Partially Observable Markov Decision Processes

Sequential decision-making with imperfect observation

Aditya Mahajan

McGill University

Lecture Notes for ECSE 506: Stochastic Control and Decision Theory November 12, 2013

POMDP Example: Sequential hypothesis testing

POMDP example: Sequential hypothesis testing

Description A decision maker (DM) makes a series of i.i.d. observations which may be distributed according to PDF f_0 or f_1 . Let Y_t denote the decision maker's t-th observation. In this example, time denotes the number of observations that the DM has made so far.

Example:

```
h_0: Y_t \sim \mathcal{N}(0, \sigma^2)
```

```
h_1:Y_t\sim \mathcal{N}(\mu,\sigma^2)
```

Example:

```
\begin{split} h_0 : Y_t \sim \text{Ber}(p) \\ h_1 : Y_t \sim \text{Ber}(q) \end{split}
```

Cost per obs. c

Type-I error $\ell(h_1, h_0)$

Type-II error $\ell(h_0, h_1)$

Usually:

 $\ell(h_0, h_0) = \ell(h_1, h_1) = 0.$

The DM wants to differentiate between the two hypothesis:

 $h_0: Y_t \sim f_0, \quad \text{and} \quad h_1: Y_t \sim f_1.$

Let the random variable H denote the value of the hypothesis. The a priori probability $\mathbb{P}(H=h_0)=p.$

The system continues for a finite time T. At each t < T, the DM has three options: stop and declare h_0 , stop and declare h_1 , or continue and take another measurement. At time T, the last alternative is unavailable.

Let τ be the time when the DM stops and v be his final decision. The cost of running the system is $c\tau + \ell(v, H)$. Find the optimal stopping strategy for the DM that minimizes expected value of this cost.

POMDP example: Sequential hypothesis testing

Illustration Observations $Y_t \sim Ber(q_i)$, where $q_0 = 0.5$ and $q_1 = 0.3$.

Partially Observable Markov Decision Processes-Seq hypothesis testing (Aditya Mahajan)

Sequential hypothesis testing is a POMDP

	POMDP Dynamic Model	Sequential Hypothesis Testing
System Dynamics	$X_{t+1} = f_t(X_t, U_t, W_t)$	$\begin{split} X_t &= (H_t, S_t)\text{,} \\ H_{t+1} &= H_t\text{,} S_{t+1} = \text{Func}(S_t, U_t) \end{split}$
Observation	$Y_t = h_t(X_t, N_t)$	$Y_t = \text{Func}(H_t, N_t)$
Information Structure	$U_t = g_t(Y_{1:t}, U_{1:t-1})$	$U_t = g_t(Y_{1:t}), \because \forall t' < t, U_{t'} = C,$
Objective Function	$\mathbb{E}\left[\sum_{t=1}^{T}c_{t}(X_{t}, U_{t})\right]$	$\mathbb{E}\left[c\tau + \ell(H, U_{\tau})\right]$

 $\begin{array}{l} \mbox{Per-step cost} & \mbox{Define a per-step cost function } \rho(x_t,u_t) \mbox{ as} \\ function \\ \rho((h,s),u) = \begin{cases} 0 & \mbox{if } s = 1 \\ c & \mbox{if } s = 0 \mbox{ and } u = C \\ \ell(h,u) & \mbox{if } s = 0 \mbox{ and } u \in \{h_0,h_1\} \end{cases}$

Sequential hypothesis testing is a POMDP

 $\begin{array}{ll} \mbox{Information} & \mbox{The state } X_t \mbox{ has two components, an unobservable H and observable} \\ & \mbox{state} & \mbox{S}_t. \mbox{ Define information state } (\pi_t,s_t) \mbox{ where} \\ & \mbox{$\pi_t(h) = \mathbb{P}(H=h \mid Y_{1:t})$.} \end{array}$

 π_t is equivalent to $p_t = \pi_t(0)$, which evolves as follows:

 $p_{t+1} = \phi(p_t, y_t) = p_t f_0(y_t) / (p_t f_0(y_t) + (1 - p_t) f_1(y_t))$

 $\begin{array}{lll} \mbox{Structure of} & \mbox{Since we only take a decision when $S_t=0$, there is no loss of optimality} \\ & \mbox{Controller} & \mbox{in using strategies of the form:} \end{array}$

$$\mathbf{J}_{t} = \mathbf{g}_{t}(\mathbf{p}_{t})$$

Dynamic program

$$\begin{split} V_{T}(p) &= \max \left\{ p\ell(h_{0},h_{0}) + (1-p)\ell(h_{1},h_{0}), \\ & p\ell(h_{0},h_{1}) + (1-p)\ell(h_{1},h_{1}) \right\} \\ V_{t}(p) &= \max \left\{ c + \mathbb{E}[V_{t+1}(\phi(p,Y_{t+1})) \mid p_{t} = p], \\ & p\ell(h_{0},h_{0}) + (1-p)\ell(h_{1},h_{0}). \\ & p\ell(h_{0},h_{1}) + (1-p)\ell(h_{1},h_{1}) \right\} \end{split}$$

Qualitative properties of the value function

 $\begin{array}{ll} \mbox{Definition} & W_T(p) = \infty \\ & W_t(p) = c + \mathbb{E}[V_{t+1}(\phi(p,Y_t) \mid p_t = p] \end{array}$

Theorem $V_t(p)$ and $W_t(p)$ are $\blacktriangleright \forall t$, concave in $p \triangleright \forall p$, increasing in t

Proof of F concavity in p

Minimum of two linear and one concave function

Proof of Proceed by backward induction.

- ▶ Basis: $V_T(p)$ is minimum of two linear functions, and hence concave. $W_T(p)$ is a constant, and hence concave.
- ▶ Induction hypothesis: $V_{t+1}(p)$ and $W_{t+1}(p)$ are concave in p.
- ► Induction step: Properties of convex functions: (i) if f(x) is concave in x, then tf(x/t), the perspective of f, is concave in (x, t) for t > 0. (ii) sum of concave functions is concave. Hence,

$$W_{t}(p) = c + \int_{y} [pf_{0}(y) + (1-p)f_{1}(y)]V_{t+1}\left(\frac{pf_{0}(y)}{pf_{0}(y) + (1-p)f_{1}(y)}\right) dy$$

is concave in p. Thus, $V_t(p)$ is a minimum of three functions, two linear in p and one concave in p. Hence, $V_t(p)$ is also concave in p.

Qualitative properties of the value function

Definition $L_i(p) = p\ell(h_i, h_0) + (1-p)\ell(h_i, h_1), \quad i \in \{1, 2\}$

 $\begin{array}{ll} \mbox{Proof of} & \mbox{Proceed by backward induction.} \\ \mbox{increasing in } t & \mbox{Basis: By construction, } W_{T-1}(p) \leqslant W_{T}(p). \mbox{ Moreover,} \\ & V_{T-1}(p) = \min\{W_{T-1}(p), L_0(p), L_1(p)\} \end{array}$

 $\leq \min\{L_0(p), L_1(p)\} = V_T(p)$

▶ Induction hypothesis: $V_{t+1}(p) \leq V_{t+2}(p)$ and $W_{t+1}(p) \leq W_{t+2}(p)$. ▶ Induction step:

$$\begin{split} W_t(p) &= c + \mathbb{E}[V_{t+1}(\phi(p,Y_t)) \mid p_t = p] \\ &\leqslant c + \mathbb{E}[V_{t+2}(\phi(p,Y_{t+1})) \mid p_{t+1} = p] = W_{t+1}(p) \end{split}$$

and

 $V_{t}(p) = \min\{W_{t}(p), L_{0}(p), L_{1}(p)\}$ $\leq \min\{W_{t+1}(p), L_{0}(p), L_{1}(p)\} = V_{t+1}(p)$

 $\label{eq:linear} \begin{array}{l} \mbox{Alternate proof} & \mbox{The set of strategies increases with horizon. Hence $V_t(p) \leqslant V_{t+1}(p)$. \\ & \mbox{Monotonicity of expectation implies $W_t(p) \leqslant W_{t+1}(p)$. \end{array}$

Qualitative properties of optimal control law

Definition Stopping set $S_t(h) = \{p \in [0, 1] : q_t(p) = h\}, h \in \{h_0, h_1\}.$

Theorem For all t and $h \in \{h_0, h_1\}$, the set $S_t(h)$ is convex.

Proof To show that $S_t(h_0)$ is convex, it suffices to show that: For any $p^{(0)}$, $p^{(1)} \in S_t(h_0)$ and $\lambda \in [0, 1]$, the information state $p^{(\lambda)} = (1 - \lambda)p^{(0)} + \lambda p^{(1)}$ is in $S_t(h_0)$. • Since $p^{(i)} \in S_t(h_0)$, i = 0, 1: $L_0(p^{(i)}) \leq \min\{L_1(p^{(i)}), W_t(p^{(i)})\}, i = 0, 1.$ $L_1(\cdot)$ Since $L_i(p)$ is linear in p, i = 0, 1: $(1-\lambda)L_{i}(p^{(0)}) + \lambda L_{i}(p^{(1)}) \leq L_{i}(p^{(\lambda)}), \quad i = 0, 1.$ $L_0(\cdot)$ Since $W_t(p)$ is concave in p: $\mathbf{p}^{(0)}$ $\mathbf{p}^{(\lambda)}$ $n^{(1)}$ $(1-\lambda)W_{t}(\mathfrak{p}^{(0)}) + \lambda W_{t}(\mathfrak{p}^{(1)}) \leq W_{t}(\mathfrak{p}^{(\lambda)})$ Combining the above three, we have $L_0(p^{(\lambda)}) \leq \min\{L_1(p^{(\lambda)}), W_t(p^{(\lambda)})\}$ Hence, $\mathbf{p}^{(\lambda)} \in \mathbf{S}_{t}(\mathbf{h}_{0})$. Consequently, $\mathbf{S}_{t}(\mathbf{h}_{0})$ is convex.

 $W_{\rm t}(\cdot)$

Optimal control law has a threshold property

Assumption (A1) $\ell(h_0, h_0) \leq c \leq \ell(h_0, h_1)$ and $\ell(h_1, h_1) \leq c \leq \ell(h_1, h_0)$.

Theorem Under (A1): $0 \in S_t(h_1)$ and $1 \in S_t(h_0)$

Proof $L_0(0) = \ell(h_0, h_1), L_1(0) = \ell(h_1, h_1), \text{ and } W_t(0) ≥ c$. Thus $L_1(0) ≤ \min\{L_0(0), W_t(0)\} \Longrightarrow 0 \in S_t(1).$

 $\label{eq:transform} \begin{array}{ll} \text{Definition} & \tau_t^1 = \max\{p \in [0,1]: g_t(p) = h_1\} \\ \\ \tau_t^0 = \min\{p \in [0,1]: g_t(p) = h_0\} \end{array}$

Threshold Under (A1), the optimal control law has the following form property $g_t(p) = \begin{cases} h_1, & \text{if } p \leqslant \tau_t^1 \\ C, & \text{if } \tau_t^1$

Optimality of sequential likelihood ratio test

Likelihood ratio $\pi_t(0)/\pi_t(1) = p_t/(1-p_t) = \lambda_t$

 $\begin{array}{ll} \mbox{Likelihood} & \mbox{Under (A1), the optimal control law has the following form} \\ \mbox{ratio test} & \\ g_t(\lambda) = \left\{ \begin{array}{ll} h_1, & \mbox{if } \lambda \leqslant \tau_t^1/(1-\tau_t^1) \\ C, & \mbox{if } \tau_t^1/(1-\tau_t^1) < \lambda < \tau_t^0/(1-\tau_t^0) \end{array} \right. \end{array} \right.$

$$g_t(\lambda) = \left\{ \begin{array}{ll} \mathsf{C}, & \text{if } \tau_t^1/(1 - \tau_t^1) < \lambda < \tau_t^0/(1 - \mathbf{h}_0), & \text{if } \tau_t^0/(1 - \tau_t^0) \leqslant \lambda \end{array} \right.$$

Proof of For
$$a, b \in [0, 1]$$
,
optimality
 $a \leq b \iff \frac{a}{1-a} \leq \frac{b}{1-b}$.

Decision thresholds are monotone in time

 $\begin{array}{ll} \mbox{Theorem} & \mbox{For all } t, \, \tau^1_t \leqslant \tau^1_{t+1} \mbox{ and } \tau^0_t \geqslant \tau^0_{t+1} \end{array}$

Infinite horizon setup

Model Assume $T \rightarrow \infty$ so that the continuation alternative is always available.

Theorem An optimal stopping rule exists, is time-invariant (stationary), and is given by the solution to the following fixed point equation $V(p) = \min\{L_0(p), L_1(p), W(p)\}$ where $W(p) = c + \int_{y} [pf_0(y) + (1-p)f_1(y)]V(\phi(p,y))dy$.

Proof Follows from standard results on non-negative dynamic programming.

Corollary The thresholds τ^1 and τ^0 are time-invariant.

Sequential hypothesis testing: Further Reading

- For more details on this problem, including an approximate method to determine the thresholds, read: Abraham Wald, "Sequential tests of statistical hypothesis", Annals of Mathematical Statistics, pp. 117-186, 1945. http://projecteuclid.org/euclid.aoms/1177731118
- The model described in these notes was first considered by: Arrow, Blackwell. and Girshick, "Bayes and Minimax Solutions of Sequential Decision Problems", Econometrica, pp. 213–244, Jul.–Oct., 1949. http://www.jstor.org/stable/1905525

