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Functional model for stochastic dynamical systems

Notation Xt ∈ 𝒳 : State of the system at time t
Yt ∈ 𝒴 : Observation of controller at time t
Ut ∈ 𝒰 : Control action taken by the controller at time t
Wt ∈ 𝒲: Noise in system dynamics at time t
Nt ∈ 𝒩 : Observation noise at time t

Assumptions The system runs in discrete-time until horizon T.
The primitive random variables {X1,W1:T, N1:T} are defined over a
common probability space (Ω, 𝔉, P).
The primitive variables {X1,W1:T, N1:T} are mutually independent with
known probability distribution.

System
dynamics

Xt+1 = ft(Xt, Ut,Wt)
The dynamic functions {ft}Tt=1 are known.

Observations Yt = ht(Xt, Nt)
The observation functions {ht}Tt=1 are known.
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The control strategy and its performance

Control design Ut = gt(Y1:t, U1:t−1)
The control strategy 𝐠 = {gt}Tt=1 is to be determined.
The controller has classical information structure (i.e., it remembers
everything that has been observed and done in the past).

Cost Per step-cost at time t ∈ {1, . . . , T − 1}: ct(Xt, Ut).
Terminal cost at time T: cT(XT).

Total expected
cost

J(𝐠) = 𝔼𝐠
[∑

T−1
t=1 ct(Xt, Ut) + cT(XT)]

Alternative
formulation:
Reward

maximization

In some applications, it is more natural to model per-step and terminal
reward functions rt(Xt, Ut) and rT(XT).
In such applications, the objective is to maximize the total expected
reward

J(𝐠) = 𝔼𝐠
[

T−1


t=1
rt(Xt, Ut) + rT(XT)]
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The problem of optimizing over time

Objective Given
The spaces (𝒳, 𝒴, 𝒰,𝒲,𝒩)
Horizon T
Probability distribution of {X1,W1:T, N1:T}
Dynamics functions {ft}Tt=1
Observation functions {ht}Tt=1
Cost functions {ct}Tt=1

Choose
Control strategy 𝐠 to minimize the total expected cost J(𝐠).
(Alternatively, to maximize the total expected reward).

Application
domains

Systems and Control
Communication
Power Systems
Artificial Intelligence

Operations Research
Financial Engineering
Natural Resource Management
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Perfect and imperfect observations at the controller

Perfect state
observation

Perfect state observation refers to the scenario when 𝒴 = 𝒳 and
ht(Xt, Nt) = Xt; thus, at each time the controller perfectly observes
the state. Such a model is also called Markov decision process (MDP).

Imperfect state
observation

Imperfect state observation refers to the general model described above
(when Yt ≠ Xt). Such a model is also called partially observed Markov
decision process (POMDP).

Solution
approach

First focus on problems with perfect state observation and identify
the structure of optimal controllers and a recursive algorithm, called
dynamic programming decomposition, to find an optimal strategy

Then show that an appropriate state expansion converts problems
with imperfect state observations to a problem with perfect state
observation. Thus, it is possible to reuse the results for models with
perfect state observation in models with imperfect state observation.
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Structure of optimal strageies

Theorem
(Structural
result)

A strategy 𝐠 = {gt}Tt=1 is called Markov if it only uses Xt at time t to pick
Ut i.e.,

Ut = gt(Xt)

Restricting attention to Markovian strategies is without any loss of
optimality.

Implication Let 𝒢H1:T denote the family of all history dependent strategies and 𝒢M1:T
denote the family of all Markov strategies. The above theorem asserts
that

min
𝐠∈𝒢M1 : T

J(𝐠) = min
𝐠∈𝒢H1 : T

J(𝐠)

Note that LHS ≤ RHS because 𝒢M1:T ⊂ GH1:T. The above theorem is
asserting equality.

This result reduces the solution space and thereby simplifies the
optimization problem.
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When is extra information irrelevant for optimal control?

Blackwell’s
principle of
irrelevant
information

Let 𝒳, 𝒴, 𝒰 be standard Borel spaces and X ∈ 𝒳 and Y ∈ 𝒴 be random
variables defined on a common probability space (Ω, 𝔉, P).

A decision maker observes (X, Y) and chooses U to minimize 𝔼[c(X,U)]
where c∶ 𝒳 × 𝒰 → ℝ is a measurable function.

Then, choosing 𝐔 just as a function of 𝐗 is without loss of optimality.

Formally, ∃g∗∶ 𝒳 → ℝ such that ∀g∶ 𝒳 × 𝒴 → ℝ

𝔼[c(X, g∗(X))] ≤ 𝔼[c(X, g(X, Y))]

Proof We prove the result for the case when 𝒳, 𝒴, 𝒰 are finite valued.
Define g∗(x) = argminu∈𝒰 c(x, u).
Then, ∀x ∈ 𝒳 and ∀u ∈ 𝒰: c(x, g∗(x)) ≤ c(x, u).
Hence, ∀g∶ 𝒳 × 𝒴 → 𝒰 and ∀y ∈ 𝒴: c(x, g∗(x)) ≤ c(x, g(x, y)).

The above point-wise inequality implies the inequality in expectation.
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How to identiy irrelevant information in dynamic setups?

Two-step
Lemma

Let T = 2. For any control strategy 𝐠 = (g1, g2) there exists a Markov
control law g∗2∶ 𝒳 → 𝒰 such that J(g1, g∗2) ≤ J(g1, g2).

Proof Define J1(g1) = 𝔼[c1(X1, U1)] and J2(g1, g2) = 𝔼[c2(X2, U2)].
Then J(g1, g2) = J1(g1) + J2(g1, g2)
J2(g1, g2) = 𝔼[c2(X2, g2(X2, X1, U1))]. By Blackwell’s principle of
irrelevant information, ∃g∗2∶ X2 ↦ U2 such that J2(g1, g∗2) ≤ J2(g1, g2).

Three-step
Lemma

Let T = 3. For any control strategy 𝐠 = (g1, g2, g3) such that g3
is Markov, there exists a Markov control law g∗2∶ 𝒳 → 𝒰 such that
J(g1, g∗2, g3) ≤ J(g1, g2, g3).

Proof Define Jt(g1:t) = 𝔼[ct(Xt, Ut)]. Then J(g1:3) = J1(g1)+J2(g1:2)+J3(g1:3).
Define c̃3(x, u; g3) = 𝔼[c3(X3, g3(X3)) | X2 = x,U2 = u].
Then, J3(g1:3) = 𝔼[𝔼[c3(X3, g3(X3)) | X2, U2]] = 𝔼[c̃3(X2, U2; g3)].
Define c̃2(x, u; g3) = c2(x, u) + c̃3(x, u; g3).
Then, J2(g1:2) + J3(g1:3) = 𝔼[c̃2(X2, g2(X2, X1, U1); g3)]. Use Blackwell’s
principle of irrelevant information, as in the two-step lemma.
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Backward induction proof of the structural result

To be written
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Dyanamic programming decomposition to find optimal
Markov strategy

Definition of
value functions

Define value functions {Vt}Tt=1, Vt∶ 𝒳 → ℝ recursively as follows:

VT(x) = cT(x), x ∈ 𝒳

and for t = T − 1, T − 2, . . . , 1:

Vt(x) = min
u∈𝒰(x)

𝔼[c(Xt, Ut) + Vt+1(Xt+1) | Xt = x,Ut = u]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=Qt(x,u)

, x ∈ 𝒳

Verification step A Markov strategy {g∗t }Tt=1 is optimal iff

g∗t(x) ∈ arg minu∈𝒰(x)
Qt(x, u), ∀x ∈ 𝒳 and ∀t ∈ {1, . . . , T}
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The comparison principle to prove dynamic programming

The cost-to-go
functions

For any strategy 𝐠, define the cost-to-go function at time t as

Jt(x; 𝐠) = 𝔼𝐠
[

T−1


s=t
cs(Xs, Us) + cT(XT)

|
Xt = x]

Note that

J(𝐠) = 𝔼[J1(X1; 𝐠)]

The comparison
principle

For any Markov strategy 𝐠

Jt(x; 𝐠) ≥ Vt(x)

with equality at t iff the future strategy gt:T satisfies the verification
step.

An immediate consequence of the comparison principle is that the
strategy obtained using the dynamic programming decomposition is
optimal.
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Proof of comparison principle

Proof Basis: JT(x) = VT(x). Thus, the comparison principle is true.
Induction hypothesis: Comparison principle is true for t + 1.
Induction step:

Jt(x; 𝐠) = 𝔼𝐠
[

T


s=t
cs(Xs, Us)

|
Xt = x]

= 𝔼𝐠
[
ct(x, gt(x) + 𝔼𝐠

[

T


s=t+1

cs(Xs, Us)
|
Xt+1] |

Xt = x]

= 𝔼𝐠 [ct(x, gt(x) + Jt+1(Xt+1; 𝐠) | Xt = x]

By the induction hypothesis

≥ 𝔼𝐠 [ct(x, gt(x) + Vt+1(Xt+1) | Xt = x,Ut = gt(x)]

≥ Vt(x)

with equality iff
first inequality: gt+1:T satisfies verification step (induction hypothesis)
second inequality: gt ∈ argminu∈𝒰(x)Qt(x, u).



MDP Theory: Probabilistic models
To be written
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Stochastic dominance

Notation 𝒳 = {1, . . . , n} and 𝒴 = {1, . . . ,m} are finite spaces.
Δ(𝒳) is the space of probability measures (PMFs) over 𝒳.

Definition
(Stochastic
dominance)

For any π, μ ∈ Δ(𝒳), π stochastically dominates μ (denoted by π ≥s μ)
if


i≥k
πi ≥

i≥k
μi, ∀k.

Equivalently, if X1 ∼ π and X2 ∼ μ, then π ≥s μ iff

ℙ(X1 ≥ x) ≥ ℙ(X2 ≥ x), ∀x ∈ 𝒳.

Example
[ 0

1
4

1
4

1
2 ] ≥s [

1
4 0 1

4
1
2 ] ≥s [

1
4

1
4

1
4

1
4 ]
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Stochastic dominance preserves monotonicity

Lemma
(Stochastic

dominance and
monotonicity)

Let {vi}ni=1 be an increasing sequence and π ≥s μ. Then,
n


i=1
πivi ≥

n


i=1
μivi

Equivalently, if X1 ∼ π, X2 ∼ μ, and f : 𝒳 → ℝ is an increasing function,
then π ≥s μ implies

𝔼[f(X1)] ≥ 𝔼[f(X2)]

Proof To be written. See Hardy, Polya, and Littlewood.
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Stochastic monotone Markov chains

Definition Let {Xt}∞t=1 be a time-homogeneous Markov chain with transition matrix
P. The Markov chain is stochastically monotone if

Pi ≥s Pj, ∀i > j

where Pi denotes the row-i of P.

Implication If {Xt}∞t=1 is stochastically monotone and f : 𝒳 → ℝ is an increasing
function, then

𝔼[f(Xt+1) | Xt = x1] ≥ 𝔼[f(Xt+1) | Xt = x2], ∀x1 > x2.
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Monotone likelihood ratio (MLR) ordering

Definition
(Monotone
likelihood
ordering)

For any π, μ ∈ Δ(𝒳), π dominates μ in monotone likelihood ratio
(denoted by π ≥r μ) if

πiμj ≥ μiπj, ∀i > j; if μi, μj > 0, then
πi
μi
≥
πj
μj

Examples
[
1
8

1
8

1
4

1
2 ] ≥r [

1
4

1
4

1
4

1
4 ].

[ 0
1
4

1
4

1
2 ] ≱r [

1
4 0 1

4
1
2 ].
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Monotone likelihood ratio implies stochastic dominance

Proposition For any π, μ ∈ Δ(𝒳),

π ≥r μ⟹ π ≥s μ

Proof Exercise
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⎡⎢⎢⎢

⎣

4 3 2 1
5 4 3 2
6 5 4 3
7 6 5 4

⎤⎥⎥⎥

⎦

is TP2.

Total positivity of order 2 (TP2) and preserving MLR

Definition
(Totally positive

of order 2)

Recall for any matrix 𝐀 and any index sets I and J
𝐀I,J denotes the submatrix corresponding to the row set I and the
column set J;
The (I, J) minor of 𝐀 is det𝐀I,J.

A n × m matrix is totally positive of order 2 (TP2) if all its 2 × 2
submatrices have non-negative determinant.

Proposition If Q is a row stochastic matrix that is TP2, and π, μ ∈ Δ(𝒳) then
Qi ≥r Qj for i > j. Consequently, Qi ≥s Qj.
π ≥r μ⟹ πQ ≥r μQ

Proof Let i > j and k > ℓ. Since Q is TP2, the minor consisting of rows i, j
and columns k, ℓ, i > j is non-negative. Thus,

|
Qjℓ Qjk
Qiℓ Qik |

≥ 0⟹QikQjℓ ≥ QjkQiℓ ⟹Qi ≥r Qj

See Proposition on next page.
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TP2 ordering of functions and matrices

Definition
(TP2 ordering)

A function f ≥tp g if ∀x1, x2, y1, y2
f(x1 ∨ x2, y1 ∨ y2)g(x1 ∧ x2, y1 ∧ y2) ≥ f(x1, y1)g(x2, y2),

Note that a ∨ b = max(a, b) and a ∧ b = min(a, b).

This definition extends to matrices in a natural manner.
A matrix Q is TP2 if Q ≥tp Q.

Proposition If P1 and P2 are row stochastic matrices such that P1 ≥tp P2, then

π ≥r μ⟹ πP1 ≥r μP2

In particular,

πP1 ≥r πP2, ∀π

Proof See Theorem 2.4 of Samuel Karlin and Yosef Rinott, “Classes of orderings
of measures and related correlation inequalities. I. Multivariate totally
positive distributions,” Journal of Multivariate Analysis, vol 10, no 4
Pages 467-498, Dec 1980. http://dx.doi.org/10.1016/0047-259X
(80)90065-2
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