
Soccer-Swarm: A Visualization Framework for the Development of

Robot Soccer Players

Lorin Hochstein, Sorin Lerner, James J. Clark, and Jeremy Cooperstock

Centre for Intelligent Machines
Department of Computer Engineering

McGill University
Montreal, Quebec, Canada H3A2A7

ABSTRACT
This paper proposes a framework for the rapid
development of high-level, domain-independent AI
strategies targeted at the RoboCup competition. This
framework, developed within the Swarm simulation
system, provides a layer of abstraction that allows
strategies to be easily ported from one domain to another.
Additionally, the framework provides a powerful and
extendable visualization tool that should significantly
decrease development and debugging time of high-level
strategies.

KEYWORDS
Robocup, Artificial Intelligence, Visualization, Swarm

INTRODUCTION

The RoboCup competition [1] presents Artificial
Intelligence researchers with the challenge of developing
soccer-playing agents who must co-operate to achieve a
goal while immersed in a noisy environment. The
development of such agents can be a difficult and time-
consuming task, since high-level strategies depend on the
correct operation of basic tasks such as passing and
dribbling, which in turn depend on the agent having an
accurate model of the world. These agents can also be
notoriously difficult to debug, since it is difficult to
determine what exactly is going wrong when agents do
not behave as expected.

This paper presents an agent development and
visualization framework which aims to simplify the
design and debugging of soccer agents. The framework
provides graphical visualization tools, which can simplify
the task of developing and debugging strategies. These
tools give the developer a better picture of how the agent
is behaving, as well as motivate the development of
novel, graphical-based strategies. Additionally, the
framework provides a layer of abstraction that separates
the task of high-level strategy design from the domain-

dependent aspects. This layer of abstraction should allow
high-level strategies to be ported easily from one domain
to another, so that a strategy that works for agents
interacting in a simulation can be made to work just as
well for agents implemented as robots.

BACKGROUND

RoboCup is an initiative that proposes that, like the
playing of chess, the playing of Soccer can serve as a
standard AI problem. As Kitano et. al. [1] suggest, the
design of autonomous agents that play soccer presents
many challenges. Among these are handling the dynamic
and unpredictable nature of the environment and dealing
with incomplete information about the world. The design
of effective cooperative or collaborative behaviors in
multi-agent systems is one of the most important
challenges that researchers face [2].

To encourage the design of soccer agents, a yearly
tournament is held, where teams of autonomous soccer
playing agents compete against each other. There are
several leagues in the competition, mainly divided onto
two categories: the real robot league, where agents are
real robots, and the simulation league, where agents are
software programs playing in a simulated environment.

Although our framework targets both of these leagues,
it has to date only been applied to the simulation league.
The architecture of the simulation league is very simple.
A server, called the soccer server, simulates the motion of
the ball and of the players on the field. Each player
communicates with the server through UDP sockets: the
server sends visual and auditory percepts to the agent,
while the agent sends actions back to the server,
indicating what it wishes to do.

PURPOSE OF THE FRAMEWORK

Among the challenges presented by the game of soccer,
we have concentrated on two: evaluating the behavior of
individual agents within the structure of an emergent team
strategy, and designing agents that can function in both
the simulated league, and the real robot league.

Evaluating agent behaviors in a team structure
Soccer is a dynamic multi-agent problem, and as such is
difficult to observe. Indeed, watching twenty-two agents
play in real-time provides at best a global understanding
of the game. In addition, because this global view does
not indicate what each player is thinking, it is very
difficult to evaluate why a certain co-operative strategy
succeeds or fails.

One common solution to this problem is to remove the
real-time component when observing the game. Thus, one
can make a log of each agent's thinking process, and then
examine these log files once the game is over. Apart from
losing the real-time component of soccer, this approach
has a far greater limitation: it tries to evaluate team
behavior by looking at individual players, without
considering what teammates or opponents are doing. In
other words, by focusing on each player, the global
picture of the field has faded away.

The idea then is to try to get the best of both worlds:
see what each individual player is thinking, but at the
same time get a global view of the soccer field. This can
be achieved by overlapping the graphical display of
agent-specific information with the display of the game
while it is being played. For example, the player having
the ball might display where it intends to dribble the ball,
and to which player it will then pass.

Such graphical methods will help evaluate how
individual behaviors fit into the global team strategy, and
thus can be used to explain how and why certain team
strategies work. In fact, exactly as graphs are used today
to backup scientific claims, we hope that our "real-time
soccer graphs" will backup claims about co-operative
behaviors.

Designing multi-platform agents
The other challenge that we chose to tackle is the
integration of robotics with high-level AI. Ideally, a high-
level AI strategy should be developed once and then
deployed in different environments without massive
restructuring. In order to achieve this, the high level AI
strategy, which is independent of the environment in
which it is deployed, will be isolated from the low-level
interaction with the environment. This will allow high
level AI strategies to be transplanted seamlessly from a
software agent to a real robot (or vice-versa) or from one
real robot to another.

THE DEVELOPMENT FRAMEWORK

The Swarm Simulation System
Our development framework is based on the Swarm
Simulation System [3]. Swarm is a collection of software
libraries for simulating multi-agent systems. It includes a
discrete event simulator that provides a set of graphical
widgets for visualization. Swarm was developed by the
Santa Fe Institute to provide a standardized set of tools
for complex-systems researchers, with the aim of sparing
developers from the effort of developing their own
discrete event simulators, as well as providing a standard
framework which would allow a fair evaluation of results.

Swarm forces the programmer to organize agents into
hierarchical collections called model swarms, and
provides graphical displays to the user through objects
called observer swarms. Every Swarm program requires a
model swarm; for graphical feedback an observer swarm
is also required.

Model swarms. A model swarm consists of at least two
items, a collection of agents, and a schedule. Model
swarms are recursive, so the agents can themselves be
model swarms. The schedule defines the order in which
agents act.

Observer swarms. An observer swarm provides graphical
feedback to the user by probing the model swarm and
displaying relevant information in a format that is
meaningful for the user. Swarm provides a simple but
powerful collection of GUI tools that allow the
programmer to develop images such as graphs,
histograms, and polygon-based images with a much
simpler interface than the underlying Tcl/Tk widgets.

Soccer-Swarm Model Swarm
The model swarm contains all the objects that are
modeled in the simulation, namely the players and the
soccer field. The interaction between these objects is
governed by a schedule, which in our case is a simple
round robin schedule: at each simulation step, control is
given in turn to every player, and finally to the soccer
field. The model swarm for our soccer agent visualization
is depicted in figure 1.

When the soccer field gets its turn to act, it will do
whatever is necessary to advance the simulation of the
environment. In Figure 1, the soccer field is drawn in
dashed lines, which indicates that it is not implemented
by the framework itself, but rather by the developers who
will apply the framework to a particular environment.
Thus, the soccer field can be implemented in any way that
is appropriate for the domain at hand. One possibility is
to directly program the soccer field as a simulation.
Another possibility is to have the soccer field relay
information from some other source, for example the
soccer server in the simulation league, or even the real
world. The case where the soccer field gets information

from the real world is in fact very interesting, since it
allows our framework to control a robot in real-time.

When a player gets its turn to act, it will have the
opportunity to interact with the soccer field through a
generic interface that can be adapted for each specific
domain. The player can retrieve percepts from the soccer
field, and send actions back. Although similar to the
interaction between the soccer server and the client in the
simulation league, the interface between objects in the
Model Swarm is much more general, since the
information passed need not be specific to the simulation
league. For example, the percepts can range from sonar
data to video data, while the actions can include
commands to robotic arms.

The design of the player itself is split in two
components, both of which are drawn in figure 1 with
dashed lines, which again means that these components
will be implemented when the framework is applied. The
two components in the player are the Field Abstraction
Layer (FAL), which is domain dependent, and the
Deliberation Layer (DL), which is domain independent.

Field Abstraction Layer (FAL). The FAL is an
abstraction layer whose purpose is to isolate the high-
level AI from the low-level details of environment
interaction. To achieve this abstraction, the FAL has two
tasks. First, it uses the information gathered from the
soccer field in order to provide domain-independent
world-modeling services to the DL. The information
given to the DL consists of positions, velocities and
certainty values for the objects on the field. Second, the
FAL implements a set of domain-independent low-level
skills that the DL can choose from. These low-level skills
usually require more than one action in order to be
completed. For example, dribbling to a position on the
field might require a sequence of alternating small "kicks"
and small "run" commands.

Deliberation Layer (DL). The DL, which represents the
high-level AI strategy of the player, uses the FAL's world
modeling services in order to decide which one of the
low-level skills it wishes to activate. In addition to
choosing a new skill, the DL also has the option of letting
the currently chosen skill run to completion.

Interaction between the DL and the FAL. Each time the
player gets a chance to act, the FAL takes over and
arbitrates between the soccer field and the DL. First, the
FAL updates the player's worldview with any new
percepts from the soccer field. Then, if the FAL considers
that enough new information has arrived for deliberation
to be justified, it gives control to the DL, which chooses a
new skill, or lets the current one continue. Finally, after
the deliberation is done, the FAL sends to the soccer field
the best action for the currently selected skill.

The Soccer-Swarm Observer Swarm
In the Swarm simulation system, the Observer Swarm
object provides the developer with the graphical tools to
visualize the strategies that are being developed. An
observer swarm has two basic tasks: collect data from the
model swarm and display at it to the screen. Data
collection is achieved through a set of objects called Data
Collection and Gathering (DCG) objects, and the data is
displayed onto a raster window, which is represented as a
Soccer Field Raster (SFR) object.

DCG objects. The DCG objects extract data from the
soccer agents or from the soccer field, and use this data to
draw images on the Soccer Field Raster. The framework
provides DCG objects as the building blocks to build
customized views. As an example, the framework
provides two fully implemented DCG’s. One such DCG
extracts exact positional information from the Soccer
Field object, and draws a graphical representation of the
ball and the players on the raster. Another DCG extracts
information regarding an agent’s perceived location of
objects on the field, as well as corresponding certainty
values. The less confident a player is on the position of an
object, the darker the object appears. If a developer
decides to use both these DCG’s, then the raster will
show a superposition of the perceived object location
(from a given agent’s perspective) and exact object
location. Developers should design their own DCG’s to
display graphical information, which corresponds to the
high-level strategy algorithms they are implementing.
Figure nnn shows an example of a DCG that draws a
vector force field, where opponent players (on the right
side of the field) act as point charges.

Soccer Field Raster. The SFR object is a graphical
widget derived from one of the Swarm rasters, which
serves as a graphical representation of the field. Multiple
DCG’s may draw on the SFR, which allows the developer
to build a view by mixing and matching DCG’s. The SFR
also supports event handling in the form of mouse clicks,
so the developer can allow the user to change the nature
of the graphical feedback. For example, clicking on an
agent will cause the SFR to show the state of the field
from the perspective of the selected agent.

VALIDATION OF THE FRAMEWORK

The framework’s effectiveness was evaluated by
implementing a high-level strategy, which would be well
suited to a graphical approach. For evaluation purposes
the RoboCup Simulation league was used as the target
domain.

Domain-specific issues
Before a strategy can be evaluated, the domain-specific
components must be implemented. A complete system

requires that a Soccer Field object and a FAL be
implemented corresponding to the domain in question.

Soccer Field object. To have the agents interact in the
simulation league requires that the program communicate
with the RoboCup soccer server. The Soccer Field object
handles all communications with the soccer server,
serving as the interface between Swarm-modeled players
and the server. The Soccer Field object enables the
developer to view the exact position of objects on the
field by retrieving this information from the soccer server.
Furthermore, communication with the soccer server
enables Swarm-modeled agents to interact with soccer
agents that are implemented entirely outside of the
framework provided these external agents can
communicate with the soccer server.

FAL object. To evaluate the strategy, only a simplified
version of a FAL was implemented.

Planning a Sequence of Passes
The main validation of our framework was done by
evaluating the performance of a planning algorithm. In
order to simplify the planning problem, we have only
considered one possible actions, namely passing. Since
all other actions, such as dribbling or running, have been
ignored, a plan for our purposes becomes a simple
sequence of passes. Adding other actions into the planing
problem is left as future work.

The problem we are looking at is to find the best plan,
or pass sequence, to execute. Traditional planning doesn't
seem particularly suited for this problem, since traditional
planning solves a satisfiability problem, whereas we are
looking at an optimization problem. Thus, we will do
planning by optimization.

To start, we define a goodness function that assigns a
numerical value to a given sequence of passes. The higher
the goodness value, the better the pass sequence is. The
goodness function should obviously depend on the
probability that the pass sequence succeeds, which in turn
depends on the success probability, pI,, of each individual
pass in the sequence. In addition, the goodness function
should also depend on some factors that indicate how
advantageous the play will be if it actually succeeds.
Thus, the goodness function can be expressed as

where s is a given pass sequence, a(s) indicates how
advantageous the play would be if successful, and p(s) is
given by

 In our implementation, the success probabilities pi are
computed using an algorithm, but they can also be learnt
by a neural network, in a manner similar to that employed
by [6]. The function a(s) was chosen to return how much
closer the ball is to the opponent's goal after the pass
sequence is completed. Thus

Once the goodness function is defined, we simply
search for all pass sequences of length n or less, and find
the one with the best goodness value. Although this
method runs in exponential time with respect to n, it is
tractable for several reasons. First, we limit the depth of
the search to a reasonably small number, say n = 3.
Second, passes are considered only if their probability is
above a certain threshold. This prunes out the search
considerably, as it will not consider very unlikely or even
impossible passes, such as a pass from one end of the
field to the other. (In our case, the threshold was 0, but
we made the algorithm assign probabilities of 0 to very
unlikely passes). Finally, we do not consider players that
are already part of the pass sequence, which in essence
means that we don't allow loops in the sequence. This
constraint will be loosened once other actions, such as
running and dribbling, are considered. Indeed, a player
might pass to another, who will then pass back to the first,
but at a different location.

Finally, once a player has decided on the best pass
sequence, it will execute the first pass in the sequence.
The next player will re-evaluate the best pass sequence,
and again choose the first pass in this sequence. Thus,
there is no explicit communication between the agents.
However, our hypothesis is that if the world doesn't
change much, the next player in the sequence will choose
a pass sequence that is a continuation of the first. On the
other hand, if the world does change considerably during
the execution of the first pass, the next player will re-plan
anyway.

To test our hypothesis, we used real-time soccer graphs
to visualize the intentions of the players. Thus, we
implemented a DCG which displays the pass sequence
that a given player considers to be the best. The pass
sequence is shown on the Soccer Field Raster by drawing
lines between the locations of the players in the pass
sequence. Figure 3 shows such an example, where the
probed player is the bottom one. Although the current
DCG changes the probed player only in response to
mouse clicks, a more general approach would be for the
DCG to decide itself which player to look at. For
instance, the DCG might choose to probe the player that
is closest to the ball.

By having the capability of switching between players,
we were able to evaluate how our pass sequence selection
created stable plans. For example, in figure 3 the pass
sequence shown is that of the bottommost player. When
the second player in the pass sequence is selected by the
DCG, as shown in figure 4, we see that the new pass
sequence is indeed a continuation of the first. Thus, we
are able to see an emerging team plan from the behavior
of individual agents.

)()()(saspsg =

firstlast xxsa −=)(

∏= ip p(s)

RELATED WORK

Our split of the player into two parts has some similarities
with the Reactive Deliberation architecture proposed by
Sahota [4,5]. Indeed, the Reactive Deliberation
architecture also splits the player in two: the executor,
which implements a number of parameterized skills called
action schemas, and the deliberator, which chooses from
one of these action schemas. However, Sahota's main
motivation for the split was to combine two approaches
that run in different time scales: deliberation, which is
computationally expensive, and reactive behavior, which
requires constant interaction with the environment. Thus,
to solve the gap in time scale, the executor continually
interacts with the environment in order to provide highly
reactive behavior, whereas the deliberator, running in
parallel, can indulge in heavier computations. Our
motivation, on the other hand, was to separate the domain
dependent part of the player from the domain
independent. Because of this, we have not yet
concentrated on bridging the time gap that Sahota looks
at, so that the current framework does not support running
the DL and the FAL in parallel. However, this area is a
possibility for future work, and might lead to a framework
even more similar to the Reactive Deliberation
architecture.

CONCLUSION

We have developed a visualization framework for the
development of soccer robot behaviours. The advantages
of our Soccer-Swarm framework are the following:

• A graphical interface to player design which provides
the developer with a view of the behavior of
individual agents as well as a global view of the
system, reducing development time and motivating
novel strategies.

• The ability to port high-level strategy from one domain
to another.

A planning strategy has been developed to evaluate the
practically of the framework. This strategy, which relies
heavily on graphical feedback to the user to demonstrate
its effectiveness, demonstrates the usefulness of being
able to probe the minds of the agents.

FUTURE WORK

Improvements on the framework
There are several improvements on the framework that
can be the source of future work. One of these has already
been mentioned, namely allowing the DL and the FAL to
run in parallel. Another improvement would be to add
support for communication between agents, something

currently not in the framework. The simulation league of
RoboCup allows agents to communicate, and real robots
also have methods of communicating. Thus, our
framework should support some sort of abstract
communication paradigm, which would be applicable to
both the simulation league and to real robots.

Improvement on the planning of pass sequences
Adding other actions to the planning algorithm would
allow for more elaborate plans to be created. We believe
this avenue might lead to some very interesting results,
although there are difficulties to overcome. The first
problem is how to formulate actions such as dribbling and
running. For passing, there are only a finite number of
teammates that one can pass to, but for running or
dribbling, there are infinitely many destinations.
Discretizing the field into sections makes the number of
destinations finite, but still too big for the search to be
tractable. One solution to this problem might be to
specify the actions of dribbling or running qualitatively
instead of quantitatively. For instance, one might replace
"run to a certain position on the field" with "run to a
position so that you can receive a pass from this player".

ACKNOWLEDGEMENTS

We would like to thank Pascal Poupart for his helpful
insight on methods for doing planning with optimization.
This research was supported by a research grant from the
IRIS National Centre of Excellence.

REFERENCES

[1] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E.
Osawa, “RoboCup: The Robot World Cup Initiative”. In
Proceedings of the First International Conference on
Autonomous Agents, 1997, 340-357.

[2] H. Matsubara, I. Noda, and K. Hiraki, “Learning of
cooperative actions in multi-agent systems: a case study
of pass play in soccer”. In Adaptation, Coevolution and
Learning in Multiagent Systems: Papers from the 1996
AAAI Spring Symposium, pages 63-67, Menlo Park,CA,
March 1996. AAAI Press. AAAI Technical Report SS-
96-01.

[3] N. Minar, R. Burkhart, C. Langton, and M. Askenazi,
“The Swarm Simulation System: A Toolkit for Building
Multi-Agent Simulations”, Technical Report, Santa Fe
Institute, Santa Fe, New Mexico, 1996

[4] M.K. Sahota, “Reactive Deliberation: An Architecture
for Real-time Intelligent Control in Dynamic
Environments”. In Proceedings of the Twelfth National
Conference on Artificial Intelligence, 1303-1308. Seattle,
1996.

[5] M.K. Sahota, A.K. Mackworth, R.A. Barman, and S.J.
Kingdon, “Real-time control of soccer-playing robots
using off-board vision: the dynamite testbed”. In IEEE
International Conference on Systems, Man, and
Cybernetics, 1995 pp 3690-3663.

[6] P. Stone, M.M. Veloso, and S. Achim, “Collaboration
and learning in robotic soccer”. In Proceedings of the
Micro-Robot World Cup Soccer Tournament, Taejon,
Korea, November 1996. IEEE Robotics and Automation
Society.

Soccer Field
(Domain

dependent)

... 22 players in total ...

Player

Strict Interface

Player

DL

FAL

Deliberation Layer
(domain independent)

Field Abstraction Layer
(domain dependent)

Figure 1. The Model Swarm Architecture

Figure 2. A Vector-field Data Collection
and Gathering Object (DCG). Shown are
the gradient vectors corresponding to an
electrostatic force field arising from
considering each player as having an
electric charge.

Figure 3. Pass planning. Shown is a DCG
which displays the pass sequence that the
bottom player considers to be the best.

Figure 4. Pass planning from the perspective
of the second player in the pass sequence.

