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MDP Theory: Functional models



"Functional model for stochastic dynamical systems B

Notation X; € X : State of the system at time t
Y €Y : Observation of controller at time t
Ui € U : Control action taken by the controller at time t
W, € W: Noise in system dynamics at time t
N; € N : Observation noise at time t

Assumptions » The system runs in discrete-time until horizon T.
» The primitive random variables {X;, W;.1,N;.1} are defined over a
common prabability space (Q, §, P).
» The primitive variables {X;, Wi.t, N.1} are mutually independent with
known probability distribution.

System  » X1 = fi (X, Ue, Wi)
dynamics » The dynamic functions {f;}{_; are known.

Observations » Yy = hy(X¢, Ny)
» The observation functions {h.}{_; are known.

»
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"The control strategy and its performance B

Control design

Cost

Total expected
cost

Alternative
formulation:
Reward
maximization

» U = ge(Yit, e 1)

» The control strategy g = {g¢}{_; is to be determined.

» The controller has classical information structure (i.e., it remembers
everything that has been observed and done in the past).

» Per step-cost at time t € {1,..., T— 1} c¢(X¢, Uy).
» Terminal cost at time T: c(X7).

»J(g) = ES | X1} ce(Xe, Uy) + cr(Xy)

» In some applications, it is more natural to model per-step and terminal
reward functions 1y (X¢, U¢) and r(X7).

» In such applications, the objective is to maximize the total expected
reward

T

1

J(g) = E9 { re (X, Us) + 1(X7)
1

,..
Il
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"The problem of optimizing over time o

Objective

Application
domains

Given

» The spaces (X, Y, U, W,N)

» Horizon T

» Probability distribution of {Xy, Wi.1, N1.1}

» Dynamics functions {f;}{_,

» Observation functions {h¢}]_,

» Cost functions {c}]_,

Choose

» Control strategy g to minimize the total expected cost J(g).
(Alternatively, to maximize the total expected reward).

» Systems and Control » Operations Research
» Communication » Financial Engineering
» Power Systems » Natural Resource Management

» Artificial Intelligence

>
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Perfect and imperfect observations at the controller B

Perfect state Perfect state observation refers to the scenario when Y = X and
observation h¢(Xi, N{) = Xi; thus, at each time the controller perfectly observes
the state. Such a model is also called Markov decision process (MDP).

Imperfect state Imperfect state observation refers to the general model described above
observation (when Y; # X;). Such a model is also called partially observed Markov
decision process (POMDP).

Solution First focus on problems with perfect state observation and identify
approach the structure of optimal controllers and a recursive algorithm, called
dynamic programming decomposition, to find an optimal strategy

Then show that an appropriate state expansion converts problems
with imperfect state observations to a problem with perfect state
observation. Thus, it is possible to reuse the results for models with
perfect state observation in models with imperfect state observation.
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MDP Theory: Perfect state observation



Structure of optimal strageies B

Theorem
(Structural
result)

Implication

A strategy g = {g:}{_, is called Markov if it only uses X; at time t to pick
U i.e.,

Uy = gt(Xt)

Restricting attention to Markovian strategies is without any loss of
optimality.

Let G}, denote the family of all history dependent strategies and G\
denote the family of all Markov strategies. The above theorem asserts
that

min J(g) = min J(g)
95 ¢ 9€5 ¢

Note that LHS < RHS because §}; C G} The above theorem is
asserting equality.

This result reduces the solution space and thereby simplifies the
optimization problem.
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"When is extra information irrelevant for optimal control?

Blackwell’s
principle of

irrelevant
information

Proof

Let X, Y, U be standard Borel spaces and X € X and Y € Y be random
variables defined on a common probability space (Q, §, P).

A decision maker observes (X, Y) and chooses U to minimize E[c(X, U)]
where c: X x U — R is a measurable function.

Then, choosing U just as a function of X is without loss of optimality.

Formally, 3g*: X — R such that Vg: X x Y — R
Ele(X, g*(X))] < Ele(X, g(X,Y))]

We prove the result for the case when X, Y, U are fnite valued.

» Define g*(x) = arg mingey c(x, u).

» Then, Vx € X and Vu € U: ¢(x, g*(x)) < c(x,u).

» Hence, Vg: X x Y — U and Yy € Y: c(x, g*(x)) < c(x,g(x,y)).

The above point-wise inequality implies the inequality in expectation.

»
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"How to identiy irrelevant information in dynamic setupsﬂ

Two-step
Lemma

Proof

Three-step
Lemma

Proof

Let T = 2. For any control strategy g = (g1, g2) there exists a Markov
control law g3: X — U such that J(g1, g5) < J(g1, 92).

» Define J1(g1) = Elci (X, Wy)] and J2(g1, g2) = Elea(Xz, Uy)].

» Then J(g1,92) = J1(g1) + J2(g1, 92)
» J2(g1,92) = Elca(Xz,92(X2, X5, Uy))]. By Blackwell's principle of

irrelevant information, 3g%: X, — U, such that J»(g1,93) < J2(91,92).

Let T = 3. For any control strategy g = (g1,92,93) such that g;
is Markov, there exists a Markov control law g3:X — U such that

J(g1, 95, 93) < J(g1,92,93).

» Define Ji(g1t) = Elci(Xt, Up)l. Then J(g13) = Ji(g1) +J2(g12) +J3(g13).

» Define ¢3(x,1;93) = Elc3(X3,93(X3)) | X2 = x, Uy = ul.

» Then, J3(g13) = E[Elc3(X3, g3(X3)) | Xz, Wal] = E[¢3(Xz, Uz; g3)].

» Define ¢;(x,1;93) = ca(x, 1) + C3(x, u; g3).

> Then, ]2(91;2) = ]3(9];3) = E[éz(Xz, gz(Xz,X1,U1); 93)]. Use Blackwell’s
principle of irrelevant information, as in the two-step lemma.
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"Backward induction proof of the structural result B

To be written

w
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rDyanamic programming decomposition to find optimaﬂ
Markov strategy

Definition of Define value functions {Vi}/_;, V;: X — R recursively as follows:
value functions Vilx) = er(x), x€X
andfort=T—-1,T—2,...,1:
Vi(x) = min Elc(X¢, Uy) + Vg (Xe) | Xe =x, Uy = LJL], x€X

uel(x)

=Q¢(xu)

Verification step A Markov strategy {gi}{_; is optimal iff

gi(x) € arg min Q¢(x,u), Vx € Xand Vt € {1,..., T}
uel(x)

Ye
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"The comparison principle to prove dynamic programmingj

The cost-to-go For any strategy g, define the cost-to-go function at time t as

functions T-1
Ji(x; g) = E9 [Z cs(Xs, Us) + er(Xr)

s=t

Xt ZX:|

Note that
J(g) = E[J1(X1;9)]

The comparison For any Markov strategy g
principle — J,(x;9) > Vi(x)

with equality at t iff the future strategy gt satisfes the verification
step.

An immediate consequence of the comparison principle is that the
strategy obtained using the dynamic programming decomposition is
optimal.

[}
\ MDP—Perfect state observation (Aditya Mahajan) ° 05-: ‘



"Proof of comparison principle B

Proof » Basis: Jt(x) = Vy(x). Thus, the comparison principle is true.
» Induction hypothesis: Comparison principle is true for t + 1.
» Induction step:
= X:|

T
=EY {ct(x, gi(x) + E* [ Z cs (X, Ug)

s=t+1

=EY [ct(x, ge(x) + Jer1 (Xe15.9) ‘ Xi = X}

.
{ch Xs, Us)

s=t

Xt+1} | Xy = X}

By the induction hypothesis
> B9 [ce(x, g(x) + Virr (Xesr) | Xe =%, Uy = ge(x)]
> Vi(x)

with equality iff
» Arstinequality: gi.1.7 satisfes verification step (induction hypothesis)
» second inequality: g¢ € arg minyeyx) Qt(x,u).
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MDP Theory: Probabilistic models

To be written



Stochastic orders



Stochastic dominance

Notation » X ={1,...,n}and Y ={1,..., m} are fnite spaces.
» A(X) is the space of probability measures (PMFs) over X.

Definition
(Stochastic
dominance)

Example

For any 7, 1 € A(X), 7t stochastically dominates p (denoted by T > )

if

D mz )y w, vk

i>k i>k

Equivalently, if X; ~ 7t and X; ~ u, then w > piff
P(X; >x) > P(X; >x), WxelX.
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'Stochastic dominance preserves monotonicity B

Llemma Let {vi}l, be an increasing sequence and 7t >, u. Then,
(Stochastic n n
dominance and ;m"i = Z] Hivi
o e 1= 1=
monotonicity)
Equivalently, if Xy ~ 7, X; ~ w, and f : X — R is an increasing function,
then 7t > 1 implies

E[f(X3)] = E[f(X3)]

Proof To be written. See Hardy, Polya, and Littlewood.

»
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Stochastic monotone Markov chains I

Definition Let{X:}>°, be a time-homogeneous Markov chain with transition matrix
P. The Markov chain is stochastically monotone if

P; >, P]', V1>]

where P; denotes the row-i of P.

Implication 1F {X;}%, is stochastically monotone and f : X — R is an increasing
function, then

Elf(Xer1) | Xe =x1] = E[f(Xe1) | Xe = %21, Vx> x,.

[}
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"Monotone likelihood ratio (MLR) ordering B

Definition For any m,u € A(X), m dominates w in monotone likelihood ratio
(Monotone (denoted by 7t >, u) if

- - -
JLGllneee Ty >, Vi>j§ ifpg,py >0, then — > =
ordering) M W
1 1 1 1 1 1 1 1
FETCE ’[g 5 1 z} Ef[z 7 q z}-
1 1 1 1 1 1
> [0 7 q z] Zr [z 0 g z}-

w
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"Monotone likelihood ratio implies stochastic dominance I

Proposition For any 7, u € A(X),

M2y L= T 25 U

Proof Exercise

L}
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Total positivity of order 2 (TP,) and preserving MLR o

Definition Recall for any matrix A and any index sets I and ]
(Totally positive » Apj denotes the submatrix corresponding to the row set I and the
of order 2)  column set J;
» The (I,]) minor of A is det Ay

g s~ W N

]isTPz- A n x m matrix is totally positive of order 2 (TP5) if all its 2 x 2
submatrices have non-negative determinant.

o G A~ W
AW N =

[ —
N oy G B~

Proposition If Q is a row stochastic matrix that is TP,, and 7, u € A(X) then
» Qi >, Q; for i > j. Consequently, Q; > Qj.
> T2 PL:>7TQ 2y PLQ

Proof » Leti > jandk > £ Since Q is TP,, the minor consisting of rows i, j
and columns k, ¢, i > j is non-negative. Thus,

Qe Qjx
Qi Qi

» See Proposition on next page.

> 0= QuQjt = QjxQit = Qi =+ Q;

[}
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sz ordering of functions and matrices a

Definition A function f >y, g if Vx1,%2,Y1,Y2

(TP, ordering) f(x1 V x2,y1 Vy2)g(x1 Ax2,y1 Aya) = f(x1,91)9(x2,Y2),

Note that a Vb = max(a,b) and a Ab = min(a,b).

» This defnition extends to matrices in a natural manner.
» A matrix Q is TP if Q >, Q.

Proposition If Py and P, are row stochastic matrices such that P; >y, P, then
T2, u=— 7TP1 Zr HPZ

In particular,

nPy =, P2, Vm

Proof See Theorem 24 of Samuel Karlin and Yosef Rinott, “Classes of orderings
of measures and related correlation inequalities. |. Multivariate totally
positive distributions,” Journal of Multivariate Analysis, vol 10, no 4
Pages 467-498, Dec 1980. http://dx.doi.org/10.1016/0047-259X
(80)90065-2
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