To show that St(h0) is convex, it suffices to show that:
For any p(0), p(1) ∈ St(h0) and λ ∈ [0, 1],

the information state p(λ) = (1 − λ)p(0) + λp(1) is in St(h0).
Since p(i) ∈ St(h0), i = 0, 1:

L0(p(i)) ≤ min{L1(p(i)),Wt(p(i))}, i = 0, 1.
Since Li(p) is linear in p, i = 0, 1:

(1 − λ)Li(p(0)) + λLi(p(1)) ≤ Li(p(λ)), i = 0, 1.
Since Wt(p) is concave in p:

(1 − λ)Wt(p(0)) + λWt(p(1)) ≤ Wt(p(λ))
Combining the above three, we have

L0(p(λ)) ≤ min{L1(p(λ)),Wt(p(λ))}
Hence, p(λ) ∈ St(h0). Consequently, St(h0) is convex.
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τ1t τ0t

Optimal control law has a threshold property

Assumption (A1) ℓ(h0, h0) ≤ c ≤ ℓ(h0, h1) and ℓ(h1, h1) ≤ c ≤ ℓ(h1, h0).

Theorem Under (A1): 0 ∈ St(h1) and 1 ∈ St(h0)

Proof L0(0) = ℓ(h0, h1), L1(0) = ℓ(h1, h1), and Wt(0) ≥ c. Thus
L1(0) ≤ min{L0(0),Wt(0)}⟹ 0 ∈ St(1).

Definition τ1t = max{p ∈ [0, 1] : gt(p) = h1}

τ0t = min{p ∈ [0, 1] : gt(p) = h0}

Threshold
property

Under (A1), the optimal control law has the following form

gt(p) =
⎧⎪
⎨⎪
⎩

h1, if p ≤ τ1t
𝖢, if τ1t < p < τ0t
h0, if τ0t ≤ p
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Optimality of sequential likelihood ratio test

Likelihood ratio πt(0)/πt(1) = pt/(1 − pt) = λt

Likelihood
ratio test

Under (A1), the optimal control law has the following form

gt(λ) =
⎧⎪
⎨⎪
⎩

h1, if λ ≤ τ1t/(1 − τ1t)
𝖢, if τ1t/(1 − τ1t) < λ < τ0t/(1 − τ0t)
h0, if τ0t/(1 − τ0t) ≤ λ

Proof of
optimality

For a, b ∈ [0, 1],

a ≤ b⟺ a
1 − a ≤

b
1 − b.
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Decision thresholds are monotone in time

Theorem For all t, τ1t ≤ τ1t+1 and τ0t ≥ τ0t+1

Proof Since Wt(p) is monotone increasing in t: Wt(τ1t) ≤ Wt+1(τ1t). Hence,

L1(τ1t) ≤ min{L0(τ1t),Wt(τ1t)}≤ min{L0(τ1t),Wt+1(τ1t)}

Therefore, τ1t ∈ St+1(h1) which implies τ1t ≤ τ1t+1.
By a similar argument, τ0t ∈ St+1(h0) which implies τ0t ≥ τ0t+1.
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Infinite horizon setup

Model Assume T → ∞ so that the continuation alternative is always available.

Theorem An optimal stopping rule exists, is time-invariant (stationary), and is
given by the solution to the following fixed point equation

V(p) = min{L0(p), L1(p),W(p)}

where W(p) = c + ∫
y
[pf0(y) + (1 − p)f1(y)]V(φ(p, y))dy.

Proof Follows from standard results on non-negative dynamic programming.

Corollary The thresholds τ1 and τ0 are time-invariant.
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Sequential hypothesis testing: Further Reading

1. For more details on this problem, including an approximate method to determine the
thresholds, read: Abraham Wald, “Sequential tests of statistical hypothesis”, Annals of
Mathematical Statistics, pp. 117-186, 1945.
http://projecteuclid.org/euclid.aoms/1177731118

2. The model described in these notes was first considered by: Arrow, Blackwell. and
Girshick, “Bayes and Minimax Solutions of Sequential Decision Problems”, Econometrica,
pp. 213-244, Jul.-Oct., 1949.
http://www.jstor.org/stable/1905525
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